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‘We must ascribe to all cells an independent vitality.’

Theodor Schwann, 1810 - 1882.
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ABSTRACT

This thesis presents our research on single cell classification with single cell transcriptomics (SCT)
data and purely supervised machine learning (ML) method artificial neural network (ANN).

SCT sequencing technology can accurately capture the instantaneous gene expression of every
single cell. The 10x SCT technology has realized SCT profiling in a high-throughput and cost-
efficient manner. It can produce over 10° transcripts of over 10° individual cells with ~33,000 gene
features, for profiling a targeted sample in a single study. However, the classification of single
cells with SCT data has met challenges. These include: the lack of supervised ML methods in
single cell classification, the lack of reference datasets for SCT gene expression profiles, the lack
of a specific cell ontology for single cell classification, the characteristic of SCT data - large data
size, high-dimensional, the sparsity (a large proportion of zero-counts), and the presence of
variables (biological and technical). The currently used unsupervised ML methods have shown the
limitation on generalization and manual inspection to annotation.

In addressing the needs and challenges, considering the capability of generalization and the
suitability to large data size, high-dimensional, sparse, and high-variety SCT data, we made the
hypothesis that single cell classification can be done with the supervised ML method ANN and
SCT data. We selected peripheral blood mononuclear cells (PBMC) as the SCT data sample for
this study. PBMC is a conventionally used predictive health indicator, it has five main cell types
that are naturally isolated. The accurate classification of SCT data of the five cell types can be used
in early disease diagnosis and the realization of accurate blood testing based on SCT analysis.

We prepared standardized 56 reference datasets for PBMC SCT classification and described a
multi-dimensional cell ontology with over 163 dimensions for single cell classification, with
PBMC as an example.

In the initial study, the proof of concept that using the supervised ML method ANN and
standardized SCT data to realize single cell classification has been demonstrated, with an overall
accuracy of 89.4%. Follow-up, we deployed holdout internal cross-validation, external validation,
added data validation, together with cyclical incremental learning method, and newly collected
independent SCT datasets from four sources, to investigate the baseline for highly accurate PBMC
SCT classification. The overall accuracy of the 4-class classification was 93.0%, and the 5-class
classification achieved 94.6%. The classification results have been analyzed with PBMC SCT cell
ontology and basic statistics. B cells, monocytes, and T cells had classification accuracy that was
greater than 95%. Due to similarities between NK cells and T cell subsets, the classification
accuracy of NK cells was maintained at roughly 75%. The accuracy of dendritic cells was limited
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due to the small proportion of numbers in the training sets.

Based on these, we studied the effect of various processing protocols of SCT data on single cell
classification. The findings indicated that datasets from samples with minimally processing
protocols (PBMC separation only) helped in the identification of SCT gene expression patterns.

Further, we explored the wvulnerability of ANN-SCT-PBMC classifiers, using 17 non-
representative datasets of five different confounding factor groups, and 17 rounds of cyclical four-
supersets-swapping external validation experiments. The results revealed that when trained with
sufficient reference datasets, the ANN-SCT-PBMC model was robust and could survive a small
number of non-representative instances hidden in the training set. The model can recognize and
assess the representativeness of SCT data once it has been trained on purified high-quality
reference data. The proportions of reference and non-representative datasets, the distribution of
classes in training and testing sets, the similarity of gene expression between cell types and
subtypes, the characteristics of non-representative datasets, etc. are variables that had an impact
on model vulnerability.

This research gives a solution to the current “eleven grand challenges” of SCT data analysis. It
demonstrates that purely supervised ML ANN is a viable option for classifying cell types from
single cell expression data, with generalization capability and robustness on various upcoming
data sets. This research reveals that sufficient reference SCT data, generated with precise and strict
protocols and labeled with a complete and detailed multi-dimensional cell ontology, is required
for highly accurate single cell classification, that can contribute to future predictive health
development and hematology development.

KEY WORDS: single cell classification, single cell transcriptomics (SCT) data, supervised
machine learning (ML), artificial neural network (ANN), peripheral blood mononuclear cells
(PBMC), multi-dimensional cell ontology, proof of concept, incremental learning, model
vulnerability, data representativeness, model robustness.

Page | v



LIST OF ABBREVIATIONS

10x

ANN

ACC

BC

CL

DC

F1

FACS

FN

FP

GEO

INKT

MACS

MAIT

MC

ML

10x Genomics Demonstration

Artificial Neural Network

Accuracy

B Cells

Cell Ontology

Dendritic Cells

F1-Score

Fluorescence-Activated Cell Sorting

False Negative

False Positive

Gene Expression Omnibus

INKT (invariant Natural Killer T Cells)

Magnetic-Activated Cell Sorting

Mucosal-Associated Invariant T Cells

Monocytes

Machine Learning

Page | vi



NK

NKT

PBMC

pDC

SCT

SE

SOP

SP

TC

TN

TP

Vdl

Vd2

Natural Killer Cells

Natural Killer T Cells

Peripheral Blood Mononuclear Cells

plasmacytoid Dendritic Cells

Single Cell Transcriptomics

Sensitivity

Standard Operating Procedures

Specificity

T Cells

True Negative

True Positive

Gamma-delta (y6) 1 T Cells

Gamma-delta (y5) 2 T Cells

Page | vii



LIST OF TABLES

Table 1. Unsupervised, semi-supervised, and supervised tools and packages enumerations for

single cell type clustering and ClasSIfICAtION. ..........cccoviiiiiiiiiic s 19
Table 2. Components and the number of gene probes in common list and full list of Homo

R T= 01T OSSR 38
Table 3. The number of data sets used in this StUAY. .........cceeveiieiieie i 76
Table 4. Total number of cells available for this StUdY...........ccccoevieiiiie i 76
Table 5. Cycle 3 CONTUSION MALMIX. ...cc.eciiiieiicie e ene e 80
Table 6. Cycle 3 aSSESSMENT MELIICS. ....c.veiieiiieieiteece et sreeeeanee e 80
Table 7. Cycle 7 CONfUSION MALMIX. ...ccvecieiieiece et re e 85
Table 8. Cycle 7 aSSESSMENT MELFICS.....c.viiieiieeieieecie ettt sreeneenee e 85
Table 9. The training set and testing set in each cycle of ANN incremental learning experimental
o[- o PSSR 91
Table 10. Total number of cells for different cell types and data sources implemented in this
1016 2SSO P PO PP TP PP 92
Table 11. The confusion matrix of final training and testing cycle (Step 25). ..o 97
Table 12. The assessment metrics of the final training and testing cycle (step 25)..........ccccevuenee. 97
Table 13. Summary description of 56 SCT data sets involved in this study. ..........cccccevvrvennens 107
Table 14. The cell type compositions of training and testing SetS. .........ccccvvvervrieiiveresieseeniens 112
Table 15. Classification accuracy for modeling eXperiments. ..........cccoevvrininieienene s 115
Table 16. An overview of the 73 SCT data sets used in this Study...........c.ccocvvveiiiencinininnns 129
Table 17. The summary of the 17 non-representative data SetS..........cccovvveririeienenc s 129

Page | viii



LIST OF FIGURES

Figure 1. A typical SCT analysis workflow using unsupervised ML for one study at a time........ 6
Figure 2. This project’s single-cell RNA-seq analysis workflow using supervised ML method
N A TR 9
Figure 3. The technology roadmap for overall design of this project........ccccccoevvvveiiiieiieinenns 11
Figure 4. lllustration of technology and PBMC cell type recognition and classification strategy
0] 1 1RSSR 16
Figure 5. The increase of publications in SCT and PBMC-SCT research area by years. ............ 23
Figure 6. Organized PBMC ontology taXONOMY. ........coveieiierieeieieesie e seesieesie e e snesneesnaeneeas 27
Figure 7. The components of metadata involving over 600 10X SCT files. .........ccccoovevviveieennns 35
Figure 8. An example of genome assembly (GSM3937878). ........ccccovveveiiieiieie i 37
Figure 9. Comparison across different genome VEISION. ........ccccceveeieeieiiese e 37
Figure 10. Data files collected and CleANEd. ..........c.cocveiieiiiieiece e 38
Figure 11. MTX file needs to be converted to CSV file for visualization. ............c..cccoeceeieinennnns 39
Figure 12. An example of a standardized count matrix (30,698 features)..........ccccecerervrvrnnnnn 39

Figure 13. The experimental metadata and statistical metadata for involved PBMC data sets. ... 40
Figure 14. An example to show the statistical properties calculating procedure for one individual

0L TS SRS 42
Figure 15. The 0-100 percentiles of positive profiles of 10x and GEO data sets as an example. 42
Figure 16. The scatter plots for percentiles of column positive value of each data set. ............... 43
Figure 17. The scatter plots of positive values and sum values in each data set matrix............... 44
Figure 18. The metadata for PBMC ontology building, based on selected PBMC SCT data. ..... 45
Figure 19. Five angles of SCT study multi-dimensions. ...........ccccoeiiiininininicee e 49
Figure 20. Dimensions in ‘Cell Properties’ angle..........c.cocovviiiiiiiiiiiciie e 50
Figure 21. Five classes under the ‘PBMC’ dimension. .........ccccoovriiininineninieieese s 51
Figure 22. B cell ontology defined. ..........ooveiiiiiiiec e 52
Figure 23. Dendritic cell ontology defined. ..........cooiiiiiiiiiiee e 53
Figure 24. Monocyte ontology defiNed...........oooui oo 54
Figure 25. NK cell ontology defined. ..........ooveieiiiiicce e 54
Figure 26. T cell ontology defiNed..........c.ooveieiii i 56
Figure 27. Dimensions in ‘Organism Properties’ angle............cccovviiiiiiiiiiiiiciecc 58
Figure 28. Division from the perspective Of tiSSUE tYPE. ....ccveveeiieiieiice e 59
Figure 29. Dimensions of experimental settings involved in SCT data analysis..............c.cccoc.... 61
Figure 30. Dimensions in data analytics of the ontology..........cccceeeiiiic i 65
Figure 31. The ANN classification model architeCture. ...........ccccevveeiieiiiiecce e 69
Figure 32. Illustrator of @ CONFUSION MALMIX. .....coviiiiiiiiiiiiee e 71
Figure 33. Representative ANN [€aIrNING........cccooiiiiiiiiiiiee e 79
Figure 34. A comparison of classification performance for cycle 1 and cycle 4............ccccoeuenee. 82
Figure 35. A comparison of classification performance for cycle 5 and cycle 6...............ccoe...... 84

Page | ix



Figure 36. Experimental design with incremental learning for ANN classification of PBMC cell

10/ LRV [0 RS T I = L VOSSPSR 92
Figure 37. ANN performance on cell type classification of the incremental learning experiment
aCr0SS AITfErENT CYCIE SEEPS. ©.ouviivieiiieie ettt be e re e be e e e neennas 94
Figure 38. The overall accuracy of the classification of ANNSs during incremental learning across
IFFEIENT CYCIES. ..ottt et e e s re e be e e e s teente e e e sreenas 95
Figure 39. ANN predication performance on each cell type in the incremental learning
8 L=] £ 1T o SO TSP U RSP P P PP PP PR PRORON 96
Figure 40. Graphic abstract for Study T ..........coooiiiiii e 99
Figure 41. Illustration of the process of incremental 1earning. .........c.ccocvvvviiiiieien s 103
Figure 42. Technical route diagram for the study design in Study HI...........cccoovevvieniiiininnne. 104
Figure 43. The ontology of cell types and subtypes in our study. .........cccocevveriinienieneenesee 108
Figure 44. Density distributions of gene expression across 56 data sets used in the current study.
..................................................................................................................................................... 110
Figure 45. Data sets used in training cycles appear in the time sequence as acquired. .............. 113
Figure 46. The accuracy of classification during incremental learning...........ccccoceeeiencnennnn. 114
Figure 47. Sample workflows relevant for our Study. ........ccccccovveiiiicve i, 119
Figure 48. Schematic diagram of Study deSIgN. .......cceevieiieiiiie e 124
Figure 49. Illustration of involved data sets of ANN train-test in Round 1 to 17. ..................... 126
Figure 50. The cell subtypes and proportions in each data SOUrCe. ..........ccccevvevveveiieceeie s, 132
Figure 51. Accuracy of 4-super-sets-swapping in Round 110 17. .....c.cccevviiiieieciece e 133
Figure 52. F1-score results of five cell types in 4-super-sets-swapping rounds, with BroadS1 as
LTI (oS 1] T TR OSSP PSSRSO 135
Figure 53. F1-score of five cell types in 4-super-sets-swapping rounds, with BroadS2 as the
1] (] T TR SRS TR PPROTROSON 137
Figure 54. F1-score of four cell types in 4-super-sets-swapping rounds, with 10x as the testing
=] TP PTUR PP PP PPP PR 139
Figure 55. F1-score of five cell types in 4-super-sets-swapping rounds, with GEO as the testing
<] O OSSR PPRP PR 140
Figure 56. The performance of subtype prediction within group comparisons, used BroadS1 as
LEES L0 =] SR TSRS PPRPTPRPRURPRON 142
Figure 57. The performance of subtype prediction within group comparisons, taken BroadS2 as
LESES L0 RS- SR TSP URURUUPPR P PPRURPRON 143
Figure 58. The performance of subtype prediction within group comparisons, used 10x as testing
1 PRSPPI 144
Figure 59. The performance of subtype prediction within group comparison, testing with GEO.
..................................................................................................................................................... 145
Figure 60. The illustration for the effect of the proportion of reference and non-representative
datasets on model PErfOrMAaNCE............ooii i e 149

Page | x



TABLE OF CONTENTS

ACKNOWLEDGEMENTS ...ttt s e st s e st e e st e e st e e sate e s s be e sateesabeesabeesabeesabeessteesabeessbeennneeaans 1
F AN R I AN O USSR v
LIST OF ABBREVIATIONS ...ttt ettt ettt s b e e te et e e abeebeesbeesbeesbeesbesseesteesteesbeennas Vi
LIST OF TABLES . ... oottt ettt e e bt et e e e e st e s te e s te e s te e s beesbeeabeeseeeasesbsesbeebeestaeteesnestees VI
LIST OF FIGURES ...ttt ettt st s e e st e e e at e e e a b e e e be e s s beeeateessbeeeabeeasbeesntaeesteeebeeeteas IX
CHAPTER 1 INTRODUGCTION. ... ..ottt ittt ee st s e stae s tr e e stee e staeesaae e staeesaeeestseesbaeesteeessteesteeesseeeateeenneens 1
L1 BACKGROUND .....eceiittiteiitit e e eitteeeeetteeeeeetae e e e etbeeeestbaeeeaataseeaaaseeeeasbeeeeabssseaasseaeessbaeeeasbesesasbasaeasbbeseastbeeesnbenaessteeenn 1
1.2 MOTIVATION & HYPOTHESIS ...veiiitie ettt ettt stee e itte e steeeeteeesteeesteeasteeesteeesteeessseessseeaseeesteeessteesssaesaseessseesneeessseesneeens 2
1.2.1 The importance 0f SCT tEChNGOIOGY .. .cveviiiiiie et e e seenaeseennen 2
1.2.2 The 10X GENOMICS PIALTOIMN .....viiiiiiieic bbbttt 3
1.2.3 The challenges and difficulties in SCT data @nalysiS.........c.ccoeiririiriiiine s 3
1.2.4 The importance of PBMC ClaSSIfiCatiON ...........cccvivuiiiiiiiiee ettt 4
1.2.5 The limitation of uUnsupervised ML METNOUS .........coiiiiiiiie s 6
1.2.6 The hypothesis of using supervised ML method ANN ...t 7

G 0 I @ = N =l 1 Y = PSR 10
IO 0 O 1Y T 1| o T | S 10
1.3.2 SPECITIC ODJECTIVES ...ttt e b e bbbttt nr ettt sb e b b 10

1.4 OVERALL STUDY DESIGN....iiiuttteiitiee e ittt e e sttt e ettt e e e estts e e sssteaeesstaeaeaattseeaastaeeessaeeeaasteeeeanseseessraeeeasteeesaseeeessnnns 11
1.5 CONTRIBUTION OF THESIS.....cuuttteiitieeeiitteeesiteeesstteseasttsessassesasssssseeaassseesassssessassesesasssessanssssessssesssssseesansssessssnens 12
1.6 OUTLINE OF SUBSEQUENT CHAPTERS ...eeiuttiiiteeiteeateeeiteeasteeastseassseassseassssasssssssesasssssssssssssssssssesssssssssssssessssesssnes 14
CHAPTER 2 LITERATURE REVIEW - SCT ANALYSIS FOR PBMC CLASSIFICATION.........ccoccevenee. 15
172 R 1N 1270 010 o 1T PR 15
2.2 SCT FORPBIMOEC STUDY ....uiiiiiiiiee ettt et e e s et e e e e st e e e e ata e e e s bt e e e ettt e e e aataeeessbaeeeasbeeesantaeeessbeeeeanseeeennnnes 17
2.3 CURRENTLY USED UNSUPERVISED ML METHODS AND ITS LIMITATIONS. ...ccveiitiiiiitieiteeireeiteecreeeeseesveesveeeve s 17
2.4 PBMC SCT ANALYSIS WITH CELL MARKER .....cciittiiiiitiee e ettt e e ettt e s ittee e e st e e e sataeaestaeeeanabeesssnraaassnneeeeaseseesnnnes 22
2.5 SUPERVISED ML IN SCT CLASSIFICATION AND ITS CHALLENGES ......uvvieiiiieeeiiieeestreeeesiteeessnreeessnreeesnsneeesnnnnas 22
2.6 COMBINATION OF SUPERVISED AND UNSUPERVISED ML IN SCT ..ottt 29
2.7 CURRENT CHALLENGES IN SCT CLASSIFICATION ANALYSIS .. .vteitieiiteeiiteeiieesteesteesseesseesnsesssesansessssnsensessnns 29
2.8 FUTURE PROSPECTS FOR PBIMC-SCT CLASSIFICATION ....ccittitiiiiiteeiitteeeasttreeesseeeessreeesssseesssssesesssssesesssssesssnnnes 33
CHAPTER 3 GENERAL METHODOLOGY ...ttt sttt ettt sva et be et ste e sbeeareereens 34
K B 7 SO 34
3.1.1 Data collection & data PrOCESSING .....ccveiveeivieieiieiiesee st e st este et e e e st e steesteete e aesraesteesteesteeseensesssesseesseens 34
3.1.2 General metadata CONSIIUCTION.........cviiiiee ittt ettt re e s be e s be e s beesabeesbeesbeeesbeeenbeeeanes 35
3.1.3 Data selection and study qUalIty CONTIOL ..........coiviiiiiiiri s 36
3.1.4 Common genome assembIly DUIIE...........ooiiii e e e st 36
3.1.5 Data filtering, conversion, and standardization ..............ccoccveiiiiiiie i 38
3.1.6 PBMC data selection and properties @nalySis ..o 40
3.1.6.1 PBMC data MELAUALA ... ...eeiviiieiriitieiteite sttt et ste e e s te et e sbeesaeste et e sbeeeesbeenbesbeeseesbeenbesbeesbesbeenbesbeeseesbaenbesneeses 40

3.1.6.2 BaSIC STALISLICAL BNATYSIS ... .e.vieeeieieitiete ettt bbbttt b e s b e e e e st bttt e be b ne e b e e neeneenea 41

3.1.6.3 PBMC ONtOIOGY MELAALA .......cveuiverieeiiieteieieis ettt bbbttt bbbt 44

3.2 MULTI-DIMENSIONAL SINGLE-CELL ONTOLOGY: PBMC AS AN EXAMPLE .......c.cccciitiieeeiiiee et 46
TR A 4 1Y £ - Tt O 47
I 141 o Yo [ Tox [ o 47

