TY - GEN
T1 - Action-level intention selection for BDI agents
AU - Yao, Yuan
AU - Logan, Brian
N1 - Publisher Copyright:
Copyright © 2016, International Foundation for Autonomous Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.
PY - 2016
Y1 - 2016
N2 - Belief-Desire-Intention agents typically pursue multiple goals in parallel. However the interleaving of steps in different intentions may result in conflicts, e.g., where the execution of a step in one plan makes the execution of a step in another concurrently executing plan impossible. Previous approaches to avoiding conflicts between concurrently executing intentions treat plans as atomic units, and attempt to interleave plans in different intentions so as to minimise conflicts. However some conflicts cannot be resolved by appropriate ordering of plans and can only be resolved by appropriate interleaving of steps within plans. In this paper, we present SA, an approach to intention selection based on Single-Player Monte Carlo Tree Search that selects which intention to progress at the current cycle at the level of individual plan steps. We evaluate the performance of our approach in a range of scenarios of increasing difficulty in both static and dynamic environments. The results suggest SA out-performs existing approaches to intention selection both in terms of goals achieved and the variance in goal achievement time.
AB - Belief-Desire-Intention agents typically pursue multiple goals in parallel. However the interleaving of steps in different intentions may result in conflicts, e.g., where the execution of a step in one plan makes the execution of a step in another concurrently executing plan impossible. Previous approaches to avoiding conflicts between concurrently executing intentions treat plans as atomic units, and attempt to interleave plans in different intentions so as to minimise conflicts. However some conflicts cannot be resolved by appropriate ordering of plans and can only be resolved by appropriate interleaving of steps within plans. In this paper, we present SA, an approach to intention selection based on Single-Player Monte Carlo Tree Search that selects which intention to progress at the current cycle at the level of individual plan steps. We evaluate the performance of our approach in a range of scenarios of increasing difficulty in both static and dynamic environments. The results suggest SA out-performs existing approaches to intention selection both in terms of goals achieved and the variance in goal achievement time.
UR - http://www.scopus.com/inward/record.url?scp=85009831301&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85009831301
T3 - Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS
SP - 1227
EP - 1236
BT - AAMAS 2016 - Proceedings of the 2016 International Conference on Autonomous Agents and Multiagent Systems
PB - International Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS)
T2 - 15th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2016
Y2 - 9 May 2016 through 13 May 2016
ER -