A Parametric Analysis on Performance Dependence of Electromagnetic Vibration Harvester on the Coil Position, Coil Connection, and Magnetic Flux Density

Research output: Chapter in Book/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)

Abstract

This paper presented a simulation approach to curate methods for determining which coil geometry/connection type, however of equal volume is most suitable for achieving higher power output of an electromagnetic harvester by positionally maximizing the magnetic flux density cutting across the transduction coil in different coil connection modes. The average magnetic flux density of the magnet at the coil positions were simulated by Finite Element Method Magnetics (FEMM) software and the predicted voltage/power were computed and the connection type that is most suitable over equal coil volume for realizing highest harvestable power was determined. The magnetic flux through six different coils were simulated and reported using different coil dimensions and positions. The power harvested over each design are compared and conclusions are drawn as to which design strategies is suitable for energy harvesting over equal coil volume. Most general among conclusions reached in this work is that using two side positioned 4mm width coil geometry, the magnetic flux cutting across each of the transduction coil is increased by about 9.37% compared to an equal volume 8 mm center positioned coil, while the harvested power increased by 14.45 % when the 8 mm center positioned coil is change to parallel connected split 4 mm coils hence, we conclude that irrespective of the connection type, using side positioned coil show prospect for enhanced performance over a single, equal volume center positioned coil while the parallel connected coils significantly performs better than the series connected counterparts.

Original languageEnglish
Title of host publicationInternational Conference on Electrical, Computer, Communications and Mechatronics Engineering, ICECCME 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781665470957
DOIs
Publication statusPublished - 2022
Event2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering, ICECCME 2022 - Male, Maldives
Duration: 16 Nov 202218 Nov 2022

Publication series

NameInternational Conference on Electrical, Computer, Communications and Mechatronics Engineering, ICECCME 2022

Conference

Conference2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering, ICECCME 2022
Country/TerritoryMaldives
CityMale
Period16/11/2218/11/22

Keywords

  • Coil position
  • Electromagnetic energy harvester
  • Finite element analysis
  • Magnetic flux density

ASJC Scopus subject areas

  • Automotive Engineering
  • Electrical and Electronic Engineering
  • Mechanical Engineering
  • Artificial Intelligence
  • Computer Networks and Communications
  • Computer Science Applications
  • Hardware and Architecture
  • Renewable Energy, Sustainability and the Environment

Fingerprint

Dive into the research topics of 'A Parametric Analysis on Performance Dependence of Electromagnetic Vibration Harvester on the Coil Position, Coil Connection, and Magnetic Flux Density'. Together they form a unique fingerprint.

Cite this