Page | xi



IR 001 151 (U To ([0 (1T a0 ot ] 41 (=] | TR 48

3.2.3.1 SCT StUAY GIMENSIONS ... .eviteiieieteitiete sttt ettt et et et e ettt e ebe s be st et e s esseseebeebe st e sbe s esbessessebesbesbesrenbessensenaarea 48
3.2.3.2 Cell properties and PBMC ONTOIOQY ........coueurieiiiieieiieiie ittt sttt s sbe et e st besbesbeseesbeseeneeneaneas 49
. (00 | I8 o] (o] o T=T 4 (=t OSSR USTRSRSPR 49
. o211 (@111 (o] (oo | SO OTRO PRI URRPRRPSTI 51
. o] | OSSP SPPPSTRN 52
. DENAIITIC CEIIS.... .ttt ettt a et e et e be st et e s e st e se e b e e be s b e st e s ensesaenseteebesbestesbessenseneareas 53
. 1Y o] 4003 (= TS U TP PR UTPROPPTPPPPRTROTN 54
. N ol | SO OTSOPORURSPRRPRRPPTIN 54
. o1 1SS 56
3.2.3.3 OFQANISIM PIOPEITIES ..e.vevieeteeetieteete et eteste st eseetea e e teetesbesseseeseaseaseaaeebessebe e ems et e ebeebesbeebeseenseseantabeabeabeseeneeseenseseasens 57
312,83, TYPES OF LISSUB....eutiuiiteiteitiit ettt ettt sttt et ea et e s b et et et e st et e e b e s be s b et e s esseseebeebe st e sbe s enbesaeseebesbesbestenbessensenaarea 59
3.2.3.5 EXPEIIMENTAL SELLINGS ....eviviteeeiieieeti ettt sttt ettt e bt st et e e e st e b e b e e be s b e ebeneen e e s e eneebeebeabeseenbeseenseneaneas 60
. Storage, tEMPEratUure, AN TIME .....cviiieiiiiie ettt e et s e be et e s b e st e sa et e s e st e teebesbe st e sbe s ensereeaears 62
. (07 | 5T T o[PS 63
. Different SCT techniques and SeqUENCING INSITUMENTS .......ccveiiiiiiiiiiesee et a e ereas 63
3.2.3.8 DAL ANAIYSHS .....eeveeeieieeie ittt ettt R et R bbb £ Rt e R e R e Ee b e ebe e st e R e e Rt e Eeebeebententeeeneenearea 65
3.2.4 Utility, conclusion, @and QiSCUSSION..........ciueiuieieiieieeseeseeste et e st e st et teete e sreesraesreesteeaesneesneesnaesreens 66
3.3 CLASSIFIER AND PERFORMANCE ASSESSMENT IMETHODS.....ecittiiiiieiiiiesieesiiiesiessieesseesbnesseesssesssesssssssnsessens 68
3.3 L CHASSITIEE = ANN .....eiiitic ettt et e s be e e beebeetbeeabesbeesbeebeesbesseesteesbeesbeebeenbesasesasesseestaeas 68
3.3.2 Assessment of classification PerfOrMAaNCE..........cooviiiiiiiiic s 70
3.3.2.1 CONTUSION MALIIX c..vtcviitiitiiteit et ettt ettt e st et e st et eesseteebesbe st et e s essebeebeebesbesbe s enbesaeneebeabesbeseebessensenaarea 71
3.3.2.2 Appraisal indicators for comprehensive INtErPretation ............cccoieieierereiees e e 72
CHAPTER 4 STUDY | — PROOF OF CONCEPT ..ottt sttt sttt sttt st s b st saee s 74
N 1oy 1 =YY o LSOO P PSPPSR 74
4.2 INTRODUGCTION ...ttt ttttetteeitreesteeestaeassseessseessssestesassseassesassseassesassseasseeasssesaseeassssessesassssansesessssansesassssensesessesensenesns 74
4.3 MATERIALS AND IMETHODS ....tvtititititesitessteessiaessteessteessbeeasbeessbeessbeessbeessbeeesbeeabeeasbeeaabeeasbeeaabeeenbeeanbeessbeeanbeenntes 75
L TRt B - - N TSP S TR OPPRR 75
4.3.2 SEUAY GESTON ..tttk t bbb s bbb b s b b s bbbt bbb bbbt b bbb n e 77
] I 5 PRSPt 78
R Y[ T Lo ST U OSSPSR 78
4.4.2 Internal CroSS-Validation........c..couiiiiiii ittt st be e be et e b e e bt e sbe e be e beesbesreesreas 78
4.4.3 Prospective VAITAALION .........coiiiiiiiiie bbbttt bbb 81
Y 00 (o M U 5] (o] N TP TRTRN 86
T Sl B 15015151 (] N TP PRSI 87
CHAPTER 5 STUDY 1l - INCREMENTAL LEARNING ......ooiiii ittt 88
oI Y = 11 117V SRR 88
IV 1 12701 01U (o i o N PP P PR OTRRN 88
5.3 MATERIALS AND IMETHODS .....eeitiiiiiiieitieesteestteesteesateesteessteestseeasteessteesaseessteeanteessseaanseeasteeanseessteeanseessteeanneennses 89
TR TR (1o Y (-] o | o OO T USSP R PRTORRPPOP 89
L T B L - R TP OPRR 90
R =] T PP PP PR OPRTR 93
5.4.1 INCremental IEAIMING ..ot bbb bbb bbbt b 93
5.4.2 OVEFAII BCCUFACY .......eiuietieiete ittt sttt ettt b e bbb e e st e st e b e beebe bt e be e b £ e st e e et sbeebesbeebeeseeneenbesaeas 94
5.4.3 Sensitivity and SPeCIfiCIty @NAIYSIS ......c..oiviiiiiiiiee e e 95
B4 A FINAL SEEP FESUITS ...ttt ettt sttt b et b st b et et b e st et s e b e neenes 96
5.5 CONCLUSIONS AND DISCUSSION .......uvieitreeitreessteestneessseesusesssesssssesssesssssesssessssessssessssesansesssssssnsessssssansessssssenessses 97
CHAPTER 6 STUDY 111 -INCREMENTAL LEARNING WITH PURIFIED REFERENCE DATA AND
FOUR SUPER SETS SWAPPING EXTERNAL VALIDATION ......ooiiii ittt 99

Page | xii



O AN 23S ¥ -X o EOTEERT 99

5.2 INTRODUCTION. ....ecuvte ittt ettt e iteeeiteesstseesseeestsaessseestssasssesssseeasseestsseasseesssseassesssssesssesssseesssesssseesssesssseesssesasessnsesins 100
6.3 MATERIALS AND IMETHODS .....eeitiiiititeitiee sttt e sttt e steeestreesteeesteeesteeessseestseesaeeestaeesaeeessseesseeessseessseessseesnsesssseesnnenns 102
6.3.1 STUAY ESIGN ...ttt b bbbt bbb s e bt e bt b s b e bbbt b e bbbt benr e b nr e 102
(ORI DL\ v NPT UPSOURR 106
LT L] T TSRS 109
6.4.1 DeNSIty AiStIDULION ...ttt b et r e bt et b e nr e ebenreneas 109
6.4.2 INCremeNtal IEAIMING ..ottt eb et b bbb eb e bt a b b e b nreneas 111
6.4.3 EXIEINAL VAIITALION. ... .cciiiviiiiiiiie ettt b et ettt e s be e et e e sbe e be e st e steesbeesbeesreebeenreenns 114
5.5 CONCLUSIONS ... ueiiteeiitee ettt e iteeeteeestreesteeesteeesteeestseeaseeestaeeaseeestseeasseesseeesseesteeesaeeessbeeaaeeesseeessreesseeesntesanteesnneens 116
5.0 DISCUSSION. .....cutieeeeitie e ettt e e ettt e e ettt e e e etaeeeeebaeeeaebeeeeeaaseeeeasbeeeeassseeasseaesassseeeanseseesasseeesasbseeeassseeessseeeeanteeeeanns 118
CHAPTER 7 STUDY IV - VULNERABILITY OF ANN-SCT-PBMC CLASSIFIERS........c.ccoccovveiieieeienen, 121
A AN =1 1 7Y SR PURRT 121
7.2 INTRODUCTION. .. eeeiiittiee ettt e e ittt e e ettt e e eetaeeeeebeeeeaabaeeesasseeesssbseeaasaseessseaeeasbeeeeanseseesassesesasbaeeeansseeessbeeesanteeeeanns 122
7.3 MATERIALS AND IMETHODS .....uvviiiiitiiie ittt e e etiee e ettt e e eetteeesetbeeessateesesestesesssbeeeeaasaseesasbesesasbaeeeasseeessreeesasbeeenanes 122
A S (8o Vo TS o TSR 123
I DL v RSOOSR PPRP 127
A R L=t U s TSP PESTRRSP 132
7.4.1 Overall accuracy of four testing sets in each round .............cccooe i 132
7.4.2 F1-score of individual cell types in each round............cccoceiiiiii i 135
7.4.2.1 TeStiNg WIth BrOAUSL .........oviiiiiieiiei ettt bbbttt n e 135
7.4.2.2 TeStiNg WIth BrOAOS2 .........ccoieiiiiiiiieie ettt ettt ettt sttt ettt e st 136
T.4.2.3 TESHING WITH L0X ...ttt b ekt bbbttt e bt n e 138
7.4.2.4 TeSHING WITh GEO......ci ittt bbbttt ekttt st sttt et 140
7.4.3 Subtype classification performance in Round 1, 5, 7, 8, 12, and 17 — group comparison ........ 141
7.4.3.1 Subtype performance of testing Set BroadSL..........cccoeiieiiiinieiiie e 141
7.4.3.2 Subtype performance of testing Set BroadS2..........cc.cceiiiiiriinneiiie e 142
7.4.3.3 Subtype performance Of teSTING SET 10X ......cviiiiiiiiieieiiiee sttt st e e neere e 143
7.4.3.4 Subtype performance of testing St GEO ........ccooiiiiiiiicire e 144

7.5 CONCLUSIONS ... .teeeeetteeeeettee e e et e e e ettt e e e ettee e e etbeeeeeeteeeeeesaeeeeeabeeeeaseesessseaeeasbeseeaseseeeasseseeasseeeeassseesssseeesanseeeeanes 146
T.5. 0 OVEFAII BCCUIACY ... .e.eiieitiieieite ettt bbb bbbt b b st eb e s bt ekt s b st eb e st et eb e st et et st e s e ebenbe e 146
7.5.2 FL-SCOIE Of 5 CIASSES . ettt eitie ettt ettt ettt e et e s e e st e e s tb e e sabe e stbeeeabeestbeesabeesbbeesabeesabaesabessrreesareeses 146
7.5.3 PrformanCe 0N SUDTYPES .......cuoiiiiitiieeieitese ettt bbb bbbttt sb et et sb e b nbe e 147
7.5.4 FIiNAl OVErall CONCIUSIONS........cveiiceiei ettt ettt e e eate e s tte e et e e st e e st e e srbeesatesssbeesntessnressnresans 147
7.0 DISCUSSION. ... utiee e ettt e ettt e e st e e e ettt e e e etteeeestbeeeeateeeeaasseeeessteeeaanteeeeassseeeesssseeeanseeeeassaseeasseeeeansseeeessseeeeasseneeanes 148
CHAPTER 8 GENERAL CONCLUSIONS AND FUTURE WORK .....c..coiiiiiiiece et 151
8.1 GENERAL CONCLUSIONS .....ceciitite e ittt e eetteeeeeteeeeaeteeeeeetaeeesstbeeeeaasesseeasaeeesssseeeeaaseseessssesesasseeeesassseesssseeesasseeenanes 151
B.2 FUTURE WWORK .....eeiiiittie e ettt e ettt e e ettt e et ee e e ettt e e et e e e e et e e e sateeeeeataesessaeeeeesbeeeeaseseesasseeesaabeeeeassesesssenesanseeeeanes 153
REFERENGCES ......o oottt ettt et ettt st e et e e st e e et e e s hb e e ebee e sbbe e ebbeesabeesbbeestbeesabeessbeeaabessabeesnbessabaesnreens 154
F A ad o AN ] O 173
APPENDIX 1 PUBLICATIONS AND PRESENTATIONS ARISING FROM THIS THESIS......coiviiiiitieireeireere e sve e 173
APPENDIX 2 REFERENCE SCT DATASETS ...tiiiiiititi e ittt e e itttee e ettt e e s stteeeaaabeeesattseesastesasssbsessaasssssssssasessssseessassesessnsens 175
APPENDIX 3 OUTLINE GRAPH OF THE LITERATURE REVIEW .......cciiiiiiiiiiie ettt et e ettt ette e e eavee et ve e e enanne e enneas 176
APPENDIX 4 SCT STUDY DIMENSIONS. ... .oiiiiiteeeeiiteeeeeetieeeeeiteeeesaeeeesesteeesssesessesaeesaassseesasssessssseesassssssssssnesssseeen 177
APPENDIX 5 PBIMC DIMENSIONS.......c.utttiiiittiteeiititeeeitteeeesttteesataeeesetteeeaasbeeaeaatsseeasssesaasstseeeaassseeaassasesssteeeeaasseeesassens 178
APPENDIX 6 CELL ONTOLOGY CONSTRUCTION METADATA (PBIMC SECTION) ..c.coiviitirieeiieieniesie et 179
APPENDIX 7 SUPPLEMENTAL MATERIALS IN STUDY I ..ooiieeiieee ettt 182
APPENDIX 8 RAW RESULTS IN STUDY IV ..ottt ettt e et e e e entae e e st e e e e entee e eennaeeesenaeeean 216

Page | xiii



APPENDIX 9 E-R GRAPH OF THIS PROJECT ...ttt ittt ettt ettt s et s e e s s s s bbb e a e e e s s s s sabbbaaseeeeeaan 283

APPENDIX 10 VISUALIZATION OF SCT DATA DISTRIBUTION ....ciuvvieeittieeeitieeesireeessetteeesesteesssbeeesssssesssssssnesssseeseas 284
APPENDIX 11 POSTERS DURING THIS PROJECT ..e.iitvieeitiie e ettt e s sttt e s s ettee s s sateeessbaessssstessssstesssssbaeessssaessssssenssssenseas 292
APPENDIX 12 WET LAB BACKGROUND INFORMATION — UPSTREAM WORKFLOW AND ANALYSIS FOR SCT ......... 296

Page | xiv



CHAPTER 1 INTRODUCTION

1.1 Background

The bulk transcriptomics sequencing technology measures average gene expression value of mixed
biological samples. The unique heterogeneity of individual single cell cannot be characterized, that
leads to the loss of important genetic information. Currently, single cell transcriptomics (SCT)
sequencing technology has been developed, it can capture and reveal unique gene expression of
individual single cell, that detects cell heterogeneity and refines existing cell ontology. It can be
used in predictive health and early disease diagnosis. The 10x Genomics high-throughput SCT
sequencing platform has clear and standardized experimental procedures that produce reliable and
consistent SCT data in batches.

SCT data has great value to human health and life science. However, the high-dimensionality, high
sparseness, dropouts, biological variables and technical variables of SCT data make the
classification of SCT data a challenge [1]. Currently, unsupervised machine learning methods such
as principal component analysis (PCA) and clustering have been used to classify cells with SCT
data, but it has demonstrated weak robustness, accuracy, and sensitivity when it comes to multi-
source data from different independent studies [2]. The value of SCT data cannot be used fully by
unsupervised machine learning methods, that cannot generalize on various SCT data sets of
different independent sources. We consider to use supervised machine learning method artificial
neural network (ANN) to solve the challenges of single cell classification with high dimensional
SCT data.

Peripheral blood mononuclear cells (PBMC) is the significant research objective for human health
status detection, disease diagnosis, the development of immunology research, cancer research and
toxicology applications. The cell type, cell status and cell number of PBMC in an individual body
indicate the selective responses of immune system.

This study has made the hypothesis and tried to prove the concept that single cell classification
can be done with SCT data and supervised machine learning method ANN, with satisfied and
practically applicable accuracy. To build, prove, and study the prototype of supervised ANN
classification model in PBMC SCT pattern recognition, can make efficient use of exponentially
growing SCT data, and demonstrate the concept of data-based predictive health with PBMC SCT
gene expression profiles.
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1.2 Motivation & Hypothesis

1.2.1 The importance of SCT technology

Single cell transcriptomics sequencing (SCT or scRNA-seq) technology detects gene
expression profiles of individual single cells in a biological sample. Gene expression by bulk
sequencing from mixed samples provides only average gene expression across all cells in the
sample. SCT preserves information about the heterogeneity of gene expression within cell types
and subtypes and their various states [3]. Data sets from SCT studies are in form of sparse matrices
having >30,000 genes (features) in rows, and up to 100,000 cells in matrix columns. These data
sets are growing at an exponential rate both in the number of cells per matrix, and in the number
of data sets that are available for analysis [4, 5].

Classification of single cells is essential for analyzing the composition of tissues and the cellular
basis of health and disease status. Accurate classification of cell types and subtypes, along with
the identification of their gene and protein expression patterns, enable understanding to cellular
and molecular basis of biological processes [6]. The differences between healthy and disease states
are reflected in differential gene expression, it allows for medical applications of single cell
technologies: diagnostic and prognostic applications, and disease treatment selection [7] in cancer,
infectious disease, autoimmunity, and other pathological states [8].

The first report of single cell gene expression was published in 2009 [9]. Major breakthroughs in
microfluidics and cell labeling methods have enabled high-throughput of single cells, rapid
standardized SCT gene expression measurement, and analysis [4, 5, 10]. The conventional
classification rules applied to cell populations are mainly qualitative and are based on lineage,
phenotypic markers, and simple, functional properties [11]. The SCT uses gene expression and
quantitative methods to define cell types and precisely describe their lineage, phenotype, function,
and various states [11]. Such cellular gene expression profiles and their variants (due to different
sample processing methods) are cataloged in single cell atlases [12, 13]. Bulk-sequencing methods
produce mean gene expression values of millions of cells. In contrast, SCT produces gene
expression profiles characteristic of cell sets defined by a much finer grouping of cells that share
origin, function, subtype, and biological status [3].
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1.2.2 The 10x Genomics platform

The 10x Genomics SCT sequencing platform scaled up to enable routine measurements of
expression count over 10° cells with ~33,000 gene features in a single study that produces over 10°
transcript counts values profiling a targeted sample [10, 14].

It combines high throughput (up to 40,000 cells in a single experiment), high cost-efficiency, and
rapid turnaround (1-2 days from sample collection to results) [15]. When the cell viability is greater
than 90%, the cell capture rate of one single sample can reach 65% (10x protocol). The 10x SCT
data is represented by a high-dimensional sparse matrix. A single cleaned 10x SCT data set (sparse
matrix) can have 10°-10%° data points because it has up to 10° columns representing individual
cells and >30,000 rows representing features (gene counts). It has observed that 90-99% of the
values are zero [16].

The 10x SCT has formed strict standard experimental procedures that can produce highly
reproducible measurements, even in samples from different individuals. The available capture
probes provide high coverage of the genome. 10x was benchmarked against several alternative
methods [17, 18] and it is emerging as a popular SCT platform.

High throughput SCT is a prototypic big data technology. Since 2017, with the emergence of the
10x Genomics platform, the large-scale unified 10x sSCRNA-seq data sets have been generated and
have grown exponentially with more than 52,500 10x data sets available in GEO data repository
[19] (www.ncbi.nlm.nih.gov/geo), as of May 2023.

