Age-related differences in signaling efficiency of human lens cells underpin differential wound healing response rates following cataract surgery

Lucy Jean Dawes, George Duncan, Ian Michael Wormstone

Research output: Journal PublicationArticlepeer-review

31 Citations (Scopus)

Abstract

PURPOSE. Cataract surgery is blighted by posterior capsule opacification (PCO), which is more severe and frequent in the young than the elderly (>60 years). Our aim was to understand the biological basis for these age-related differences in PCO/ wound healing rates. METHODS. Human capsular bags were prepared by cataract surgery on donor lenses (young [<40 years] and elderly [>60 years] groups) and maintained in serum-free Eagle's minimum essential medium. Cell growth was determined using the MTS assay. Fibroblast growth factor (FGF) and hepatocyte growth factor (HGF) levels were determined using ELISA. Protein synthesis rates were elucidated by 35S-methionine incorporation. U0126, SB203580, and SP600125 were used to disrupt ERK-, p38-, and JNK-mediated signaling, respectively. Level of total and phospho-ERK, -c-jun, -P38, and -JNK plus cytokines were detected using a BIOPLEX array system. RESULTS. Following a 2-day culture period, significant decreases in IL-1β and IL-6, and increases in IL-10, IL-12, IL-13, and VEGF in the >60 years group were observed compared with their younger counterparts. Capsular bags (cells and capsule) from aged donors contained greater than or equal levels of HGF and FGF than younger counterparts and had greater rates of protein synthesis. Inhibition of ERK, p38, and JNK signaling significantly suppressed cell coverage on the posterior capsule. pERK, p-c-jun, p-p38, and pJNK were consistently lower in aged cell populations; total signaling protein expression was unaffected by age. Serum stimulation increased pERK, p-c-jun, and pJNK levels in cells of all ages; p-p38 was significantly increased in the >60 years group only. CONCLUSIONS. Ligand availability to cells is not a limiting factor as we age, but the ability to convert this resource into signaling activity is. We therefore propose that overall signaling efficiency is reduced as a function of age, which consequently limits wound-healing response rates after injury.

Original languageEnglish
Pages (from-to)333-342
Number of pages10
JournalInvestigative Ophthalmology and Visual Science
Volume54
Issue number1
DOIs
Publication statusPublished - Jan 2013
Externally publishedYes

ASJC Scopus subject areas

  • Ophthalmology
  • Sensory Systems
  • Cellular and Molecular Neuroscience

Fingerprint

Dive into the research topics of 'Age-related differences in signaling efficiency of human lens cells underpin differential wound healing response rates following cataract surgery'. Together they form a unique fingerprint.

Cite this