Biofilms: applications in bioremediation

Gabriele Pastorella, Giulio Gazzola, Seratna Guadarrama, Enrico Marsili

Research output: Chapter in Book/Conference proceedingBook Chapterpeer-review

Abstract

Bioremediation uses microorganisms to remove, detoxify, or immobilize pollutants, and does not require addition of harmful chemicals. Bioremediation is particularly suitable for large areas where contaminant concentrations are relatively low and the hydrology of the soil does not support an aggressive chemical remediation strategy. In the last few years, researchers have described the mechanisms of bioremediation for numerous priority pollutants, including chlorinated hydrocarbons, polyaromatic hydrocarbons, and heavy metals. However, most studies published to date have dealt with planktonic cultures grown under controlled laboratory conditions.

Microorganisms in the environment occur mostly as biofilms, whose development is encouraged by the presence of solid surfaces and the limited amounts of organic carbon. Therefore, optimization of bioremediation processes in the field requires a thorough knowledge of biofilm structure, dynamic, and interaction with pollutants and other environmental factors.

In this chapter, we describe the recent advances in bioremediation, with particular regard to the role of microbial biofilms. We discuss emerging technologies, such as bio-electroremediation and microbially produced surfactants. We also show how genetic engineering technologies may be employed to improve bioremediation effectiveness, both in laboratory and in field applications.
Original languageEnglish
Title of host publicationMicrobial biofilms : current research and applications
EditorsGavin Lear, Gillian D. Lewis Lewis
Place of PublicationWymondham
PublisherCaister Academic Press
Chapter5
Pages73-98
ISBN (Print)9781904455967 , 1904455964
Publication statusPublished - 2012
Externally publishedYes

Keywords

  • POLYCYCLIC AROMATIC-HYDROCARBONS
  • Bioremediation
  • Biofilms.

Fingerprint

Dive into the research topics of 'Biofilms: applications in bioremediation'. Together they form a unique fingerprint.

Cite this