Currently, the analysis of 10x SCT data focuses on single cell annotation and classification aimed
at understanding biological mechanisms, such as cellular differentiation, tissue distribution of cells,
the discovery of new biomarkers, detection of rare cell types, assessment of tumor heterogeneity,
detecting gene activation pathways related to pathology, and detecting molecular and cellular
responses to therapeutic interventions [20-22].

1.2.3 The challenges and difficulties in SCT data analysis

The single cell classification and adequate utilization of SCT data has been a challenge to
researchers for a long time [1]. First, high sparsity. 10x SCT generates large but sparse matrices
(over 95-99% of values are typically zeros, that depends on the depth of sequencing implemented
and the internal expression level of gene features. It can perplex and obstacle the following
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downstream analysis. The zero value is attributed to true zero value (the gene is not expressed in
the cell at this transient moment) or “dropout” phenomenon (the transcript is not captured). Second,
high variety. In 10x SCT profiles, there can be errors and noises, such as multiplets (doublets or
triplets, when two or three single cells are wrapped in one oil droplets), and bias values resulting
from biological (sample conditions — fresh/ frozen thawed, activated status, stimulated status) or
technical (chemical reagent, machine version, batch effect, etc.) confounding factors.

Third, high dimensionality. There are >30,000 dimensions in the gene list. Efficiently preserving
valuable information during analyzing high dimensional (>30,000 features) SCT expression data
matrix with >10° cell numbers has not formed an acknowledged approach so far. Forth, multiple
sources and integration. The current-in-use SCT data analysis pipelines meet difficulties to
integrate and generalize the stylized analysis protocols to SCT data that has been sequenced with
multi sample preparing procedures and diverse experimental measurement conditions. It is
difficult to analyze SCT data collected from various sources (different studies and labs). It involves
batch effect and various features in gene list (features are various in data set of different study and
different source). Fifth, lack of reference data sets and single cell ontology. The classification
of single cells lacks precise expression profile definitions and sufficient reliable standard
references [1]. There is currently no available standardized reference dataset for single cell
classification. Also, there is an urgent requirement for a single cell ontology as reference to
categorize single cells from multiple dimensions [23].

1.2.4 The importance of PBMC classification

Peripheral blood mononuclear cells (PBMC) are circulating immune cells with a single round
nucleus in the blood and are common diagnostic and prognostic targets [24]. PBMC are composed
of mixed cell populations. There are five main subtypes of PBMC: B cells (BC), monocytes (MC),
dendritic cells (DC), T cells (TC) and natural killer cells (NK) [25]. Frequencies of PBMC
subtypes can vary widely from individual to individual, but also over time within the same
individual [26]. A rough consensus over multiple antibody catalogue estimates is that B cells make
5-15%, monocytes make 10-30%, DC make 1-2%, NK cells make 5-10%, and T cells make 40-
70% of PBMC in humans [25]. Normal ranges (reference values) of the numbers of specific cell
types or subtypes in PBMC vary by 5 to 20 folds in healthy individuals [27]. Their transcriptome
profiles show high variation, primarily resulting from sample processing steps [28] and the
health/disease status of the tissue [24, 26, 29]. Gene expression profiles in PBMC that circulate in
blood were shown to be different from the tissue resident PBMC [16]. This suggests that gene
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expression differences can also be used to identify the tissue of origin of resident PBMC [30].

PBMC has been extensively used in the study of infectious disease, immunology and
autoimmunity, transplantation, oncology, and vaccine development. PBMC are important targets
of single-cell studies because they are indicators of immune status and are studied in cell function,
transcriptional regulation, identification of biomarkers, and disease modeling [31-33],
pharmacogenomics [31, 34], hematological malignancies, among others [35-37]. PBMC are
routinely used for monitoring health and for the diagnosis of infection and blood disease [38-40].

PBMC cell type has characteristic patterns of gene expression that is determined by multiple
factors. These factors include the cell differentiation stage, tissue and organ localization,
developmental stage, epigenetic modification, activation status, age, health/disease status, and
other factors [26, 41]. Final differentiated cell types emerge through molecular changes of
developmental pathways characterized by recognizable patterns of gene-expression and protein
markers [42].

There is a need in a single cell ontology for PBMC classification. Hundreds of subtypes have been
described in literature, but unified ontology of PBMC does not exist [43]. Subsets of PBMC are
identified through analysis of their surface receptors by flow cytometry [44] or by analyzing their
transcriptomics profiles [45]. More than 120 cell subsets of PBMC have been described [46], but
current descriptions of PBMC subsets are incomplete and the efforts to define them are ongoing
[47, 48].

In addition to the inherent biological differences, each step in the process of peripheral blood
sampling, storage, preparation, and measurement as well as their duration will change gene
expression in single cells [49-51]. At present, uniform and strict standards have been established
for sample collection, preparation, and storage of PBMC [49, 52], to ensure yield, viability and
preservation of function [53, 54]. Also, PBMC is naturally isolated, that minimizes external stimuli
during tissue isolation and cell sorting procedure. These largely preserves specific gene expression
profiles of PBMC under individual circumstance [53]. Standard operating procedures (SOP) have
been defined and established for the latest single cell transcriptomics (SCT) technologies [55],
enabling the improved reproducibility of SCT studies. The combination of advanced SCT
technologies and the rapidly increasing availability of data sets provide a basis for defining cell
types and subtypes by SCT gene expression profiles from diverse datasets.

Specific PBMC profile done with 10x SCT sequencing can represent the differences in gene
expression of immune cells referring to each individual body [38]. Regular monitoring and
comparative analysis of PBMC components and the frequency of each component can realize the
understanding of human health and disease prevention and diagnosis [39, 40]. The cell
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classification and cell counting of PBMC sample can be completed by fluorescence-activated cell
sorting (FACS). However, the realization of low cost and high efficiency blood monitoring and
analysis requires the establishment of a computerized PBMC sample cell classification system
through single cell sequencing technology and machine learning technology.

1.2.5 The limitation of unsupervised ML methods

The characteristics of SCT data — large size, sparseness, sensitivity to sample processing and
experimental conditions, biases and random errors in data, and lack of reference data sets — require
advanced statistical and machine learning (ML) techniques essential for the analysis of sparse
matrices (downstream analysis).

SCT data sets are produced using various sample processing conditions and they represent many
different biological states, making SCT data highly heterogeneous. The lack of reference data sets
mandates the use of unsupervised ML approaches [22], predominantly unsupervised clustering
[22]. Unsupervised ML methods are broadly used for labeling and classification of single cells
either alone [56] or in combination with supervised ML methods [57]. Unsupervised ML methods
deploy a combination of clustering algorithms to group single cells together, with semi-automated

labeling and manual annotation [22, 58] based on marker genes.
Trajectory
inference

Quality | Normaliz Marker
control ation identifica
tion . .
S . Cluster Differential
Rawda'ta ) Count matrices g Visualization ) Clustering . .
processing annotation expression
Data Feature
correction | selection
Compositional
analysis

Figure 1. A typical SCT analysis workflow using unsupervised ML for one study at a time. After data pre-

processing, single cells with SCT profiles are grouped with unsupervised clustering methods and annotated

with significant marker genes, manually and empirically.
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However, the number of classes in unsupervised methods is unknown — it is estimated by identified
clusters and biological interpretation [2]. Also, the marker genes used are manually defined. These
both introduce subjective judgments and different expert opinions (knowledge bias). Further,
unsupervised ML methods do not scale up well, and the workflows lack generalization — solely
typically applied to some specific dataset of mixed-class cells —a workflow that performs well on
a specific dataset does not perform well on datasets produced from different studies [22, 56, 57]
(insufficient robustness, reproducibility and sensitivity for multi-source data sets).

Several bottlenecks currently limit the analysis to the tools of unsupervised ML, including the lack
of standardized formats for data sets, lack of reference gene expression profiles, high-dimensional
nature of data, the sparsity of data (large proportion of zero-counts), and presence of noise in data
(errors and biases). On the other hand, the SCT gene expression of the same sample, when sample
processing procedure and experimental conditions are standardized, are highly reproducible [18,
59]. A semi-supervised method that used variational autoencoder neural network architecture was
reported to outperform unsupervised methods, that demonstrates the trend of applying supervised
learning method for cell classification of SCT data [60].

1.2.6 The hypothesis of using supervised ML method ANN

Supervised ML method can support as a solution to solve the challenges of studying and
analyzing SCT data. It is expected to have superior generalization ability and performance on
single cell classification across different studies, making accumulated SCT data comparable and
valuable. Supervised ML classification systems use algorithms that are logic-based (such as
decision trees, rule-based classifiers), network-based (such as artificial neural networks, support
vector machines), statistic-based (Bayesian algorithms), or instance-based (such as distance-based
or pattern recognition methods) [6]. Supervised ML can perform classification using single-cell
gene expression profiles across various studies representing diverse sample processing conditions
and experimental settings.

Supervised learning method artificial neural networks (ANN) [61] can be used for advanced
SCT cell classification. Compared to other supervised ML methods, ANN is efficiently suitable
for task with a large scale of complex training data [62].

ANN fits to deal with the complexity of SCT data: large data size (>10,000 observations in one
dataset); high-dimensional features (>30,000); full of variables (biological/technical); sparse
matrix (>90% zeros); multiple sources (data collected from different studies).
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It is convenient to implement, especially with high-dimensional noisy data that has unknown
mathematical relationships in features. It has the capability in capturing nonlinear and complex
underlying characteristics in SCT profiles, with high degree of accuracy [63].

ANN can address complexity, and it is regularly among the most performing [63]. ANN allows to
solve the problem with incomplete knowledge [64], it can be used as the first approach to prototype.
It is data-driven, adaptive learning and self-organization, that learns tasks based on given data for
training and creates its own representation of the information [63].

ANN can learn the full features of each instance and make prediction decision. In SCT data, each
feature can be important to single cell pattern recognition, ANN can ensure the integrity of training
information and ensure full-dimensional learning (rather than dimensionality reduction). It learns
to recognize the full internal patterns that exist in the data [63].

Further, ANN can be sensitive and flexible to changing environment [63] (e.g. tiny gene expression
pattern changes in over 30,000 features [65]). ANN is adaptive to constantly changing input for
complex and exponentially growing SCT data — where the relationships are quite dynamic and
non-linear. It is convenient to observe the behavior of model on data effect. This project tries to
study and understand the influence of SCT data to model behavior. The factors include data sources,
data generation conditions, and other dimensions in a multi-dimensional cell ontology.

Thus, from the above aspects, we have the motivation and hypothesize to use ANN for the SCT
classification task. In principle, all tasks can be solved with various supervised ML methods,
including support vector machine (SVM), random forest (RF), etc. While SVM is suitable for tasks
with a small amount of training information and regular binary classification, and RF can take
risks in overfitting. For the SCT classification task — with large-scale, high dimensional, high
sparsity, complex, and variable data, and it requires satisfied robustness, we consider ANN is the
first choice to perform the prototype verification.
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Figure 2. This project’s single-cell RNA-seq analysis workflow using supervised ML method ANN.

Computerized SCT cell classification using ANN can bring purely supervised, specific labeled
learning and classification procedure to each individual single cell gene count expression profile,
where is improved to unsupervised ML clustering and biological manual cell sorting FACS. ANN
algorithms extract original features from large annotated SCT data sets and use them to create a
prediction tool based on hidden patterns. Once the training is completed, the algorithm can apply
this training to analyze other data, that generalizes the learning and classification procedure to
multi source data sets with diverse experimental conditions. Exact, specific, clean annotation of
SCT data sets is required for ANN model training and cell type prediction.

Currently, there is no purely supervised ML method implemented, because there is no reference
data available. The main aim of the project is to demonstrate and prove the concept that single cell
classification can be done with SCT data and supervised ML method ANN. It aims to build and
demonstrate a prototype and a protocol to use supervised ML to handle high-dimensional, noisy,
large size SCT data, solving the difficulties in Eleven Grand Challenges [22] — correctly classifying
and labeling single cells in SCT data with prepared reference data sets. PBMC classification with
SCT data and ANN aims to build purely supervised classification prototype of SCT, observe data
effects from multi-dimensional PBMC-SCT cell ontology, and be potentially useful in early
diseases diagnosis and predictive health.
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1.3 Goal & Objectives

1.3.1 Overall goal

The overall goal is to prove a concept that we can do highly accurate classification of blood cells
using SCT data and supervised ML method ANN, this method must be highly accurate, must
generalize well across different studies, it must be applicable in practice and in real life. The
analysis of SCT data with supervised ML method can help to solve several questions in the “eleven
grant challenges” of SCT data analysis that have been listed in an article of 2020 [22]. The
classification model should take good use of SCT data and reveal the specific gene expression
profile of individual cell type, with observation of data quality and data effects (multiple
dimensions in PBMC-SCT cell ontology) to ANN model behavior.

1.3.2 Specific objectives

1. Organize the data

a. Select relevant data sets, convert them into standardized format ready to analyze,
and perform quality control.

b. Update the common list of genes (“gene common list”) for comparative analysis.
Gene common list should be prepared for standardization conversion process.

c. Establish experimental and statistical metadata for data sets that have study
description information and summary basic statistical information.

d. Cell ontology preparation for involved 10x SCT data sets.

2. Prove the concept
a. Prove the concept that computerized simulation of PBMC classification can be
accomplished with SCT data and purely supervised ML method ANN.

3. Data accumulation incremental learning
a. Prepare a certain amount of clean and standardized SCT data sets to train ANN
model using incremental learning method (data accumulation), trying to study the
accuracy, sensitivity, and specificity of ANN classification model simulating real
life situation.
b. ANN should perform robustness across different data sets with different sources,
different experimental platforms, and different experimental conditions.
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4. Data representativeness and data effect
a. Observe the data representativeness and data effects (multiple dimensions in
PBMC-SCT cell ontology) to ANN model behavior, analyzing the importance of
data effects to single cell classification.

1.4 Overall Study Design

The overall design of this project is to use PBMC SCT datasets generated from 10x technology and

supervised ML method ANN to demonstrate purely supervised SCT single cell classification (as shown in

Figure 3).

Inputs Labels/Annotations

RAW DATA

ANN MODELS

PBMC KNOWLEDGE

DATA
STANDARDIZATION

MODEL TRAINING

CELL ONTOLOGY

COUNT MATRICES MODEL VALIDATION

DATA QUALITY

CONTROL PERFORMANCE EVALUATION

SCT DATA METADATA

RESULTS INTERPRETATION

DATA ANALYSIS

i CONCLUSION

DATA |: CLASSIFIER
__________ e e e T

Fm e e e e e e e — = — =

PRIOR KNOWLEDGE

Figure 3. The technology roadmap for overall design of this project.

The datasets are collected, standardized, and stored clearly with metadata. The statistical analysis
has been done with specific gene expression profiles. The data structure and distribution have been
visualized to support classification procedure. Multi-dimensional PBMC-SCT cell ontology has
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been developed based on PBMC prior knowledge and involved metadata. Supervised ML model
ANN has been trained with quality-controlled training sets. Model validation has been done with
internal cross-validation and external validation. Model testing has been done with expert-
annotated, qualified testing sets. Performance assessment metrics have been used to evaluate the
classification results. During incremental learning process, ANN model performance in each
cyclical experiment has been recorded and assessed with certain metrics. The result of ANN
classification can reflect data representativeness, data effect, PBMC-SCT ontology, and biological
explanation. The system demonstrates to have good accuracy and good robustness on the
generalization across multisource SCT datasets for further practical utilization.

1.5 Contribution of Thesis

CONTRIBUTION

a) Collected and filtered independent 10x SCT data files from multiple
sources.

b) Made the reference gene list based on different genome versions.
DATA c) Standardized SCT data files with the reference gene list.
d) Converted SCT data into different formats for various uses.

e) Demonstrated a workflow of collecting, cleaning, standardizing, and
converting SCT data.

a) Made metadata for standardized SCT data files.

b) The experimental information and descriptive statistical properties

METADATA have been analyzed for each data set.

c) Made a template for building metadata and statistical analysis.

a) Designed multi-dimensional ontology for single cell classification.
CELL b) Described PBMC-SCT cell ontology.
ONTOLOGY

c) Described properties of each dimension/subdimension in the
ontology.
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EXPERIMENT
DESIGN AND
MACHINE
LEARNING

9)

h)

)

K)

Designed training and testing experiments based on standardized
SCT data.

Proved the concept of single cell classification using SCT data and
supervised ML ANN models (with overall accuracy 89.4%).

Demonstrated internal cross-validation and external validation (with
qualified testing sets).

Performed analysis of results with determined metrics.

Explorative experiments with datasets from different sources and
different quality.

Designed incremental learning study with ANN classification
model.

Observed the effect of data source and generating protocols to
PBMC SCT classification with incremental learning (accuracy
93.0%).

Added newly collected SCT datasets into the classification system.

Studied 5-class classification of PBMC with 56 reference datasets
and incremental learning (BC, DC, MC, NK, and TC) (94.6% of
overall accuracy).

Demonstrated external cross-validation (four-supersets-swapping
training and testing, evaluating performance with datasets of
different sources).

Studied the vulnerability of ANN-SCT-PBMC classification
models, using 17 non-representative datasets of five groups and 17
rounds of cyclical external cross-validation experiments.

SOFTWARE

Mapped data files to the genome list. Data standardization.
Conversion with different formats.

Measured statistical properties for individual dataset.
Classifier (ANN models).
Classifier with detailed results outputs (five scores).

Results visualization and demonstration. Performance assessment
with determined metrics.
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1.6 Outline of Subsequent Chapters

The first chapter (Chapter 1) introduces the research background, motivation, hypothesis,
research objectives, overall study design of this thesis, as well as the main contributions of this
work. Chapter 2 is a systematic literature review of SCT analysis for PBMC classification, the
review has described the significance and challenges of supervised ML vs unsupervised ML
methods in SCT single-cell classification. In Chapter 3, it describes the general methodology
used in this project, from data & data processing (including data collection and quality control,
data standardization, metadata construction, and data statistical analysis), multi-dimensional SCT
cell ontology (with PBMC as an example when demonstrates the cell properties dimension), to the
structure of ANN model, and the performance assessment metrics. Specific research questions,
involved data sets, and study design are described separately in the chapter of each study
(‘Materials and Methods’ of Chapters 4, 5, 6, and 7). In Chapter 4, single cell classification with
SCT data and ANN has been demonstrated and has been proved as a concept. This is the first time
demonstrating single cell classification can be done by SCT data and purely supervised ML
method, the overall accuracy of PBMC classification has reached 89.4%. In Chapter 5, an
incremental learning study design has been implemented to simulate real-life situations — the effect
of data accumulation, data quality, and multiple dimensions in cell ontology, to ANN classifiers.
The results have shown the generalization performance of ANN on data accumulation process by
time clue, involving different data sources, sampling conditions, generation protocols, and data
preprocessing methods. This chapter involves a 4-class classification of PBMC, including BC, MC,
NK, and TC. Chapter 6 is an expanded verification of SCT classification using incremental
learning, newly collected datasets, and external cross-validation. The BroadS2 datasets have
brought the dendritic cell class into training sets. The overall accuracy of the 5-class classification
has been 94.6%. This Chapter has analyzed the effect of different SCT data protocols on model
performance. In Chapter 7, the study on the vulnerability of ANN-SCT-PBMC classifiers has
been done. It explored the model’s robustness, using non-representative datasets of different
properties, and cyclical external cross-validation among four data sources. The results of each
study have been written and discussed within the context of each chapter (Chapters 4, 5, 6, and
7). Chapter 8, summarizes the entire work and looks forward to possible future work directions.
Finally, references and appendices have been put at the end of the thesis.
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CHAPTER 2 LITERATURE REVIEW - SCT Analysis for PBMC
Classification

2.1 Introduction

As the key component of the immune system, peripheral blood mononuclear cells (PBMC) has
been used as important research model to understand immune regulation mechanism [66-70] and
as crucial clinical indicators to reflect individual’s health status [35, 71-74]. With technological
innovations in methodology (as shown in Figure 4), human understanding of PBMC has ranged
from the cell level (with microscope), protein level (with flow cytometry), to the transcriptome
level (with transcriptome technology); from the mixture of cell populations or cell groups (with
bulk RNA-seq) to individual single cells (with single-cell RNA-seq). Single-cell transcriptome
(SCT) sequencing technology has made it become fact to observe the instantaneous transcription
profile of each individual single cell.
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Figure 4. Illustration of technology and PBMC cell type recognition and classification strategy by time.
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2.2 SCT for PBMC Study

Mainly, SCT technology in blood research has four types of applications: on medicine [75], on
hematopoiesis (developmental biology), on immune cell heterogeneity (immunology), and on cell
type definition (cell biology).

