Abstract
The present work addresses the study of the combustion of individual biomass particle surrounded by a gas stream of N2/O2 under the operating conditions encountered in a drop tube reactor. The aim of this analysis is to give a better insight into the chemical and physical processes that occur both at particle and reactor scale where the volatiles, generated by the biomass pyrolysis, burn in a fuel particle enveloped flame. A comprehensive CFD model was developed within the open-source OpenFOAM® framework in order to properly handle the computational mesh and the discretization of the characteristic governing equations. At the reactor scale, the reactive flow was described by the equations for continuous, multicomponent, compressible and thermally-perfect mixtures of gases. At the particle scale, instead, the solid particle was considered as a porous media with isotropic and uniform morphological properties.
Original language | English |
---|---|
Title of host publication | Chemical Engineering Transactions |
Editors | Katharina Kohse-Hoinghaus, Eliseo Ranzi |
Publisher | AIDIC-Italian Association of Chemical Engineering |
Pages | 49-54 |
Number of pages | 6 |
Volume | 50 |
ISBN (Electronic) | 9788895608419 |
DOIs | |
Publication status | Published - 2016 |
Externally published | Yes |
ASJC Scopus subject areas
- General Chemical Engineering