TY - GEN
T1 - A Multi-spectral Dataset for Evaluating Motion Estimation Systems
AU - Dai, Weichen
AU - Zhang, Yu
AU - Chen, Shenzhou
AU - Sun, Donglei
AU - Kong, Da
N1 - Publisher Copyright:
© 2021 IEEE
PY - 2021
Y1 - 2021
N2 - Visible images have been widely used for motion estimation. Thermal images, in contrast, are more challenging to be used in motion estimation since they typically have lower resolution, less texture, and more noise. In this paper, a novel dataset for evaluating the performance of multi-spectral motion estimation systems is presented. All the sequences are recorded from a handheld multi-spectral device. It consists of a standard visible-light camera, a long-wave infrared camera, an RGB-D camera, and an inertial measurement unit (IMU). The multi-spectral images, including both color and thermal images in full sensor resolution (640 × 480), are obtained from a standard and a long-wave infrared camera at 32Hz with hardware-synchronization. The depth images are captured by a Microsoft Kinect2 and can have benefits for learning cross-modalities stereo matching. For trajectory evaluation, accurate groundtruth camera poses obtained from a motion capture system are provided. In addition to the sequences with bright illumination, the dataset also contains dim, varying, and complex illumination scenes. The full dataset, including raw data and calibration data with detailed data format specifications, is publicly available.
AB - Visible images have been widely used for motion estimation. Thermal images, in contrast, are more challenging to be used in motion estimation since they typically have lower resolution, less texture, and more noise. In this paper, a novel dataset for evaluating the performance of multi-spectral motion estimation systems is presented. All the sequences are recorded from a handheld multi-spectral device. It consists of a standard visible-light camera, a long-wave infrared camera, an RGB-D camera, and an inertial measurement unit (IMU). The multi-spectral images, including both color and thermal images in full sensor resolution (640 × 480), are obtained from a standard and a long-wave infrared camera at 32Hz with hardware-synchronization. The depth images are captured by a Microsoft Kinect2 and can have benefits for learning cross-modalities stereo matching. For trajectory evaluation, accurate groundtruth camera poses obtained from a motion capture system are provided. In addition to the sequences with bright illumination, the dataset also contains dim, varying, and complex illumination scenes. The full dataset, including raw data and calibration data with detailed data format specifications, is publicly available.
UR - http://www.scopus.com/inward/record.url?scp=85125443757&partnerID=8YFLogxK
U2 - 10.1109/ICRA48506.2021.9561906
DO - 10.1109/ICRA48506.2021.9561906
M3 - Conference contribution
AN - SCOPUS:85125443757
T3 - Proceedings - IEEE International Conference on Robotics and Automation
SP - 5560
EP - 5566
BT - 2021 IEEE International Conference on Robotics and Automation, ICRA 2021
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2021 IEEE International Conference on Robotics and Automation, ICRA 2021
Y2 - 30 May 2021 through 5 June 2021
ER -