In medicine, SCT can help establish a transcriptome-based drug treatment monitoring for time-
dependent immunotherapy (e.g. Ibrutinib - chronic lymphocytic leukemia (CLL)) [71, 76]; SCT
can decipher human cellular immune responses (also antibody memory response) in highly detail
in prophylactic vaccine development [77-79]; SCT for peripheral immune activity can help
interpret the immune dynamics of severe disease processes, such as in hematological cancers [80],
in infectious diseases (e.g. COVID-19) [81-86], and in immunodeficiency diseases (e.g. HIV) [87].

In hematopoiesis, SCT has challenged the classic tree model of hematopoietic lineage [88] and has
provided new insights into the development model of the hematopoietic system [89, 90] and also
the mechanism of blood cell differentiation in hematopoietic ageing process [91, 92].

In immune cell heterogeneity, SCT has recognized new rare cell types or intermediate cell types
beyond classic well-known immune cell types. New types of dendritic cells (DC) [48, 93],
monocytes (MC) [48], and CD4+ T cells (TC) [94] have been detected and profiled by SCT. In
specific physiological environment or disease, the diversity of immune cell subpopulations
observed by SCT can increase understanding in immune system [12, 67, 71, 75, 95].

In cell biology, the definition of “cell type” is a significant proposition [96]. After the definition
by location, morphology and molecular markers [97, 98], currently SCT has redefined “cell type”
on single cell transcriptome level, using SCT data — data-driven definition - SCT expression
profiles [11]. With this deeper viewing angle to observe single cells’ momentary states, SCT has
also raised up questions on defining new PBMC cell ontology [99] and setting detailed
nomenclature authentication [100] for PBMC subtypes.

2.3 Currently Used Unsupervised ML Methods and Its Limitations

The core issue for SCT in PBMC analysis is to recognize/classify/annotate PBMC cell types with
SCT data. The challenges of this task stay in the natural properties of SCT data itself (zero-inflated,
high-dimensional, large data volume, high variable sensitivity, transcriptional noise, too
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informative), the lack of generalized analysis tools, the lack of reference data set (i.e.,
annotated highly reproducible SCT profiles for each PBMC subset under different sampling
conditions), and the lack of uniformed experimental protocols for data integration.

Till now, there are more than 1,000 SCT analysis tools have been developed and stored in online
tools database (www.scRNA-tools.org) [101]. Many process-oriented tools and software packages
have been developed, such as CellRanger [10], Seurat [102], etc. However, there is still a lack of
universal tools with high repeatability in SCT analysis.

In the early stage, with the background of lacking adequate reference data sets and accurate
annotations to train classifiers, unsupervised clustering methods and followed with empirical
manual annotations have been in a dominant position in SCT data analysis. In this kind of
workflow, an unsupervised algorithm is usually used to cluster a certain batch of data obtained in
one study at a time, and cells with similar gene expression profiles are aggregated into discrete cell
clusters. After that, algorithms (SCDE [103], DEsingle [104], SigEMD [105], SC2P [106], CRE
[107], DECENT [108]) are used to recognize differentially expressed genes across cell clusters
and visualization tools are deployed to check the dispersion of clusters in two-dimensional or
three-dimensional data space. Significant cell identification markers are collected from literature
and gene marker database to manually label cell type tags to cell clusters [48]. Automated cell
label annotation tools such as, singleR [109], scmap [110], CellAssign [111], SCSA [112],
scMatch [113], scCATCH [114], p-DCS [115], CellFishing.jl [116], etc. have been gradually
developed to help correct the subjectivity caused by manual annotation to a certain extent.

Unsupervised clustering methods can learn single cell expression patterns and structures and
classify them without annotation. In the absence of highly reproducible reference data sets and
reference labels, unsupervised clustering algorithms can analyze cell heterogeneity and annotate
cell types within a certain interpretable level. Also, it has made contribution to discover new
heterogeneity in known cell types, to label transient cell states with featured genes, and to build
hierarchical structure in single cell relationships with statistical distance.
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Table 1. Unsupervised, semi-supervised, and supervised tools and packages enumerations for single cell type

clustering and classification.

TYPES

UNSUPERVISED

METHODS

Hierarchical clustering

PACKAGES

ascend [117], CIDR [118], scran [119],
pcaReduce [120], SCENIC [121],
SINCERA [122]

Graph-based clustering

Cell Ranger [10]

Louvain

Seurat 1.0 [123], SCANPY [124]

Spectral clustering

SIMLR [125]

Density-based clustering

Monocle [126], Monocle2 [127]

Grade of membership models

METHODS countClust [128]
k-Medoids clustering RacelD2 [129], RacelD3 [130]
k-Means clustering RacelD [131], SAIC [132], scVDMC
[133]
Consensus clustering (k-Means +
Hierarchical clustering) SC3 [56]
Model-based clustering TSCAN [134]
Aggregated clustering methods SAFE [135]
. SCINA [136], LAMbDA [137],
SEMI- Weighted feaiure genes SCANVI [138], scNym [139]
SUPERVISED
METHODS Graph convolutional networks scGCN [140]
Supervised hierarchical clustering RCA [141]
SUPERVISED
METHODS

Generalized linear model classifier

Garnett [142]
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ACTINN [143], CHETAH [144],

Artificial neural network (ANN) SuperCT [145], Zhong, et al. [146]

Support vector machine (SVM) scPred [147], scHPL [148]

Random Forest (RF) SingleCellNet [149], HieRFIT [150]

SNN-Cliq [151], scClassify [152],

k-nearest neighbors (KNN) GapClust [153]

However, unsupervised clustering methods have met its challenges and limitations in SCT analysis.
a) Lose genetic information in data preprocessing for clustering.

Clustering methods usually require proper dimension reduction methods to “project” SCT data
from high dimension to lower dimension, in this process, large amount of genetic information on
heterogeneity might be lost. Also, the related quality control, normalization, data correction, and
feature selection methods along with this process do not benefit to preserve the integrity of genetic
information. These methods have made efforts on eliminate technical variables or noises in SCT
data, but they have also taken risk to remove the real biological heterogeneity information. The
parameters and cutoff thresholds in these data preprocessing steps can affect the further clustering
and classification performance.

b) The reusability of unsupervised clustering methods is not satisfied.

Unsupervised clustering methods for SCT analysis is one study at a time. The model developed
for one data set does not generalize to other data sets. Different clustering algorithms and working
flows have been applied for different independent SCT studies. The clustering results and labeling
results of one same clustering tool can be various across different SCT data with diverse data
sources. This is caused by the high variable sensitivity of SCT data itself and the limitations of
unsupervised clustering tools. There are many reviews and testing studies for tools in clustering
methods in SCT [154, 155], but so far, there is barely a unified conclusion on a generalized analysis
protocol and solid widely accepted parameter settings. Most of the time, conclusions on clustering
tools’ accuracy, robustness, efficiency and the thresholds, parameters thereof can be made only on
specific SCT data sets [4]. The lack of universality makes unsupervised clustering algorithms
unable to fully integrate and utilize massive SCT data.
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c) The interpretability of unsupervised clustering methods is usually not adequate.

In unsupervised learning, data instances are not labeled, and the number of classes is unknown.
Unsupervised clustering methods can group single cells in visualized clusters. However, the
number of clusters is artificially determined according to the degree of dispersion of cell clusters.
It often happens that the number of clusters cannot be decided because the cell clusters are merged
or overlapped. Clustering algorithm has challenges in interpretability and customization —
clustering results might be not easy to interpret — Are cell clusters and annotations not determined
arbitrarily, empirically, or in biased, in high subjectivity?

Different clustering methods and screening threshold ranges will incline to different numbers of
clusters and different compositions of cell types for the same data set. At the same time, small cell
clusters may not be recognized due to the limitation of the algorithm's pattern recognition
resolution. Those may contain more detailed, rare, or specific cell subtypes in a deeper
classification level.

Second, clustering analysis tools require that the distribution of analyzed data conform to the
established statistical hypothesis. As known, SCT data is not in a typical normal distribution. After
dimensionality reduction projection, it is necessary to determine whether SCT data meets the
reasonableness of the hypothesis of the clustering algorithm. This helps the interpretability of
unsupervised clustering analysis tools.

Third, unsupervised clustering has low sensitivity to high-dimensional SCT data. Even after
dimensionality reduction and other preprocessing steps, technical errors/variables/noises caused
by batch effects may affect the clustering of cell sample points more than true differences in cell
transcriptome levels (i.e., cells from the same experimental source may be more likely to aggregate
than cells of the same type). In addition, cell subtypes that are similar in developmental lineages
cannot be accurately separated, as they have similar gene expression profiles.

These factors above can confuse the analysis and interpretation of clustering results, leading to
low classification accuracy of unsupervised clustering methods.

d) The cell type marker information used in the annotation is not comprehensive.

The annotation of cell types in unsupervised clustering analysis is labor-intensive in nature and
relies heavily on the analyst's knowledge and perception of cell markers, which may lead to
inconsistent analysis results. At the same time, manual annotation is not suitable for large data sets.
In the actual operation, the specific expression genes of the cell cluster may not match the typical
marker genes of the typical cell type. At this time, the cell cluster cannot be assigned to the known
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cell type. Similar cell types can share same typical markers, and some cell types may not have
known typical markers.

2.4 PBMC SCT Analysis with Cell Marker

Currently, online database such as CellMarker [156], CellMatch [114], DICE [157, 158], Human
Protein Atlas (http://www.proteinatlas.org) [159, 160] can support with peripheral immune cell
markers in PBMC SCT analysis. Most of the cell marker information used comes from bulk-
RNAseq analysis results, and many marker databases focus on the use of CD marker (cluster of
differentiation marker) to type peripheral blood immune cells. It is undeniable that this type of
classification criterion has formed a mature, detailed and quite accurate classification system that
can be used as an authoritative reference for PBMC classification. However, it should be noted
that CD marker is a cell typing standard focusing on cell surface molecules based on technologies
such as flow cytometry and FACS. The transcription profile observed by SCT technology is the
transient transcription level inside the cell. Deduction, identification, and determination of SCT
cell types (that are based on cell transcript expression profiles) through molecules expressed on
the cell surface [97], it has a certain interpretability, but there is also a huge risk of rationality.

In the current stage, at the subcellular level, endogenous cell markers (molecular markers within
the cell structure, such as microRNA (miRNA) and protein) has been considered as promising
SCT cell type markers. The combined use of cell surface molecular markers and endogenous
markers has not been effectively deployed in the classification of SCT data.

Latest, the collection of currently known high-quality and repeatable SCT data set annotation
results and the construction of a more comprehensive, unified, integrated cell annotation platform
(http://celltype.info) has been carried out in multiple global single-cell research projects [161, 162].

2.5 Supervised ML in SCT Classification and Its Challenges

As a result of the constant generation of a significant number of high-quality SCT data and the
rapid development of commercial single-cell sequencing platforms (e.g. 10x Genomics [10]), the
number of reference data sets for single-cell classification has continued to expand. The semi-
supervised and supervised learning analysis tools for SCT have been gradually developed (as
shown in Table 1). The increase in publications in SCT and PBMC-SCT research fields has been
demonstrated with the line chart in Figure 5.
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Figure 5. The increase of publications in SCT and PBMC-SCT research area by years. Data source from
PubMed (pubmed.ncbi.nlm.nih.gov, NIH) with search query: for PBMC-SCT: “(single-cell transcriptomics
OR single-cell RNA sequencing OR scRNA-seq) AND (peripheral blood or PBMC or circulating immune
cell)”; for SCT: “(single-cell transcriptomics OR single-cell RNA sequencing OR scRNA-seq)”. (The time
point of data collection for this figure is 2021/09/12.)

Supervised learning classification techniques have been impressively applied to data classification,
examples are network-based learning algorithms (artificial neural sanetwork (ANN), support
vector machine (SVM)), and instance-based learning algorithm (k-nearest neighbor (kNN)), etc.

Supervised machine learning uses reference data sets and reference cell type labels as training data.
Through learning, the supervised machine learning algorithm can accurately and effectively
classify the cells of testing set, and score the confidence of the given label. Supervised machine
learning is expected to effectively learn, recognize and classify SCT data expression patterns with
high dimensions (~20,000 to ~30,000 feature dimensions).

a) Can handle and classify SCT data pattern.

Supervised classification methods can effectively make up for the deficiencies of unsupervised
machine learning. Its advantage exists in that it can directly learn the expression pattern of the cell
type from the large amount of reference data (training set) and perform reliable pattern recognition
on the testing set through statistical inference algorithms. Supervised classification models such

Page | 23



as artificial neural networks are capable of coping with the complexity of SCT data (high-
dimensional, sparse, high variable sensitivity, transcriptional noise). It can identify the unique
expression patterns of specific cell types from highly variable and highly complex SCT data, and
define and classify a certain cell group with the distribution of transcripts with ~20,000 to ~30,000
feature dimensions.

b) Generalization.

Supervised learning can generalize on multi-source SCT data. For SCT in PBMC classification
[146], it can generalize both on sorting and non-sorting PBMC sample conditions, it can eliminate
batch effect and technical variables in SCT data to a certain extent. A well-trained supervised
classification model has the ability to handle with newly upcoming SCT data with various data
sources.

c) Fitto large amount of SCT data.

At the same time, the huge amount of SCT data is a reasonable application of supervised learning,
and the huge training set base can increase the classification accuracy of supervised learning.
Supervised learning can cooperate and integrate the existing SCT data sets to maximize the
utilization of SCT data resources.

However, the convinced performance of supervised classification methods has a strong
dependence on the reference data set.

a) The quality of reference data.

It requires high-quality example data as training set for classification algorithm learning and
building a satisfied classification model, and fitting the model to new testing set with interpretable
classification results. This strictly requires a high degree of accuracy and repeatability of the
training data set and its annotation labels. Low quality and contaminated training set can bring
irrelevant confounding information to classification model and lead to unreliable classification
results.

b) The lack of reference data on specific research samples.

The number of SCT data sets has continued to grow exponentially, but the source of its sample
tissues has become scattered for different research purposes. So far, there are SCT data sets on
tissues such as liver, heart, kidney, brain, whole blood, etc., but there are few SCT reference data
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sets for a specific studied cell population. That leads to a shortage of training and forming an
effective classification model for a specific aim.

Moreover, due to the limitation of cell separation technology, most of the sample collection is a
mixture of a certain organ and tissue, rather than a specific single cell type or cell group. This leads
to a lack of sufficient training sets for a single cell type for supervised learning. For example, as
far as a classification study of PBMC [146] is concerned, for healthy human peripheral blood, a
total of 58 high-quality, effective and reproducible SCT data sets of PBMC subtypes has been
collected from January 2017 to April 2020. In the process of collecting data sets, we have found
that a large number of sample sources are whole blood or PBMC mixture, but few samples are of
asingle cell type with cell separation (such as pure T cells, Monocytes, or B cells samples). Among
the few purified PBMC samples, most of them come from research focusing on a specific disease.
Their samples are collected from patient donors with disease. There are very few data sets on
PBMC of healthy human donors.

Reference data sets on certain research samples need to be generated and integrated for building
satisfied SCT classification model. The following (Figure 6) is a dendrogram for PBMC ontology.
It generally represents the relationships among significant PBMC cell types and subtypes.
However, only those cell types highlighted in bold have accordingly SCT profiles, other cell types
they are still waiting for upcoming profiles in SCT resolution. In fact, there are over hundreds of
PBMC subtypes [163] have been found by previous bulk-RNAseq for a complete PBMC ontology.
However, there is still no standardized SCT profiles for these subtypes. The classes and
relationships among these subtypes are not clarified yet. To build a detailed SCT-PBMC ontology,
the SCT profiles and hierarchical relationships for these subtypes need to be determined using SCT
technology and SCT data analysis tools.

Without detailed SCT-PBMC ontology and specific SCT-PBMC subtype data, a detailed
classification model with PBMC subtypes cannot be fully constructed. Currently, only five-class
classification models have been constructed for PBMC SCT classification [146].
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Figure 6. Organized PBMC ontology taxonomy.
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c) The lack of understanding to new cell sub-class/sub-state found with SCT.

The other limitation of supervised machine learning in SCT analysis, currently, is from the
incompleteness of existing cell ontology/taxonomy in multi-dimensions. Other than subtypes
found in previous bulk-studies, SCT has found new intermediate/sub-subtypes along with different
cell states. Supervised classification model needs more SCT data in sub-sub class (intermediates
or subtypes) and in different sample conditions (as for healthy PBMC, e.g. activated, memory, or
effector memory cell states) to interpret the classification results.

For example, the above PBMC ontology is mainly built based on knowledge from literature and
bulk-RNAseq database. It has missed hundreds of PBMC subtype classes, those new sub-
subtypes/cell states decoded by SCT technology [163].

The lack in well-defined classes for newly found sub-subtypes/cell states, that can lead to the
misclassification between the two subtypes/cell states that are very close to each other on similarity
(e.g. Classical CD14++CD16- Monocytes, Nonclassical CD14+CD16++ Monocytes, and
Intermediate CD14++CD16+ Monocytes).

Classification model requires to learn sub-subtypes’ SCT expression profiles — those are in the
next/deeper classification level. These sub-subtypes have not been found in previous technologies,
but they have been observed in SCT resolution [48]. The shortage in profiles and class definition
(forming an entity in current PBMC ontology) for these subtypes have made 2%-~3%
misclassification in PBMC SCT classification [146].

Latest, the SCT project Human Cell Atlas (HCA) has been making efforts on clarifying cell types
and ontologies for SCT analysis [164, 165].

At the same time, as the PBMC ontology has being amended, revised, and updated, the
confirmation and clarification of the cell type nomenclature should comply with unified standards.
This helps to eliminate the confusion or ambiguity of cell types, and helps to establish a more
precise and rigorous classification system for cell types.

d) Supervised learning requires strict standardized operation protocols (SOPs) in SCT data
generation.

Supervised learning methods can deal with the batch effect brought by different experimental
protocols, different chemical agencies, and different data pre-processing protocols to a certain
degree, but it still has around a 1%~2% misclassification rate [146] coming from lack of unified,
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strict SOPs. It has been found that with the increase in the number of highly reproducible training
sets, the classification accuracy of the supervised learning model can come over the batch effect
and converge to a certain level.

SCT data with strict SOPs is helpful in performance of supervised machine learning in detailed
SCT classification. Unified SOPs for SCT data generation is expected to promote real SCT
application in clinical precision medicine in the future.

