A New Dataset and Baseline Model for Rectal Cancer Risk Assessment in Endoscopic Ultrasound Videos

Jiansong Zhang, Shengnan Wu, Peizhong Liu, Linlin Shen

Research output: Chapter in Book/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)

Abstract

Early diagnosis of rectal cancer is essential to improve patient survival. Existing diagnostic methods mainly rely on complex MRI as well as pathology-level co-diagnosis. In contrast, in this paper, we collect and annotate for the first time a rectal cancer ultrasound endoscopy video dataset containing 207 patients for rectal cancer video risk assessment. Additionally, we introduce the Rectal Cancer Video Risk Assessment Network (RCVA-Net), a temporal logic-based framework designed to tackle the classification of rectal cancer ultrasound endoscopy videos. In RCVA-Net, we propose a novel adjacent frames fusion module that effectively integrates the temporal local features from the original video with the global features of the sampled video frames. The intra-video fusion module is employed to capture and learn the temporal dynamics between neighbouring video frames, enhancing the network’s ability to discern subtle nuances in video sequences. Furthermore, we enhance the classification of rectal cancer by randomly incorporating video-level features extracted from the original videos, thereby significantly boosting the performance of rectal cancer classification using ultrasound endoscopic videos. Experimental results on our labelled dataset show that our RCVA-Net can serve as a scalable baseline model with leading performance. The code of this paper can be accessed at: https://github.com/JsongZhang/RCVA-Net.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention - MICCAI 2024 - 27th International Conference, Proceedings
EditorsMarius George Linguraru, Aasa Feragen, Ben Glocker, Julia A. Schnabel, Qi Dou, Stamatia Giannarou, Karim Lekadir
PublisherSpringer Science and Business Media Deutschland GmbH
Pages564-573
Number of pages10
ISBN (Print)9783031723834
DOIs
Publication statusPublished - 2024
Externally publishedYes
Event27th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2024 - Marrakesh, Morocco
Duration: 6 Oct 202410 Oct 2024

Publication series

NameLecture Notes in Computer Science
Volume15003 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference27th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2024
Country/TerritoryMorocco
CityMarrakesh
Period6/10/2410/10/24

Keywords

  • Rectal cancer
  • Ultrasound endoscopy video dataset
  • Ultrasound video classification

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'A New Dataset and Baseline Model for Rectal Cancer Risk Assessment in Endoscopic Ultrasound Videos'. Together they form a unique fingerprint.

Cite this