Abstract
Permanent magnet synchronous motors (PMSM) are usually driven by voltage-source inverters (VSI). The distortion of air-gap magnetic field and the dead time of voltage-source inverters cause the current waveform distortion with a large number of harmonics, especially when the motor runs at low speed. In order to improve the current performance for PMSM and suppress the current harmonics, the neural network harmonic current loop is added in this paper. The ADALINE method is utilized for the decomposition and extraction of the main harmonic currents, and the extracted current harmonics are trained to obtain the compensated voltage. By means of voltage harmonic injection, both detection and suppression of the specified current harmonic waves are achieved. The simulation and experimental results show that the proposed control strategy can effectively suppress the current harmonics, compensate current harmonic distortion and reduce the motor torque ripple.
Translated title of the contribution | Harmonic Extraction and Suppression Method of Permanent Magnet Synchronous Motor Based on Adaptive Linear Neural Network |
---|---|
Original language | Chinese (Traditional) |
Pages (from-to) | 654-663 |
Number of pages | 10 |
Journal | Diangong Jishu Xuebao/Transactions of China Electrotechnical Society |
Volume | 34 |
Issue number | 4 |
DOIs | |
Publication status | Published - 25 Feb 2019 |
Externally published | Yes |
ASJC Scopus subject areas
- Electrical and Electronic Engineering