2.6 Combination of Supervised and Unsupervised ML in SCT

The latest SCT data classification should consider the combination of unsupervised clustering and
supervised classification methods - that can better improve the accuracy of cell classification and
recognition. The analysis results of the two types of methods can be referred to each other.

Supervised classification can verify the results of unsupervised analysis of cell clusters. Supervised
classification uses high-quality reference data sets and high-accuracy reference labels to ensure
the classification results more reliable and interpretable. This can make up for the subjectivity in
unsupervised clustering analysis.

While at the same time, for new, unknown intermediate cell types or rare cell types found in
supervised classification (those have not been successfully classified), unsupervised analysis can
be used to help annotate new cell subtypes and identify their specific differential expression genes.
This helps to update and refine the existing cell ontology and enrich the classification layers of
supervised classification.

Supervised and unsupervised learning can help each other, promote each other, and help enrich
and deepen the understanding of existing cell types.

2.7 Current Challenges in SCT Classification Analysis

So far, the enormous efforts have been made both in supervised and unsupervised learning tools
for SCT analysis. Currently, there are some challenges that still hinder the large-scale integrated
application analysis of SCT data.

Page | 29



a) Technique deficiency.

The first essential challenge comes from the technique deficiency hiding in SCT technology itself.
As known, SCT technology can capture the most ~70% transcriptome information in a single cell,
still ~30% genetic information can be missed in SCT profiles.

This leads to the confusion understanding of “zero” value in SCT profiles. There are two possible
reasons for the inference of zero value, one is the real zero expression of the transcript (i.e., the
transcript does not exist), and the other is that the transcript is not captured (i.e. dropout event) due
to the shallow sequencing depth. About 90% of the values in the SCT expression profile matrices
are zero values. Too many zero values cause raw SCT data to present an irregular zero-inflated
negative binomial distribution instead of a normal distribution in statistics. The reasonable
judgment and understanding of the zero value have always been one of the main challenges of
SCT data quality control and classification analysis.

Another example of the noise caused by technical factors is doublets and triplets. In the single cell
capture process, two or three cells and one gel bead are wrapped together by one oil droplet, that
will cause "the cell” (a collection of two or three cells) to show an exceptionally specific high-
level RNA expression. The understanding and processing of doublets and triplets also brings
challenges to SCT analysis.

Next generation technology is expected to solve these technical confounding factors and decode
SCT profiles of single cells in more comprehensive and more accurate level.

b) Challenges from the understanding of single cell biology.

Due to technological advancement, SCT has given humans an unprecedented opportunity to
observe the transcriptional profile of a transient snapshot of a single cell. However, even if the
interference of all technical factors is hypothetically ignored (assuming that there is no dropout,
no batch effect, SCT data sets are all high-quality, reproducible, generated with a strictly unified
protocol), the super microscopic level of SCT observation also makes humans lack sufficient
existing knowledge to explain the captured biological phenomenon of single cells.

The transient expression state of single PBMCs is coordinated by a variety of factors, including
cell differentiation state (from naive, immature, to mature), cell proliferation state (different cell
cycle stages - G1, S, G2, M - circulating immune cells keep the ability of mitogenesis and
proliferation [166, 167]), cell activation state (antibody activated or cytokine activated, memory
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or effector memory state), and cell transcriptional bursting state [168] (The transcription activity
in the cell is not continuous, but pulsed. At a certain stage or moment, the high-intensity expression
will be ushered in. SCT will capture a snapshot of transient expression, that may be at the peak
period or the trough period of expression.). At these moments of different states, the same "type"
of cells will have a great difference in expression, and this will bring great influence and confusion
to distinguish different cell types with SCT data.

This has also triggered a redefinition of cell types in the single-cell era: Should cells be classified
according to all the observable transient states of cells? Or just focus on the stable cell state over
a period of time? How should we clarify and define "a type" of cells [11, 96]? If consider all the
SCT transient states of cells, the PBMC ontology can add hundreds of new subtypes. How should
the single-cell PBMC ontology be reconstructed using multiple dimensions?

c) Establishing global unified, standardized, strict SOPs and systematic workflows for SCT.

SCT profiles to a same cell type can be influenced by the protocols both in experimental
sequencing, data preprocessing, and data computational analysis.

For example, in PBMC single cell sequencing process, with the difference in cell separation
methods, sampling conditions (fresh PBMC or frozen-thawed PBMC), sampling temperatures,
storage time, sequencing protocols (10x, smart-seq2, smart-seq3), chemical reagents (chemical v2,
v3 for 10x); the PBMC frequency, cell viability, cell transcription level can be affected, and digital
SCT profiles can show different results.

The similar in SCT data preprocessing and computational analysis processes, different parameter
and thresholds selection will make differences in final SCT profiles.

Formulating and establishing global unified, standardized SOPs (from SCT sequencing to raw data
standardization, data analysis) for SCT benefits to global SCT data concordance, integration, and
comprehensive utilization. Many experts have put forward opinions and suggestions [169-171] on
the formation of a standardized and unified strict SOPs for PBMC SCT sampling, storage,
sequencing, and data analysis workflow.

Globalized SCT projects such as HCA [42] and other single-cell genomics consortiums have raised
strict standardization requirements [172] and systematic workflow models [13] for SCT data
generation.

Large-scale global integrated generation and analysis of SCT data is the only way to go, that not
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only meets its requirements as biomedical Big Data, but also meets the needs of supervised
machine learning. A large number of highly standardized reference data sets help to achieve the
repeatability and comparability of SCT data. That can maximize the elimination of the influence
of technical factors, help set the quality control threshold used to limit technical noise, help
determine individual differences, and help determine the possibility of a certain disease risk.

d) Lack of reference data and reference annotation for detailed cell subtypes.

As has been discussed above, the lack of reference data sets and detailed labels for specific aims
has largely limited the current PBMC SCT analysis. There is currently a huge demand gap for
high-quality annotation and high reproducibility SCT data of PBMC subtypes under different
sampling conditions.

It should be noted that it may not be possible to generate authentic and reliable labels for all cell
subtypes [97]. Due to the inherent defects of SCT technology, the comprehensive multi-
dimensional information of several dynamic cell subtypes may not be captured. The lack of true
labels and reference data sets for all cell subtypes [173] is an essential obstacle for machine
learning in SCT analysis.

e) Lack of generalized analysis tools.

There is still a need for generalized analysis tools with high robustness, accuracy, and scalability,
to respond to the massive exponential growth of single-cell data.

At the same time, there is a need for uniformity in the programming language and input data format
of the analysis software. The current analysis software is mainly written in R language and Python,
and the input formats are various across different software. Achieving flexible conversion between
different analysis software and input objects is the key to user-friendliness.

f) Establishing unified SCT data storage and transfer platform.

The big data [19] nature of single-cell data requires it to form a global data storage and
coordination platform. High-quality, repeatable and standardized SCT cell profiles should be
stored in integrated data platform.
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Bulk-RNAseq has made examples in blood /immune cell reference databases, such as
NovershternHematopoieticData [174], DatabaselmmuneCellExpressionData (DICE) [157], and
MonacolmmuneData [175].

In SCT, the HCA project has formed a data coordination model (data.humancellatlas.org) [162,
165] for reference data sets. The Atlas of Blood Cells (ABC) project has made reference data sets
for 7551 human blood cells of 21 healthy donors with SCT [176]. A global systematic data
platform is required to be designed for these treasurable PBMC-SCT data sets.

2.8 Future Prospects for PBMC-SCT Classification

Despite the enormous challenges of biological cognition and computational analysis, we can see
the broad prospects of PBMC-SCT data for clinical precision medicine.

With the exponential growth of PBMC-SCT data, and the continuous expansion and combined use
of unsupervised clustering and supervised machine learning in the SCT field, accurate and robust
recognition of the expression patterns of PBMC-SCT profiles will become a reality.

The complexity and diversity of the massive PBMC-SCT profiles implies the judgment of
individual health, disease, age, or clinical drug treatment effects. A sufficient number of
standardized PBMC-SCT data sets with accurate class labels, can be used as the basis for
predicting genetic phenotypes and decision making of clinical diseases.

Large-scale integrated PBMC-SCT data analysis is expected to become an essential category in
electronic health record (EHR) [173] system, and hopes to become an information-based disease
prevention and monitoring method, for blood diseases, cancer [177], immune diseases, and
infectious diseases in the future.
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CHAPTER 3 GENERAL METHODOLOGY

3.1 Data

3.1.1 Data collection & data processing

The 10x SCT data sets collected for this project study mainly have four sources, these are 10x
Genomics Demonstration Data, GEO database, BroadS1 study and BroadS2 study.

The 10x Genomics Demonstration Data is the database supported and maintained by 10x
Genomics company, that represents the high-quality PBMC data sets generated with standardized
10x experimental protocol. BroadS1 and BroadS2 studies are accomplished by Broad Institute
with specific and clear cell type annotation for PBMC sample data sets. They are considered as
precisely high-quality data sets and can be used as training and testing data sets for the supervised
machine learning PBMC classification system.

For GEO database, the 10x SCT sequencing data of relevant articles published by 13th July 2019
were searched using keywords - “single cell” AND “10x” in GEO (Gene Expression Omnibus)
Database of NCBI (National Center of Biotechnology Information,
https://www.ncbi.nlm.nih.gov/). In total, 595 10x SCT data sets of Homo Sapiens in GEO database
have been collected. Among these collected 595 GEO 10x SCT data sets, specific data sets using
PBMC as experimental samples have been selected, stored, and annotated one by one.

Raw data (matrix.mtx, barcodes.tsv, genes.tsv) of Study BroadS1, Study BroadS2, GEO data sets,
and 10x Genomics Demonstration data have been downloaded, collected, filtered, and stored. Data
sets with specific annotation of one cell type of PBMC and generated by PBMC sampling from
healthy donors have been selected as the training sets with specific classes for building the
classification system initially. The data sets annotated with PBMC mixture sample have been
stored and prepared to use for the following experiment purpose to test the robustness of the
classification model system.

Collected data sets involves different publication date, different sample source, and different
experimental condition in collected data sets. Raw data usually contains one gene list file, one
barcode sequence file and one gene expression matrix file for each study. Data files corresponding
to their data source and study source have been organized and stored in local data repository and
the backup files have been made in different local storage terminals. Data backup is also uploaded
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to the cloud data storage server.

3.1.2 General metadata construction

Metadata contains useful traceability information of involved data sets, that consists of two main
parts, one is experimental metadata, one is statistical metadata. The experimental metadata
includes the study description, study number, sample name, experimental condition, cell type,
technology platform of each data set collected, that gives background experimental information of
each study. The statistical metadata includes data distribution and basic statistical properties of
each data set, that helps to understand the difference and data structure in each count matrix.
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Figure 7. The components of metadata involving over 600 10x SCT files.

The above figure is the structure of the metadata of this project involving over 600 data sets, that
shows the component and modality of the designed metadata chart form. The aggregated data
annotation of the 10x SCT studies has been arrayed into the metadata chart form, that is designed
with “INDEX”, “SERIES”, “ACCESSION”, “GENOME”, “ORGANISM”, “DESCRIPTION”,
“SAMPLE TYPE” etc. as the captions of each column in metadata. The metadata is sorted by
“ACCESSION?”, that is the number name of series (e.g. GSE119561). ACCESSION is arranged
in order from small to large, from top to bottom. This is very important to the follow-up work,
because it has been found that many related data sets have very similar series numbers.

Only 10x SCT technology relevant research is included in metadata, other research with other
single cell transcriptomics technologies (e.g. Drop-seq, SMART-seq, inDrop, etc.) of the same
super series is not involved in. Sample number (e.g. GSM3377671) is unique for each 10x study
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in GEO database. Data sets collected from other sources, such as 10x Genomics Demonstration,
BroadS1 study, BroadS2 study, they have their own unique sample indexes. In this study, data sets
from different sources have been renamed and reorganized based on the research purpose.

The comprehensive metadata has over 600 data sets mapped with their own studies, the description
of each study is involved in the metadata and some of them has specific additional comments. The
metadata has detailed annotation for each specific data set. It has described the sample cell type,
health status of the donors, experimental conditions, experimental protocols, data upstream
analysis protocols, and other important information of each 10x SCT data set for the further
experimental design of the supervised machine learning PBMC classification system construction.

3.1.3 Data selection and study quality control

During 10x SCT data collection process, the good quality of collected data sets has been checked
and ensured for the further following pre-processing steps and classification steps. For example,
in GEO SCT data sets collecting process, the studies which are not related but filtered out by GEO
database browser with the key words are excluded (e.g. 10X Hank’s salt solution). Another
example is that series with inconsistent study description are excluded out as well.

3.1.4 Common genome assembly built

Genome assembly is the gene name database comprises the names and IDs of all known genes so
far, it is used as available annotation tracks. Different genome version is used in different studies.
The alteration of genomic versions and the lack of uniform naming standards have led to complex
confusion. One gene name can have several different probes name, it is not comparable between
two different genomes of one same organism. Quality control has been done to exclude studies
only supply gene name list without probes or only have probes list without gene name list. One
probe can correspond to different gene names (synonym or alias). NCBI, ENSEMBL and UCSC
are genome databases and genome browsers retrieving genomic information. The number of
probes in genome assembly are regularly updated. Genome assembly has Ensembl Gene ID (e.g.
ENSG00000210049) and Gene Name (e.g. MT-TF).
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Figure 8. An example of genome assembly (GSM3937878).

We used the current version (.tsv) in ENSEMBL genome browser as reference. In our study,
genome builds have been selected of different samples in different series from collected data. They
have been compared and merged to a dictionary of reference genome assembly, it is named as
“common list”, with probes mapping to genes.

1 ALL PROBES HUMAN
2
3 PROBES hgl9 GRCh37 GRCh38 Ensembl GRCh38.pl2 rel94 GSM3717979
4 EMSGO00O0L1TS33E  hglS VAMPL greh37 VAP greh38 VAMP4 BAMPA EVANPA inall
5 EMSGO000022E315 2ORTL12EP Ensembl GRCh38pl2 rel54
6 |ENSGO0000248222  hglS CTE-174D111  grchd7 CTB-174011.1 grch38 CTE-174D11.1#AC011389.1 #AC011389.1 inall
T CMSGO0000236230 hglS RP1L-400M13.1 grch3? RP11-400M13.1 greh38 RPLL-400M13 #ALISE108.1 #AL3561081 inal
8 CWSGO0000236506 ACD02568.1 Cnsembl GRCh38.pl2 relS4
9 CMSGO0000233029  hgld RP11 239A17.9 grchd? RP11 4394179 grch38 RP11 430417 2AC2444532 FAC244453 2 inall
10 CMSGO00000162636 hglD FAMLO2E grchd? FAMI1O2D groh38 FAMLOZE #MAM102B FAMIG2E  inall
11 CMSG00000261714 #ACL105137.1 Chsembl GRCh38.pl2 relo4
60566 CNSG00000101871  hgl® MIDL grcha? MIDd grch3d MIDL #MID1 =MIC inall
60567 CNSGO0000196517  hgld SLCEAD grehd? SLCBAD greh3d SLCEAD RELCEAD FELCEAD inall
60568 ENSG00000092439  hgld TREMT grch3? TRPMT grch3d TRPWMT ZTRRMT ETRPMT inall
60569 ENSGO0000221840  hgld OR4AS archd? OR4AS grch38 OR4AS 2OR4AS Z0R4A5 inall
0570 EMSG00000284387 #MIR24-2 Ensembl GRCh38.pl2 rel94
60571 ENSGO0000085733  hgld CTTN greha? CTTM greh3d CTTH 2CTTM FCTTM inall
60572 EMNSGO0000168140  hgl9 VASN grch3? _VASM grch38 VASH BUASN FWASH inall
60573 ENSGO0000258631  hgl® RP11-738G5.1  grch3? RP11-T39G51  greh38 RP11-7306G5.1 #AC110023.1 #AC110023.1 inall

60574

Figure 9. Comparison across different genome version.

Correction has been made when the genomes adopted in several studies show the wrong data
format, the decimal point in probe, the space keys, confused/mixed genome version and the
incorrect naming. Corrected and cleaned genome file is saved with format “.txt” or “.tsv”” instead
of “.csv”, in case of Excel date format confusion. Genome files supplied in “.H5” file format are
converted to “.csv” format. The cleaned and merged version of genome assembly is used as
reference for follow-up machine learning section.
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Table 2. Components and the number of gene probes in common list and full list of Homo Sapiens.

Organism | Component Common | Full list | Note
list probes
probes number
number
Homo “grch37 1 _GSM3073089 GSE112570.tsv” | 30698 60570 “hgl9 1 GSM2867931 GSE106245
Sapiens “grch38_1_GSE117403.tsv” sV
“grch38 2 GSM3375767_GSE119506.tsv” “hgl9 5 GSM3143601 GSE114530
“grch38 3 GSM3478791 GSE122703.tsv” .tsv” Deleted. (Decimal point, date
“grch38 4 GSM3543618 GSE124703.tsv” format error, version error.)

“grch38_5_GSM3813936_GSE131685.tsv”
“hgl9 2 GSM3430548 GSE121267.tsv”
“hgl9_3_GSM3635372_GSE127471.tsv”
“hgl19_4 GSM2897333_GSE108394.tsv”
...... (special genome)

In this study, a common gene list across collected SCT data of Homo Sapiens has been prepared
as a mapping library for count matrix standardization. In human common gene list, there are totally
30698 gene names with corresponding gene probes, they are features in PBMC SCT classification.

3.1.5 Data filtering, conversion, and standardization

Raw data sets have been filtered, decompressed, converted into standardized file formats. Data
files of super series studies have been split up.

GS€96583 GSES0543 GSM1220962
GSE100866 GSES0585 GSM1220963
GSE101341 GSE9S5430 GSM1220964
GSE101558 GSE99T14 GSM1220965
GSEN102596 GSE91S GSM1220966
GSE103544 GSE100106 GSM1220967
GSE103867 GSE100320 GSM1220968
GSE103918 GSE101099 GSM1220969
GSE106543 GSE102299 GSM1220970
GSE106544 GSE102591 GSM1220971
GSE108288 GSEN03221 SIMIaN9IE
GSE108313 GSE103272 S
GSE108382 GSE104156 cane
GSM1220975
GSE108383 GSEN04396 GSM1220976
GSE108394 GSE106264 GSa1350579
GSE108699 GSE106960 GSM1220978
GSE110499 GSE107527 GEM1220979
GSE110686 GSE107509 GSM1220980
GSE110973 GSE108788 GSM1220981
GSE111014 GSE109033 [fi) GSES0543_RAW.tar

GSF111MS GSFINaNdg

Figure 10. Data files collected and cleaned.

Data cleaning and filtering has been done by the exclusion of null data, that can be caused by the
count of empty droplets during SCT experiment procedure — the cell capture rate is zero at this
situation. For example, in the raw data of the study sample GSM3258348, the cell barcode is
~700,000, but the actual gene expression is only ~26,000, that means it calculates lots of empty
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gene expression, so we filtered output the actual meaningful data by removing the null data in each
matrix of raw data file.

%%MatrixMarket matrix coordinate integer general
%

38698 1760 2466878
211

512

2011

5315

96 1 1

1151 1

116 1 1

158 1 1

208 1 2

244 1 2

250 1 20

268 11

277 1 1

35 11

316 11

31911

Figure 11. MTX file needs to be converted to CSV file for visualization.

Raw data of different formats (e.g. .h5, .csv, .tsv, .txt, .mtx) with different genome versions have
been converted into CSV file (.csv), with cell barcodes/cell numbers as the horizontal heading, the
standard 30,698 gene features as the vertical heading, and gene expression values as digital matrix.
The produced CSV file was converted into four standard file formats - .h5, .csv, .npz, .mtx (tsv),
those used as common, unified and standardized output format for various purpose of use, such as
file transfer, visualization, and statistical calculation.

