TY - JOUR
T1 - A morphology controlled surface sulfurized CoMn2O4microspike electrocatalyst for water splitting with excellent OER rate for binder-free electrocatalytic oxygen evolution
AU - Bahadur, Ali
AU - Hussain, Waseem
AU - Iqbal, Shahid
AU - Ullah, Farman
AU - Shoaib, Muhammad
AU - Liu, Guocong
AU - Feng, Kejun
N1 - Publisher Copyright:
© The Royal Society of Chemistry.
PY - 2021/5/28
Y1 - 2021/5/28
N2 - Transition metal mixed oxides have drawn extensive interest as oxygen evolution electrocatalyst alternatives to noble metal-based materials but generally involve prolonged synthesis routes and limited electrocatalytic activity and stability. Herein we report surface sulfurized CoMn2O4 microspikes (S-CoMn2O4-MSs) grown directly at low temperature and ambient atmosphere using a two-step facile synthesis protocol, requiring only 310 s. S-CoMn2O4-MSs showed excellent OER activity with an overpotential of 300 mV at 10 mA cm-2 while pristine Mn3O4 and Co3O4 required 580 and 410 mV to deliver the same current density value. Moreover, we rationally designed the study to gradually decrease the Tafel slope value from 307.5 to 26.2 mV dec-1 for the best electrocatalyst, with excellent stability at 20 mA cm-2 for 24 h without any binder. This overall performance compares well with very recently reported oxides and CoMn2O4 based systems and the as-synthesized material showed highly competitive overall performance. During this work, the stability of the S2- layer remained the main concern and was confirmed by several characterization techniques. We investigated the surface blockage role of the surface S2- layer and, therefore, optimized the degree of sulfurization for best performance. In the end, we attributed and supported the exciting performance of S-CoMn2O4 MSs to the synergistic effect of Co and Mn, their unique morphology, the easily oxidizable lower oxidation states of cobalt (due to surface sulfurization treatment), and the large interior structure for increased contact with the electrolyte.
AB - Transition metal mixed oxides have drawn extensive interest as oxygen evolution electrocatalyst alternatives to noble metal-based materials but generally involve prolonged synthesis routes and limited electrocatalytic activity and stability. Herein we report surface sulfurized CoMn2O4 microspikes (S-CoMn2O4-MSs) grown directly at low temperature and ambient atmosphere using a two-step facile synthesis protocol, requiring only 310 s. S-CoMn2O4-MSs showed excellent OER activity with an overpotential of 300 mV at 10 mA cm-2 while pristine Mn3O4 and Co3O4 required 580 and 410 mV to deliver the same current density value. Moreover, we rationally designed the study to gradually decrease the Tafel slope value from 307.5 to 26.2 mV dec-1 for the best electrocatalyst, with excellent stability at 20 mA cm-2 for 24 h without any binder. This overall performance compares well with very recently reported oxides and CoMn2O4 based systems and the as-synthesized material showed highly competitive overall performance. During this work, the stability of the S2- layer remained the main concern and was confirmed by several characterization techniques. We investigated the surface blockage role of the surface S2- layer and, therefore, optimized the degree of sulfurization for best performance. In the end, we attributed and supported the exciting performance of S-CoMn2O4 MSs to the synergistic effect of Co and Mn, their unique morphology, the easily oxidizable lower oxidation states of cobalt (due to surface sulfurization treatment), and the large interior structure for increased contact with the electrolyte.
UR - http://www.scopus.com/inward/record.url?scp=85106661811&partnerID=8YFLogxK
U2 - 10.1039/d0ta09430g
DO - 10.1039/d0ta09430g
M3 - Article
AN - SCOPUS:85106661811
SN - 2050-7488
VL - 9
SP - 12255
EP - 12264
JO - Journal of Materials Chemistry A
JF - Journal of Materials Chemistry A
IS - 20
ER -