A B C D E F LHL LHM LHN LHO LHP LHQ LHR LHS LHT LHU LHV LHW LHX LHY LHZ

1 1 2 3 4 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344

2 |hg38 ZFP4l 0 0 0 [} 0 Q Q Q ] 0 0 0 0 0 0 0 0 0

3 | hg38_ASF1A 0 0 0 2 0 0 ] ] 2 [} 0 0 1] 3 [i]

4 |hg38 TMEM39A 0 0 0 0 0 0 0 0 2 [1} 0 0 3 0 0

5 |hg38 ORZM7 0 0 1] a a a a a a a ] 0 0 0 0 1]

6 |hg38 CCT7 0 0 0 0 0 3 1} 3 [1} 3 4 0 0 0 0

7 |hg38_DDX8B0 0 0 1] a a a a a 3 (1] 0 0 0 3 0 0

8 |hg3l R 0 0 0 [} Q Q Q Q Q 0 0 0 0 0 0 0

9 P2 0 o 0 0 0 ] a 3 ] (] 3 0 0 0 0

10 [i] [i] [i] 0 0 0 0 0 0 0 0 [i] [i] [i]

11 0 0 0 0 0 0 [1} [1} [1} [1} 0 0 0 0

12 1] 0 1] a a a a a a a (1] 0 1] 0 1]

13 0 0 0 0 0 1} 1} Q Q 0 0 0 0 0 0 0
14 |hg38_SLC43A 0 0 0 a a a a a a (1] 0 0 0 0 0 0 -
30881| hg38_CDC20 [i] [i] [i] [i] [i] [i] [i] [i] [i] [ [} 0 0 [i] [i] [i] -

30882/ hg38_DNAIBS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30683|hg38_OSTML1 0 0 0 0 0 [1} 1} 1} [1} 0 0 (] 0 0 0 0

30684/ hg38_SPATAB-AS1 0 0 0 0 0 0 [ [ [ [ [ 0 0 0 0 0

hg 2 0 0 0 0 0 Q Q Q Q 0 0 0 0 0 0 0

I 0 0 0 1] a a a a ] ] (] 0 0 0 0 0

0 0 [i] [i] 0 1] i 0 [} 0 0 0 0 0 0 0

30688|hg38_L 0 0 0 0 0 0 0 [1} [1} Q 0 0 0 0 0

30683|hg38_LINC00535 1] 0 1] a a a a a a a (1] 0 0 0 1] 1]

30690|hg38 GS1-24F4.2 0 0 0 0 0 [1} 1} 1} Q 0 0 0 0 0 0 0

30691|hg38_TRIM31-AS1 0 1] 1] a 1] a a a a (1] ] 0 0 0 0 0

30692|hg38_PHB 4 0 0 0 0 3 Q Q Q Q 4 0 0 0 0 3

30693|hg38_DNHD1 0 0 0 0 0 a a a ] ] 0 0 0 o 0

30684| hg38_CTB-129P6.11 ] [ 1] 0 0 0 0 0 0 0 0 0 1] [i] 0

30695/ hg38_TPH2 1] 1] 1] a a a a a a (1] 0 0 1] 1] 1]

30696|hg38_LINC00E26 0 0 0 0 0 [1} [1} 1} [1} 0 0 0 0 0 0 0

30897 | hg38_Lf 0 0 1] 2 a a a a a a (1] 0 0 0 0 1]

30688| hg38_AC073333.¢ 0 0 1) 0 0 1} Q Q 0 0 0 0 0 0 0 0

30688|hg38_ZFP36 0 0 o a o a 3 a 1] 3 0 0 0 0 0

30700
30701
BS1_T_cells_std_83- +) “ a4

Figure 12. An example of a standardized count matrix (30,698 features).

Data standardization has mapped the original digital matrix in raw data set to reference common
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gene list (30,698 features). Those gene probes in common list that don’t have expression in cells
have been filled up with zeros. Original gene probes in raw data that are not involved in reference
list have been filtered out.

3.1.6 PBMC data selection and properties analysis

Among the collected SCT data sets, PBMC data sets with ‘blood” as sample sources have been
sorted out for following studies. There are 9 data sets of 10x Genomics Demonstration, 28 data
sets of GEO database, 5 data sets of BroadS1 study and 31 data sets of BroadS2 study.

3.1.6.1 PBMC data metadata

The experimental information (experiment platform, experimental conditions, sample sources, etc.)
and statistical information (cell number, etc.) of PBMC data sets have been described in metadata.

Figure 13. The experimental metadata and statistical metadata for involved PBMC data sets.

In PBMC metadata, original file names have been renamed with the index number of the study.
PBMC data sets have been arrayed according to index, data source, original file name, new file
name, publication date, study ID/series number/accession number, data format, experimental
platform and protocol, genome, study description, sample source, cell type, receptors, special
conditions, cell ranger version (the chemical), cell sorting method, etc.

Cyclical PBMC classification experimental design can be done based on the selection of these
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prepared and standardized data sets. The experimental metadata can help to explain and interpret
ANN classifier behavior when it comes to multisource data sets.

3.1.6.2 Basic statistical analysis

The statistical properties of each data sets have been calculated, analyzed, stored in the statistical
metadata. The statistical metadata contains information such as cell number, min value, max value,
medium value, average value, sum profile, positive profile (gene expressed profile), normalized
sum profile, percentile of sum and positive values, etc. for each data file matrix.
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Figure 14. An example to show the statistical properties calculating procedure for one individual data set.
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Figure 15. The 0-100 percentiles of positive profiles of 10x and GEO data sets as an example.
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The statistical properties of each data set have been plotted into graphs for visual comparative data
analysis, to figure out and contrast the difference in data structure and density distribution. The
data structure and distribution represent specific gene expression profile pattern, that are crucial to
ANN model performance on learning and predicting PBMC SCT data.
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Figure 16. The scatter plots for percentiles of column positive value of each data set.

The scatter plots represent an example of statistical metadata for a data property - the percentiles
of column (cell number) positive value of each data file. Through visualization using scatter plots,
data distribution of each data set can be explored and analyzed on a further level.
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Figure 17. The scatter plots of positive values and sum values in each data set matrix.

With scatter plots of positive values and sum values, the data density and structure can be easily
visualized. Based on difference in gene count thresholds, data quality control has been considered
to conduct during data processing. The high expression cells can be doublets or triplets of single
cells generated during 10x sequencing procedure. The low expression cells have possibility to be
low-quality cell or the fragmented transcripts of single cells that should be eliminated from
following supervised classification process. The differential expression analysis to SCT data sets
is significant for interpreting the learning process of ANN models.

3.1.6.3 PBMC ontology metadata

A PBMC ontology has been organized based on selected PBMC SCT data, as shown in Figure 6.
The ontology metadata has been organized as shown in Figure 18.
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Figure 18. The metadata for PBMC ontology building, based on selected PBMC SCT data.
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In this ontology metadata, each cell type (subtype) has frequency, phenotype marker, function and properties, data source, additional information,
references, etc. categories for lineage tracing and literature tracing. Related information and referenced literature have been stored in repository. The
hierarchical relationship of each data set can be clearly located with the taxonomy dendrogram in Figure 6. It is significant to interpret single cell
classification results with PBMC ontology and background metadata information.
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3.2 Multi-Dimensional Single-Cell Ontology: PBMC as An Example

Domain knowledge (prior biological knowledge) is significant to data, model/algorithm,
parameters in single cell classification process. It can help to interpret and address machine bias
from the perspectives of inaccurate assumptions to data labels and flawed data sampling where
data is over- or under-represented in machine learning training data set.

Currently existing cell ontologies are not suitable for single cell classification, with deeper
resolution in SCT technology and new evolving concepts in cell type definition and determination.
Traditionally, there are different classification criteria for cell types, such as cell morphology,
molecular-cell function (surface receptors, cell secretions, etc.), but these criteria are not always
connected. In addition, the cell classification ontology, standard, and naming of cell types are not
consistent across different studies, to a certain extent. There is often a phenomenon of cell type
recognition based on molecular markers discovered in certain research, or cell type determination
standards that are chosen at purpose or for convenience.

The existing classification of immune cells does not have a systematic and comprehensive
classification standard, which makes it difficult for us to understand cell types and classify them
with ANN models. The current cell ontologies focus on describe cell types based on traditional
methods. The determination of cell identity, cell type, cell state, and cell fate has entered the era
of digital quantitative definition of each individual single cell. Single cell gene expression can be
sensitively affected by factors of multiple dimensions: from cell properties, organism properties,
types of tissue, experimental settings, and data analytics. The classification of single cells urgently
needs a systematic and formally defined multi-dimensional ontology.

With the quantitative defined single cell gene expression profiles, in this section, a multi-
dimensional single cell ontology has been systematically described, with taking PBMC cell
properties specifically as an example, referring to the existing literature and collected 10x SCT
data. That gives a hierarchical, common, and controlled vocabulary prototype for single cell
ontology. The PBMC cell properties has been designed to be one layer upper based on existing
data, and one layer of subclasses beneath the classes of the existing data.

The following has written the multi-dimensional single cell ontology proposed. This work has
been organized into a paper manuscript under reviewing.
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3.2.1 Abstract

We propose a multi-dimensional cell ontology for single cell study, with PBMC as a specific
example. It has described over 163 dimensions to category and characterize single cells, based on
prior knowledge in immunology and single cell study domain. The multiple dimensions include
cell types and factors affecting single cell gene expression level. This ontology can be used as a
reference model to support with single cell data analysis, such as single cell classification.

3.2.2 Introduction

Ontology is a formalized representation of the definition of a group of concepts, and the
standardized description of their attribute relationships, in a certain field. Ontology represents and
describes two questions of concepts in a field — “what are they” and “what are their relationships”.
Ontology helps to strengthen the certainty and clarification of the nature of research objects or
facts. It is the basis for the understanding of research data and research questions [178, 179].

In single cell study field, it requires an ontology to annotate and category single cells with
hierarchical structure of multiple dimensions.

At the level of single cell, the cell gene expression can be affected by diverse elements: an inherent
expression related to cell type, and influence of tissue location, organism properties, experimental
settings, data analytics.

For example, dendritic cells from tonsil has different expression to dendritic cells from peripheral
blood [16, 65]; T cell gene expression can be changed by methanol fixation [16, 65]; the single-
cell transcriptomics (SCT) technology platform (e.g. 10x Genomics v2, v3) has a greater impact
on the similarity of cell gene expression than the cell type itself [59]; the gene expression profile
of PBMC in chronic lymphoid leukemia (CLL) patients has changed significantly over time and
treatment [29].

In domain, currently, there are ontologies, such as Cell Ontology (CL) (cellontology.org) (an
ontology for cell types) [180], Gene Ontology (GO) [181, 182], that have been constructed and
written in a set of standardized principles of OBO foundry [183]. However, CL focuses on general
concepts of cell types from prokaryotes to mammals, it does not have available subclasses
underneath the class “PBMC”. Further, it is derived from the subjects of life science and cell
biology, it has generally described cell types with the perspectives of cell origin, and cell function,
etc.
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The advance in SCT has brought a need in categorizing a single cell based on the concepts from
diverse dimensions — not only from cell type, but also considering dimensions in tissue and
organism, experimental processing and data processing. It requires a hierarchical vocabulary of
multi-dimensions to categorize SCT profiles. It can support the repeatability and reliability in SCT
analysis.

This ontology supplies a structured and controlled vocabulary for single cell study. It determines
distinct hierarchical categories and relationships for individual single cells. The ontology can be
used as a reference for single cell classification, that helps SCT data being classified according to
precise dimensions and compartments [184]. It can guide machine learning model and statistical
analysis to find differential expression patterns of SCT data on each specific dimension.

To meet the need of an ontology in single cell study, we produce a multi-dimensional ontology
model, based on dimensions of cell properties, organism properties, tissue types, experimental
settings, and data analytics. In cell properties, PBMC has been taken as example to describe. The
biological knowledge of the ontology is from immunology [36, 185] and SCT research field. The
ontology is built according to principles of being clear, concise, informative, and reliable.

3.2.3 Construction and content

3.2.3.1 SCT study dimensions

Efficient SCT data integration and classification requires the ontology in multiple SCT study
dimensions.
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I. Cell Properties (n252)

Il. Types of Tissue (n 2 46)

SCT Study Dimensions Ill. Organism Properties (n 219)

IV. Experimental Settings (n 2 28)

V. Data Analytics (n=18)

Figure 19. Five angles of SCT study multi-dimensions. The number in the figure shows the number of

dimensions in each main angle. The ontology has over 163 dimensions in total.

Comprehensively, the SCT study dimensions include five main angles: cell properties, types of
tissue, organism properties, experimental settings, and data analytics. These five main angles are
the primary factors that need to be considered for SCT data integration, analysis, and classification.
Each sub dimension in these five main angles can affect the specific gene expression level in
individual SCT profile.

3.2.3.2 Cell properties and PBMC ontology

e Cell properties

First, specifically, in ‘Cell Properties’ angle, it has 12 sub dimensions, the first layer of ‘Cell
Properties’ is comprised of ‘Genetic lineage’, ‘Maturation status’, ‘Activation status’, and
‘Effector/memory’ dimensions. ‘Genetic lineage’ is the dimension to decide SCT cell type in the
view of cell lineage development. Based on our previous PBMC SCT classification study [65], it
has two sub dimensions: ‘non-PBMC’ and ‘PBMC’. ‘PBMC’ dimension has been structured in
detail in Figures 21-26.
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~non-PBMC
—Genetic lineage —
~PBMC
Immature
- Maturation status - Transitional
Mature
- Activation status — Resting
- Anergic

- Naive

- Effector
— Effector/ memory
Memory

- Effector-memory

Figure 20. Dimensions in ‘Cell Properties’ angle. It includes subdimensions from ‘Genetic lineage’,

‘Maturation status’, ‘Activation status’, and ‘Effector/memory’, four dimensions.

Our ontology has set “the status of immune cells” as dimensions independent of “cell genetic
lineage” (the dimension traditionally used to define cell types).

There are different views on the division of the hierarchy between “cell type” and “cell status” [11,
97, 184], and there are studies use “cell status” as a part of content in cell type determination and
definition [186]. From the perspective of single-cell research and big data analysis, we have split
the “cell lineage type” (named as ‘Genetic lineage’ in ontology) and “cell status type” as different
dimensions to jointly define a gene expression profile of a specific cell population.

“Cell status” is an emerging concept for cell type classification [97]. The joint definition of cell
type through “Cell status” and “Genetic lineage” is the development and continuation of the
epigenetic landscape theory described by Waddington [187]. In our ontology, the branches of cell-
fate decision points are jointly defined by multiple dimensions.

The characterization and determination of cell state is one of the key challenges in SCT [22].

In our ontology, ‘Maturation status’ has described dimensions in the maturation process, from
immature, transitional, to mature. Immune cells gain mature status in specific immune organs, but
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it has found their existing in periphery, during cell trafficking [185, 188].

The ‘Activation status’ dimension has divided immune cell into ‘Active’, ‘Resting’, ‘Anergic’,
three compartments.

The ‘Effector/memory’ dimension is decided based on the time phase: whether the cells were
stimulated by antigens, and the different differentiation stages they were in after receiving the
activation stimulus. The ‘Naive’ compartment refers to mature cells not exposed to antigen,
‘Effector’ refers to immune cells performing effector function with short life span, ‘Memory’
refers to cells performing similar phenotype to ‘Effector’ cells, while with long life span (up to
several years).

e PBMC ontology

—Bcells

— Dendritic cells

m— Monocytes

~NK cells

“~Tcells

Figure 21. Five classes under the ‘PBMC’ dimension.

The dimension ‘PBMC’ consists of ‘B cells’, ‘Dendritic cells’, ‘Monocytes’, ‘NK cells’, and ‘T
cells’, based on immunology prior knowledge [36, 185].
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e Bcells

—Naive B cells

Pre-switch B cells
—Memory B cells* {

M~ MZL B cells

~Plasma cells*

Post-switch B cells

—Plasmablast

- Regulatory B cells

Figure 22. B cell ontology defined. (“‘MZL B cells’ is the abbreviation for ‘Marginal zone-like B cells’.)

In B cell dimension, the ontology has set six compartments - ‘Naive B cells’, ‘Memory B cells’,
‘MZL B cells’, ‘Plasma cells’, ‘Plasmablast’, and ‘Regulatory B cells’ [188-192]. Immature B
cells and Transitional B cells before complete maturation, are not described in the ontology.

After the maturation, naive B cells enter the peripheral blood, they can be activated, effected, or
brought to memory status, by self-antigens or hetero-antigens. Plasma cells are effector B cells, it
is distinguished into two divisions based on different life span (short-lived; long-lived - from few
months to lifetime) [193].

Pre-switched B cells and post-switched B cells (IgG+, IgA+, IgE+ memory B) are listed as two
compartments of the dimension ‘Memory B cells’ [194].

Regulatory B cells perform the function of regulation in peripheral blood, it is proposed that any
B cell has the capacity to differ into a regulatory B cell in human [195].

Other B cell groups with trace amount of cell numbers in blood are not involved in the ontology,
such as B-1 cells (mainly in fetus blood), early plasmablasts, transitional plasma cells, etc.

While defining PBMC cell classes, we have found that PBMC cell types are largely defined by the
types of specific cell surface markers (e.g. surface protein receptors, cluster of differentiation - CD
markers), or, cells’ secretions (e.g. immunoglobulin (lg), cytokines, chemokines, granzymes, etc.).
Examples can be found in DC-CL (a dendritic cell ontology) [196] and hemo-CL (a hemopoiesis
cell ontology) [197]. This ontology has made effort to focus on the essential classes of cell types.

Page | 52



e Dendritic cells

Double negative cDC
Classical DC ——cDC1

cDC2

Dendritic cells

plasmocytoid DC

ASDC

Figure 23. Dendritic cell ontology defined. (‘AS DC’ is the abbreviation for ‘AXL+SIGLEC6+ DC cells’.)

The construction of dendritic cell dimension is based on prior knowledge [100, 198] and newly
derived knowledge with SCT studies [48, 199]. In the ontology, ‘Classical DC’ shares the
synonyms with “conventional DC”, “myeloid DC”.

The ‘Classical DC’ has the positive expression of CD11C. There are three subclasses under its
dimension: CD11C+CD141+ DC (cDC1), CD11C+CD1c+ DC, and CD11C+CD141-CD1c- DC
[48].

The ‘plasmacytoid DC’ positively expresses CD303 and CD123 marker [48]. The cDC can
stimulate CD4+ T and CD8+ T in antigen-specific manner. The pDC produce type-1 IFN
(interferon) as response to viruses [199].

The ‘AXL+SIGLEC6+ DC’ (AS DC) are newly defined in a DC SCT study [48], AS DC is unique
tocDC or pDC. AS DC is isolated by co-expression of specific markers, such as, AXL, SIGLEC1/6,
and CD22/SIGLEC2.
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e Monocytes

Classical Monocytes
Intermediate Monocytes

Non-classical Monocytes

Figure 24. Monocyte ontology defined.

The monocyte dimension has three compartments: ‘Classical monocytes’ - CD14++CD16—,
‘Intermediate monocytes’ - CD14++CD16+, ‘Non-classical monocytes’ - CD14+CD16++ [48,
100]. The newly defined “Mono3” and “Mono 4 subtypes [48] are not listed in the ontology,
given the consideration of further verification on reproducibility.

e NKecells

~CD56dim NK

~CD56bright NK

ml CD56negative NK

CIML NK
- Others {
LRE NK

Figure 25. NK cell ontology defined. (“CIML NK’, ‘LRE NK’ are the abbreviations for ‘cytokine-induced

memory-like NK cells’, and ‘population with low ribosomal expression NK cells’, respectively.)

In NK cell dimension, there are four subclasses: ‘CD56dim NK’ - CD56+, ‘CD56bright NK” -
CD56++, ‘CD56negative NK’ - CD56—, and ‘Others’ [186, 198, 200, 201].

CD56bright NK and CD56dim NK both have two divisions: CD16- and CD16+.
CD56brightCD16-, CD56brightCD16+, CD56dimCD16+, are, regulatory NK, intermediate NK,
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effector NK, respectively.

Inside of CD56dimCD16+ compartment, there are two further partitions: CD56dimCD16+CD57—
and CD56dimCD16+CD57+ [186]. The CD56dimCD16+CD57+ NK cells are terminally
differentiated mature NK cells, with high cytotoxicity. Its reference range is around 12.2% of the
total NK cells [186].

The ‘CD56negative NK is also termed as “inflamed NK” or “Type-1 IFN responding NK”. It is
closely related to CD56dim cells while it has diminished cytolytic capacity [186, 200].

In the compartment of ‘Others’, ‘CIML NK’ and ‘LRE NK’ have been listed. The ‘CIML NK” is
strongly activated NK cells, it is similar to CD56dimCD94high intermediary NK cells, it is a
hybrid between CD56dim and CD56bright NK cells [186, 200]. The ‘LRE NK’ is resembling to
CD56dimCD16+CD57+ NK cells, while it has significantly reduced ribosomal expression. It is
reminiscent of cells undergoing senescence or quiescence (termed as “ribophagy’’) [186, 200].

There is a group of “adaptive NK cells” found in the NK SCT study [186], but not listed in the
ontology, given the concern of reproducibility.
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e Tcells

~Double-negative T

Double-positive T

~Classical T
~HelperT—-Th9

- Th17
-Th22

-Tfh
- Single-positive T ~ CD4+ Treg
-Tre ~[

—~CD8+ Treg

-Tel

- Cytotoxic T - Tc2

Teco
-Tel7
~MAIT
~NKTI1
NKT
. I
InnateT L NKT2
~gdil
~Gamma-deltaTcells
—gd2

Figure 26. T cell ontology defined. (‘Tfh’, ‘Treg’, ‘MAIT’ and ‘NKT’ are the abbreviations for ‘T follicular
helper cells’, ‘regulatory T cells’, ‘Mucosal associated invariant T cells’ and ‘Natural Killer T cells’,

separately.)

In T cell dimension, there are two main compartments: ‘Classical T* and ‘Innate T’ [202].

The ontology has set ‘Double-negative T’ - CD4— CD8-, ‘Double-positive T’ - CD4+CD8+, and
‘Single-positive T’ - CD4+/CD8+, compartments under ‘Classical T°, based on T cell lineage
commitment [202]. Progenitor T cells experience T-cell receptor (TCR) gene rearrangement,
thymus positive selection (MHC I, Il) and negative selection (self-tolerance) to obtain single
positive expression [185].
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Under ‘Single-positive T, based on the type of expressed surface receptors and the function, it has
been divided into ‘Helper T’ - CD4+, ‘Treg’ - CD4+/CD8+, and ‘Cytotoxic T’ - CD8+. The
‘Helper T’ has set subdivisions including ‘Th naive’, ‘Th1’, ‘Th2’, ‘Th9’, ‘Th17’, ‘Th22’, and
‘Tth’ [203, 204]. The ‘Cytotoxic T’ has subdivisions as ‘Tc naive’, ‘Tc1’, ‘“Tc2’, ‘Tc9’, and ‘Tcl7’
[203, 205].

Effector Thl, Th2, Thl7 can secret cytokines and have functions in cellular/humoral immune
response. Naive CD8+ T cells can be activated by effector helper T cells into effector cytotoxic T
cells (CTL) [185]. In few cases, CTL can also be the effector CD4+ T cells [206].

Treg cells highly express CD25 and the transcription factor Foxp3, it is also labeled as
CD4+CD25+Treg [198]. In the adaptive immune response, it can perform negative regulation
function (as opposed to Th cells), through direct contact or the secretion of cytokines. Treg cells
can turn other cells from an active status to a resting status. The CD8+Treg and Treg of other
phenotypes have also been found [207, 208].

The ‘Innate T’ compartment includes ‘MAIT’, ‘NKT’, and ‘Gamma-delta T cells’. The ‘NKT’
and ‘Gamma-delta T cells’ compartments have subdivisions — ‘NKT1°, ‘NKT2’, ‘gd1’, ‘gd2’,
respectively [209]. The ‘NKT1’ is also referred to as “invariant NKT cells” (iNKT) [210].

The ‘Innate T’ compartment is part of innate immunity of human body, as well as the ‘Dendritic
cells’, ‘Monocytes’, ‘NK cells’ compartments. The ‘B cells’ and ‘Classical T’ compartments have
functions in adaptive immunity.

The similarity between compartments “T cells”, “NKT cells”, and “NK cells” can lead to 2~3%
of misclassification of T cells and NK cells, based on SCT data and supervised machine learning
model [65, 146].

3.2.3.3 Organism properties

The ‘Organism properties’ angle has described at least 19 dimensions that can affect SCT cell gene
expression profile, from the perspective of organism.

The dimension ‘Individual Genetic Differences’ represents factors influencing SCT profiles in
gene level, from genetic background (in nature), to environmental exposure (acquired), and others.

Reference intervals and gene expression level of immune cell subsets can be different by regions,
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populations, and ancestries [211-214], these factors conclude into ‘Genetic background’.

‘Environmental factor exposure’ mainly refers to individual differences influenced by epigenetic
modifications, such as industrial chemicals, heavy metals, air pollutions, temperature, humidity,
light, ultraviolet radiation, mutagens, pharmaceuticals, vaccine [215], dietary components, alcohol,
smoking, stress, sleep deprivation, behaviors, lifestyle, etc. [216-218]. Exposed to different
environmental conditions, can make phenotype polymorphisms in genetically identical organisms.

Genetic background
~ Individual Genetic Differences % Environmental factor exposure
- Other
Fetal
Pediatric
~ Developmental stage/ Age — Young
Middle age

Elderly

Female
- Gender {

Male
11l. Organism Properties
~ Healthy

—Allergy
- Autoimmunity

Infection

- Health status — lliness
Cancer

In treatment

- Other

- Other

- Other

Figure 27. Dimensions in ‘Organism Properties’ angle. It includes subdimensions from individual differences,

age, gender, to health status.

The influence of ‘Developmental stage/Age’ and ‘Gender’ on sample immune cell differences
have been observed, as found in previous studies [163, 213, 214, 219, 220]. In the ontology, five
compartments — ‘Fetal’, ‘Pediatric’, ‘Young’, ‘Middle age’, and ‘Elderly’, have been set under the
dimension ‘Developmental stage/Age’.
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‘Healthy’ and ‘Illness’ dimensions can affect immune cell expression largely. The same type of
cells can have specific gene expression in allergy [221, 222], autoimmunity [223, 224], infection
[225, 226], cancer [227, 228], or, treatment [229], etc. conditions [163]. The change of PBMC
gene expression in CLL patients with the process of treatment has been confirmed [29].

Other circumstances such as chronic disease [230], pregnancy [231] are also considered.

3.2.3.4 Types of tissue

- Adipose

- Blood

Bone

- Brain

- Digestive

- Endocrine
-Eye
Gallbladder
- Liver

~Lung

- Lymphoid
~Muscle
Reproductive

-Skin

“~Urinary

Figure 28. Division from the perspective of tissue type.

The settings of dimensions under “Types of Tissue” is done based on SCT data analysis practice
and convenience, developed from views on traditional classification of anatomy, - the systems,
organs, tissues, cells.

The construction of the dimensional hierarchy adopts the top-down principle.
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The enumeration of dimensions based on different locations of organs and tissues conforms to the
law of permutation and combination. The ontology only lists the partial types of tissues based on
collected SCT data. The purpose of enumeration is to demonstrate a multi-dimensional model,
rather than exhaustively list all types of organs and tissues.

Organs and tissues with available standardized SCT data include, “whole blood”, “PBMC”, “liver”,
“lung”, “gallbladder”, “spleen”, “tonsils”, “breast”, “bone marrow”, “thymus”, “lymph nodes”,
etc. In PBMC SCT data analysis, a common scenario is that less data comes from purified PBMC
cell samples (such as only B cell samples or T cell samples), and more data are derived from
PBMC mixtures or whole blood samples. This leads to the difficulty of PBMC cell splitting and

the unavailability of the PBMC classification based on SCT data.

Another common situation is that, reading literature related to experimental data can find that many
data samples marked as "peripheral blood" in the SCT database may come from tissues (such as
"liver", "spleen”, etc.), rather than the circulating blood on the periphery - in the traditional
meaning. The definition of “peripheral blood” is related to the classification and analysis of PBMC.
The SCT expression profiles of peripheral blood in different tissue environments are
heterogeneous.

In particular, in PBMC SCT classification based on artificial neural networks (ANN), when adding
tissue-residential dendritic cells (DC) data (from tonsil) to the training set [16], it can directly affect
the accuracy of the classification model.

The studies [16, 65, 146] have shown the fact of SCT data vacancy on certain tissue type and the
importance of clarifying specific sample tissue source in SCT analysis.

3.2.3.5 Experimental settings
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Figure 29. Dimensions of experimental settings involved in SCT data analysis.
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Sample isolation, fixation, storage, sorting, processing steps in SCT experiment can affect the gene
expression of measured cells [232].

A typical example is that, SCT data of T cells with methanol fixation [233] has apparently
influenced the classification accuracy of ANN models [65].

It is very important to establish rigorous standard operating procedures (SOPs) and
characterization methods for SCT data, that can avoid the introduction of technical variables in
downstream analysis as much as possible. The data of the same cell type generated by different
experimental procedures may not be comparable and reproducible.

e Storage, temperature, and time

SCT experimental material can be sampled with different conditions (e.g. fresh samples extracted
from donor, or frozen-thawed samples received from sample library/biobanks).

Processing cell samples immediately after collection or within 24 hours [234] is the expected way
to obtain satisfied gene expression data. An over high temperature can affect the vitality and
functional activity of PBMC [235].

Due to the complexity of blood sample collection and the lack of samples, it is difficult to obtain
fresh blood samples and process them in time. Low-temperature storage after collection has
become one of the potentially acceptable solutions.

Transport temperature [236], storage temperature [50, 52, 237] and storage time can greatly affect
the gene expression pattern of cells [232, 234]. Different storage temperatures can activate or
inhibit the expression of certain genes [50].

Long-term low-temperature storage cannot prevent the degradation of RNA in frozen or
refrigerated samples. Long-term low-temperature storage can lead to a decrease in cell viability
and a decrease in the number of living cells [238], at the same time, the composition and function
of cells can be changed [238].

At present, the preservation [238], thawing, and RNA extraction methods [239] of frozen blood
samples are constantly being optimized.
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e Cell sorting

Markedly, due to the advancement and particularity of single cell technology, the impact of
different cell sorting techniques on PBMC gene expression also needs to be considered carefully.

The current mainstream cell sorting techniques include fluorescence-activated cell sorting (FACS),
magnetic-activated cell sorting (MACS) positive selection and negative selection.

Control and evaluation of the cell sorting process is very important to preserve biological
characteristics (gene expression level, cell function and differentiation status) of sampled cells
[240, 241]. The influencing factors usually come from the stimulation, perturbation, stress or injury
to cells during cell sorting [242]. Stress response genes may be upregulated by FACS sorting
devices. Compared with magnetic positive selection, the gene expression characteristics between
cells separated by magnetic negative selection and FACS can be more similar [243].

Expansion studies involved in functionally selected cells should be split from normal studies, in
preparing data for SCT analysis [16, 65].

In the five-classification of PBMC, the gene differential expression coming from cell sorting
method has been covered by differential expression coming from cell type. It has not significantly
affected the model learning process and prediction performance [146]. Its impact on classification
of sub cell types remains to be studied further.

e Different SCT techniques and sequencing instruments

Benchmark tests and evaluations [18] of different SCT protocols have shown they have different
abilities to capture biological information in samples, reflecting on read structure and alignment,
sensitivity, and range of multiple peaks (data distribution).

Currently the most widely used SCT technologies are 10x Genomics (10x) and Smart-seq2.

Smart-seq2 technology is a full-length sequencing, plate-based, low-throughput method, while 10x
is a 3'-end or 5'-end sequencing, droplet-based, high-throughput method.

The Smart-seg2 protocol has advantage in higher sensitivity - it can detect a greater number of
transcripts (larger exon read ratio, larger median value in distribution [18]), can detect more low-
abundance rare transcripts, and RNA splicing isoforms [17]. Low-throughput methods are much
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superior than high-throughput methods for research that demands the maximum sensitivity [244].

But it has a higher proportion of mitochondrial genes detection and a data combination that is more
similar to bulk RNA sequencing.

In high-throughput methods, 10x has performed the best [18]. 10x can detect the most UMIs and
genes in each cell, also can detect more long non-coding RNA (IncRNA) in a cell [18]. It can cover
a huge number of cells and have demonstrated good performance in recognizing rare cell types
[17].

However, 10x technology has ‘dropout’ phenomenon, it has higher background noise and random
capture for low-expression RNA. The ‘dropout’ comes from the missing in capturing, reverse
transcription, and sequencing.

Compared with 10x Genomics (v2), 10x Genomics (v3) has higher sensitivity in capturing RNA
molecules. In terms of restoring the quantity of rare cell types, 10x Genomics (v2) has better
capability than 10x Genomics (v3) [18].

For a same cell type, different technology platforms can produce SCT profiles with different data
distribution and data structure characteristics [17, 18]. The technology platform can even affect
the similarity of gene expression profiles more than the cell type itself [59].

Presently, supervised learning SCT cell classification has focused on data generated by 10x
technology [146]. The SCT data generated by other technologies can to be collected and
standardized, to further verify the generalization of the classification model.

The difference in sequencing instrument also has impact on the sequenced data [245]. Studies have
shown that there exist differences in sequence deviation patterns within different sequencing
platforms [246]. In contrast, the Illumina HiSeq series may have more significant preceding-base
bias.

Standardization and quality control of experimental procedures are very important to produce
usable and reproducible SCT data.

It is worth emphasizing that the sequencing depth and read length can have impact on SCT profiles
[247]. For non-UMI-based SCT protocols, genes with short read length are more captured.

Adequate read length and sequencing depth can limit the technical noise [247]. However, too large
sequencing depth can make the measured SCT profiles of different cells more similar.
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SCT protocols based on UMI fragment reading (such as 10x Genomics) is not affected by read
length.

3.2.3.6 Data analysis

~Version1
—Upstream analysis | Version 2
Other

—hgl19 (GRCh37)
-~ Genome build

-~hg38 (GRCh38)
~Sequencing depth
— Normalization
— Data pre-processing — — Doublets and Triplets

V. Data Analytics - Gene counts

- Quality control —— Mitochondrial genes

- Ribosomal genes

— Purity (cell types)

PCA
~Unsupervised
—Clustering

~ANN

- Data processing -{_ Supervised - SVM

—Other

—Hybrid

Figure 30. Dimensions in data analytics of the ontology.

Processing steps in data analysis creates data characteristics in more dimensions.

As for 10x Genomics protocol, upstream analysis to raw sequencing data can be performed with
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software Cell Ranger, that has different versions from v1 to v6.

In the process of aligning the reads with the reference genome, there are different genome versions
to choose from.

In the data pre-processing before downstream analysis, the parameters and the thresholds in the
steps for normalization and quality control — on gene count number, mitochondrial genes,
ribosomal genes, cell type purity, etc. can create various formatted results. That indicates new
dimensions in SCT.

The “cell type purity’ here refers to the data-based, instead of purity assessment in cell sorting, one
example is removing red blood cells (RBC), that recognized by unusual high expression of RBC
genes, from PBMC SCT data.

Different clustering algorithms and annotation references in unsupervised data processing can
produce distinct results in the numbers and categories of cell type.

For supervised classification methods, the training data quality and label reliability can decide the
model behavior.

The downstream cell classification that minimizes the deviation from the real fact requires a strict
and standardized SCT data process, including all the dimensions both in the Experimental Settings
and in the Data Analytics.

3.2.4 Utility, conclusion, and discussion

This ontology uses controlled, structured vocabulary to summarize the general categories and
multiple dimensions in SCT data analysis, with PBMC cell subtypes as an example.

It mainly describes three parts: the first is the name and determination of the cell type, the second
is the multi-dimensional identity of each cell type, and the third is the SCT identification marker
(protein marker and RNA marker) of each cell type.

This ontology represents a multi-dimensional model for SCT study and demonstrates as a reference
for PBMC single cell classification. It has described five main angles in the ontology. The
dimensions described are the basic perspectives of SCT gene expression characterization, they
should be considered carefully before conducting data analysis.

SCT data downstream analyses (in particular, cell classification, cell heterogeneity analysis, etc.)
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involve the discrimination of general categories and dimensions of single cells. Previously, the
type of cell is commonly defined by morphology, function, and type of surface receptors. The
resolution of single cell requires a multi-dimensional definition of the cell type. In practice, it can
be found that the type or identity of a cell is usually determined by the intersection of different
dimensions, that is a very common situation. Changes in one dimension can synergistically
introduce switch in another dimension.

The ontology has been built based on fact and logic. A clear and explicit SCT ontology can help
accelerate the construction of SCT analysis automation [248] and scale down the misclassification
in SCT cell classification [65].

The ontology needs to be continuously updated and maintained. The current multi-dimensional
model is mainly constructed based on domain prior knowledge and practical experience in analysis.
The ontology also requires further suggestion come from experts in the field. Other new
dimensions, such as new knowledge derived from SCT analyzed data, need to be continuously
added to the ontology.

The ontology paradigm represented in this study can also be used in other genomics, proteomics,
metabolomics research fields.
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3.3 Classifier and Performance Assessment Methods

3.3.1 Classifier - ANN

A fully connected feed-forward artificial neural network (ANN) has been deployed for the study.
The ANN system used in this study is illustrated in Figure 31.

The multi-layer perceptron classifier MLPClassifier of scikit-learn [249] python library (functions
from the class “sklearn.neural network.MLPClassifier”, available at www.scikit-learn.org) has
been used for software implementation.

The ANN architecture consists of one input layer, one hidden layer and one output layer (Figure
31 B). The input layer has 30,698 input units corresponding to the 30,698 genes in our standardized
SCT data sets (the rows in the sparse matrices).

The ten hidden nodes have been chosen to use after exploratory analysis that showed the best
balance between the classification accuracy and training speed. The preliminary experiments have
been accomplished with ANN architectures comprising 100, 50, 25, 10, 5, 2, and 1 hidden layer
nodes [16]. It has been concluded that ten hidden nodes provide the best balance between the ANN
model classification accuracy and the speed of training process. For example, for Cycle 1 data (in
the study of the proof of concept, Chapter 6) the accuracy of cross validation of architectures with
1, 2, 5, and 10 hidden layer nodes have been 73.4%, 92.2%, 99.79%, and 99.85% respectively.
Further increases of the number of hidden layer nodes did not improve prediction accuracy.

The output layer is composed of five output units (BC, TC, NK, MC, and DC classes) referring to
the respective five PBMC cell types (B cells, T cells, NK cells, monocytes, and dendritic cells).
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Figure 31. The ANN classification model architecture. The input data (A), ANN architecture (B), and the output data (C) are shown in this figure. The input data are in
the form of sparse matrices where counts are represented by zeroes or positive integers. The architecture is fully connected ANN with 30,698 input units, 10 hidden layer
units, and 5 output units, where output units correspond to classes representing major PBMC cell classes. The activation function ReLU has been used in this model,
other parameters in detail have been documented in text below. The outputs are represented as matrices of output values that are used in training (by calculating errors)

or for prediction of the class of cells of unknown type.
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The activation function of the hidden layer nodes is rectified by linear unit ReLU, f(x) =
max(0, x). The training data splitting minibatches of the size 200 is used to train the ANN model.
The Adam algorithm [250] is used for first-order gradient-based optimization to train the neural
network. The ANN model was set to random seed 42. The initial learning rate in the architecture
is adjusted to 0.001 (107%).

The early stopping method has been performed for the prevention of data overfitting. In each ANN
training process, 10% of the training data is put aside for validation while the remaining 90% of
the data is used for ANN model training. The reaching point of ANN training stopping condition
is set as when the prediction accuracy of the model on validation data sets is not improved for over
ten continuous iterations (i.e. when the classification accuracy assessed by validation failed to
improve for 11 iterations).

The training data is in the form of large matrices (N x 30,698), where N is the total number of
columns — cells in each training step. Gene expression counts of 30,698 genes (Figure 31 A) are
in the rows. The output consists of five real numbers obtained from each of the output units, and
their sum is Vec+V1c+Vink+Vmc+Vpc=1 (Figure 31 C). During training, the weights of the ANN
are adjusted and after each adjustment the error is calculated as the sum of the absolute values of
the difference between the expected value (one for the correct class, and zeroes for incorrect classes)
and the actual score of the output units. The ANN training algorithm adjusts the weights between
the nodes to minimize the overall output error. For classification, the true class of each cell is
unknown, and the predicted class is determined by the maximum value of the five outputs (Figure
31C).

The model has been trained with standardized SCT training sets, while tested with well-annotated
high-quality testing sets. The model has recognized different transcriptional expression patterns
across different cell types, that is learnt from training with well-labeled PBMC SCT data sets.

3.3.2 Assessment of classification performance

Certain assessment metrics have been used to evaluate and validate the performance of the model
on PBMC classification. These are used to certify the understanding of the predictors’ behavior
and performance crosswise different training and testing steps.
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3.3.2.1 Confusion matrix

A five-class multi-dimensional confusion matrix has been used for analysis of classifier

performance, to present a complete picture of classification performance for all individual cell
subtypes.

Confusion matrix records and reappears the classifier’s prediction performance to each individual
single cell in each experiment step. Confusion matrix is a two-dimensional digital matrix in which
the row values on behalf of the cell number of each true class label, while the column values
represents the cell number of prediction results voted and assigned by the ANN model (as shown
in Figure 32). Confusion matrix can detect the trend of ANN classification performance, i.e., it can
identify if the trained model is frequently mislabeling one class as another. The classification result

of each training and testing experiment step has been recorded in each confusion matrix for
following analysis.

Prediction label

TN || FP ™

k)

Q

8

[}

S| FN | TP FN

E-]

% )

‘s |:| True Negative

E |:| True Positive
TN FP TN |:| False Negative

|:| False Positive

TP/ T+: positive samples predicted as positive,
FP/ F+: negative samples predicted as positive,
FN/ F-: positive samples predicted as negative,

TN/ T-: negative samples predicted as negative.

Figure 32. llustrator of a confusion matrix. Confusion matrix is a visual model evaluation method, that
consists of four situations to the result — true negative, true positive, false negative, and false positive. Metrics
(Recall, sensitivity, specificity, precision, F1 score and overall accuracy) used to measure the capability of

ANN classifier are sourced from confusion matrix. The detailed formulas and the relationship among these
metrics have been explained as followed.
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3.3.2.2 Appraisal indicators for comprehensive interpretation

The assessment metrics sensitivity (SE), specificity (SP), precision (PR) and recall (RE) as well
as the harmonic mean, the F1 score have been measured in each confusion matrix to evaluate the
classification performance of each cell class in each step. The formula of Sensitivity/Specificity
(Formula 1), Precision/Recall (Formula 2), F1 measure (Formula 3), and the overall Accuracy
(Formula 4), are following:

SE = i SP = TN 1
" TP+ FN _TN+FP()
PR-———ZEL—- RE————zf—— 2
" TP+ FP 'WT+FN()
- PR X RE
= X —
PR + RE
TP +TN
ACC (4)

“TP+FP+TN+FN

where,

TP — the number of true positives (experimental positives that are predicted as positives),
TN — the number of true negatives (experimental negatives that are predicted as negatives),
FN — the number of false negatives (experimental positives that are predicted as negatives),

FP — the number of false positives (experimental negatives that are predicted as positives).

The PR refers to the prediction result. It means the probability of true positive sample among all
the samples predicted to be positive. PR can be confused with accuracy value, but they are two
different concepts. PR represents the accuracy of the prediction to positive sample results, while
the accuracy rate represents the overall prediction accuracy, including both positive samples and
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negative samples.

The RE refers to the original sample. Its meaning is the probability of being predicted as positive
in truly positive samples. PR and RE are a measure of the trade-offs. It is necessary to combine
the results of the two indicators to find a balance point to maximize the comprehensive
performance of classification.

The SE/SP values and the PR/RE values have been measured for each cell subclass as set in binary
classifier, e.g. for B cells performance these values were measured for the result of B cells and
non-B cells (union of DC, monocytes, NK cells and T cells). For the evaluation of incremental
learning experiment design, the SE and SP value for each cell class in each periodic cycle were
calculated to show the behavior of ANN classifier on each cell type during the procedure.

The SE and RE represent the same entity. Because it has performed multi-class classification,
accuracy measure has been used for the assessment of overall performance, while F1 values are
used for the assessment of performance in the classification of individual cell types.

The overall predictor performance has been assessed with the metric Accuracy (ACC).

The accuracy rate is defined as the percentage of the correctly predicted results in the number of
the total sample (Formula 4). The accuracy value of each training and testing step has been
calculated and recorded to validate the model classification performance on testing data sets.

In the result analysis procedure of the study — incremental learning (Chapter 6), the prediction
result of dendritic cells had been put together into the prediction result of monocytes. The curve
of ACC to testing data set classification results in different cycles (steps) can demonstrate the
performance properties, robustness, and generalization of ANN model during incremental learning
process (Chapter 6, 7).
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CHAPTER 4 STUDY | - PROOF OF CONCEPT

This study has demonstrated the proof of concept of single cell classification done with supervised
machine learning method ANNSs and standardized SCT data of five cell types from PBMC samples.
The work has been organized and published on the 2019 International Conference on
Bioinformatics and Biomedicine (BIBM) [16]. This work was performed jointly with team
colleagues. The metadata organization and training and testing sets preparation was performed by
the author, the model setup was performed by the team colleague.

4.1 Abstract

The 27 human single cell transcriptomics (SCT) data sets have been used to develop an artificial
neural network (ANN) model for classification of Peripheral Blood Mononuclear Cells (PBMC).
We demonstrated that highly accurate models for classification of PBMC subtypes can be
developed by combining multiple independent data sets to form training data sets. A significant
data preparation effort was needed for building predictive models. Using a data set of ~120,000
single cell instances we showed the accuracy of classification of PBMC call of ~ 90%.
Optimization techniques and addition of new high-quality data sets for model training are expected
to improve PBMC subtype classification accuracy.

4.2 Introduction

This work has been demonstrated as the proof of concept that single cell classification can be done
with purely supervised ML method ANN and standardized multi-source SCT data.

We standardized a selection of datasets that represent SCT profiles of major subsets of PBMC and
trained artificial neural network (ANN) to classify five main types of PBMC cell subtypes. Given
the rapid expansion of experimental data, the set of models generated in this study should be able
to accommodate future, currently unknown cell types. Several research questions were pursued in
this study:

Can we train an ANN on a set of data extracted from unrelated SCT studies and accurately classify
PBMC cell subtypes?

How many different data sets are needed for developing accurate classification models?
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Is it possible to generate accurate prediction models without feature selection or dimensionality
reduction?

Is it possible to use tissue-resident immune cell subsets to accurately predict PBMC Cell subtypes
of the same kind?

4.3 Materials and Methods

4.3.1 Data

Data were extracted from three sources, together with the metadata describing the samples and
experimental conditions. We have collected, cleaned, labelled, and standardized 27 SCT data sets
from multiple single cell gene expression studies. The labels corresponded to the PBMC cell
subtypes — B cells, DC, monocytes, NK cells, and T cells. Each data sets only contain cells labeled
as one specific subtype of PBMC. The number of datasets from individual sources are shown in
Table 3. Nine datasets were from the 10x company demonstration data (10xS data set) [10], 13
datasets were from the GEO database (GEOS data set) [251], and five datasets from the Broad
Institute (BroadS data set). The 10x data sets represented raw transcript counts for CD19" B cells,
CD14" monocytes, CD56" NK cells, four sets of CD4™ T cells, and two sets of CD8" T cells. The
GEO datasets were extracted from Sample IDs GSM3258348, GSM2773408, GSM27734009,
GSM3375767, GSM3087629, GSM3209407, GSM3209408, GSM3430548, GSM3544603, and
GSM3478792. The Broad Institute datasets (BroadS) were extracted from the single cell study
SCP345. Most of the data were in the Raw Count format, except for GSM3544603 and SCP345
that were log-transformed. We transformed back these two data sets to the same scale as others
by rounding to the nearest integer the result of antilog transformation: y = 2* — 1, where x is the
previously log-transformed value from the source data and y is the antilog-transformed value
approximating raw transcript counts. Since we had only a limited DC data (142 cells) that were
extracted from PBMC, we also included SCT data of DC extracted from tonsils and tumor ascites
(GSM3162630 and GSM3162632).

The summary report of the data sets is shown in Table 3. The total number of cells we used in this
study is 121,281; the breakdown of cell numbers by PBMC subtype is shown in Table 4.
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Table 3. The number of data sets used in this study.

Number of datasets

Cell Type
10xS | GEOS BroadS Total

B cells 1 1 1 3
Dendritic cells 0 2 1 3
Monocytes I 3 1 5
NK cells 1 1 1 3
T cells 6 6 l 13
Total 9 13 5 27

Table 4. Total number of cells available for this study.

Total number of cells

Cell Type
10xS GEOS BroadS Total
B cells 10,085 1,760 1,751 13,596
Dendritic cells 0 4,352 142 4,494
Monocytes 2,612 2,519 1,668 6,799
NK cells 8,385 309 1,394 10,088
T cells 64,347 13,613 8,344 86,304
Total 85,429 22,553 13,299 121,281

All data sets were cleaned and standardized. The genes across these data sets were named using
dictionaries from different genomic builds including Genome Reference Consortium Human
Builds 37 and 38 (GRCh37 and GRCh38) and their various patch releases. We mapped these
different versions of the genomic builds to GRCh38 patch release 12 (GRCh38.p12). To make data
sets easily comparable, we preserved the genes that were common across all the genomic builds
represented across our studied data sets. Each standardized data set contains 30,698 genes. The
rows of the data matrix represent genes (features) and the columns represent cells with the
expression values of all identified transcripts. There are 30,698 rows corresponding to each feature
while the number of cells (columns) in each data set range from 142 to >12,000. The BroadS data
contains only 21,814 features. We mapped the values of these features to the standardized data set
(30,698 genes) and set the missing feature values to zero.

We divided the data sets into training and testing sets. The GEOS data was divided into GEOS1
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training set (8 data sets) and the TE1 testing data set (5 data sets). The testing set TEL comprises
a combination of high-quality data sets data sets annotated experimentally. The testing data set
TE2 comprises manually annotated data sets from BroadS. To avoid confusion of terminology
between biology and statistics, we consider term “sample” as biological sample that is represented
by one or more data sets. Individual cell profile is called “single cell instance” or “instance”.

4.3.2 Study design

The study design involves several cycles of training and testing designed to assess the effects of
diversification of training data as well as generalization properties of the trained models. The
specific train-test cycles were:

o Cycle 1: Train ANN using 10xS data + tonsil-resident DC data, test using 2-fold cross
validation (internal cross-validation)

o Cycle 2: Train ANN using 10xS + GEOS data, test using 2-fold cross validation (internal
cross-validation)

o Cycle 3: Train ANN using 10xS + GEOS + BroadS/TE2 (all 27 data sets) data, test using
2-fold cross validation (internal cross-validation)

o Cycle 4: Train ANN using 10xS data + tonsil-resident DC, test using GEOS data set
(independent experimental test set)

o Cycle 5: Train ANN using 10xS + GEOSL data, test using TE1 (independent experimental
test set representing all studied cell subtypes)

o Cycle6: Train ANN using 10xS + GEOSL1 + BroadS/TE2 data, test using TE1 (independent
experimental test set)

o Cycle 7: Train ANN using 10xS + GEOS data, test using BroadS/TE2 (independent expert-
annotated test set)

Cell class in independent experimental data sets is determined by experimental measurement using
fluorescence-activated cell sorting (FACS) instrument. The cells in expert-annotated data sets were
labeled using unsupervised clustering and analysis of features. They annotated cells at the level of
sub-subclasses (seven subclasses of T cells, 2 subclasses of both B cells and monocytes, and a
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single subclass of both DC and NK cells).

We consider expert-annotated data sets to be of very high quality. The order of cycles was
determined arbitrarily, starting from company demonstration data sets, and data sets from GEO
database that had raw transcript counts. After low accuracy of classification was achieved in Cycle
4 an additional data set was extracted from GEO for assessment in cycle 5. The final addition was
an expert-annotated BroadS data set that was alternatively used in Cycles 6 and 7 as described
earlier.

4.4 Results

4.4.1 Training results

The artificial neural network with the smallest training set was trained using more than 42,000
instances - labelled cell data (Cycle 1), while the largest training set had more than 110,000
instances. The training took between 20 and 60 epochs (iterations) before terminating. A typical
learning curve displaying the changes in log-loss and validation score with respect to number of
epochs is shown in Figure 33, indicating smooth convergence. Typical learning showed
convergence at 20-40 cycles and the training terminated after 10 cycles without an increase in
Validation Score (Figure 33).

4.4.2 Internal cross-validation

Two-fold cross-validation was performed on progressively increasing data sets. The smallest set
was 10xS set (Cycle 1 — 85,429 single cell instances), the middle set was 10xS+GEOS (Cycle 2 —
107,982 instances), and the largest set with all data was 10xS+GEOS+BroadS (Cycle 3 — 121,281
instances). The overall internal cross-validation results shoved very high accuracy. Cycle 1 had
99.8%, Cycle 2 had 99.3%, and Cycle 3 had 98.9% correctly classified instances. The overall
Cycle 1 and 2 results (data not shown) were very similar to the Cycle 3 results (Table 5). In Cycle
3, 1.5% of B cells, 2.7% of DC, 2.7% of monocytes, 3.7% of NK cells, and 0.6% of T cells were
misclassified. The highest misclassification rate was for NK cells (3.5% of experimental NK cells
classified as T cells), DC (2% of experimental DC classified as monocytes), and monocytes (1.4%
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of experimental monocytes were classified as DC). These results were corroborated by additional
classification performance metrics shown in Table 6.

Figure 33. Representative ANN learning. The training stopped after 10 cycles of no improvement of

validation score.

1.0 1

0.8 1

0.6 4

0.4+

0.2

0.0

—— Log-Loss

Validation Score

10

15 20 25
Mumber of epochs

30 35 40

Page | 79



Table 5. Cycle 3 confusion matrix.

Predicted| PBMC | PBMC+TO | PBMC | PBMC PBMC SUM
Experimenta BC +TA DC MC NK TC

PBMC BC 13,388 5 47 68 88 13,596
PBMC+TO
“TA DC 1 4,374 88 1 30 4,494
PBMC MC 29 95 6,613 1 61 6,799
PBMC NK 9 3 4 9,719 353 10,088
PBMC TC 55 10 75 343 85,821 86,304
SUM 13,482 4,487 6,827 10,132 86,353 121,281

*BC: B cells; DC: dendritic cells; MC: monocytes: NK: NK cells; TC: T cells; TO:
tonsil resident; TA: tumor-ascites resident; PBMC: peripheral blood mononuclear cells.

Table 6. Cycle 3 assessment metrics.

pBMCBC ~ "oMCITO pBMC MC PBMCNK PBMC TC
F1 0.990 0.976 0.974 0.961 0.994
PR 0.993 0.973 0.975 0.958 0.994
RE/SE 0.987 0.979 0.973 0.964 0.994
sp 0.998 0.999 0.998 0.997 0.986
ACC 0.989

PR: precision; RE: recall; SE: sensitivity; SP: specificity, ACC: accuracy; F1: F1 score

The cross-validation results indicate that the ANN learning is effective when we combine multiple
data sets from different studies even if they are performed by different laboratories. If datasets are
randomly split and a study is represented in both training and test sets, the misclassification rate
for any cell subtype will be lower than 4%.
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4.4.3 Prospective validation

After demonstrating that ANN can accurately classify cell subtypes represented in the training set
(but not identical to the cell instances in the test set), we explored the generalization ability of
trained ANN models. The process included diversification of training data by incremental addition
of data sets.

In Cycle 4, we trained ANN using the 10xS + tonsil resident DC (TRDC) data and used the GEOS
data set for testing. The GEOS data set did not contain TRDC data, but it contained tumor-ascites
resident dendritic cells (TADC). This was done to explore whether PBMC resident DC can be
predicted using DC from other tissues.

The same model that could perform highly accurate predictions using internal cross-validation
(Cycle 1) could not predict previously unseen data sets with satisfactory accuracy. The accuracy
of predictions in Cycle 4 was only 46.1% and none of the cell subtypes showed useful predictions
(Figure 34).
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Figure 34. A comparison of classification performance for cycle 1 and cycle 4.

Cycle 5 involved splitting GEOS data (test set in Cycle 4) into GEOSL1 data set and a smaller TE1
test set. GEOS1 was added to the 10xS to form a new training set, while TE1 was used to test
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predictive performance in Cycle 5. In Cycle 6 we added BroadS data set to training set from Cycle
5 and tested using the same TEL1 test set as in Cycle 5. The results show improvement in overall
accuracy, 52.8% in Cycle 5 and 62% in Cycle 6. Although these were notable overall
improvements (6.7 and 15.9% as compared to Cycle 4), the analysis of Cycle 5 data shows
improvement of classification performance relative to Cycle 4 for T cells, B cells, and NK cells,
whereas the performance declined for DC and monocytes (Figure 34 and Figure 35). The reason
for this change was that majority of tumor-ascite resident DC were predicted as monocytes
reducing accuracy of classification for both data sets. For Cycle 6, we added the BroadS data set
to the training set from Cycle 5. The classification results for TE1 set show further improvement
of predictive performance for B cells, NK cells, and T cells, whereas predictive performance for
DC and monocytes remained low with the majority of tumor-ascite resident DC classified as
monocytes (Figure 35).

The final step of this study involved training of ANN using combined 10xS + GEOS data set and
testing using BroadS data set — Cycle 7. The advantage of this construction is that BroadS data set
is derived from PBMC, including PBMC DC whose frequency is only 1-2% of the total PBMC.
The result showed improvement of predictive accuracy relative to previous cycles, using a test set
that is unseen by the trained ANN.
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Figure 35. A comparison of classification performance for cycle 5 and cycle 6.
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Table 7. Cycle 7 confusion matrix.

PBMC BC 1,624 7 102 2 16 1,751
PBMC DC 0 69 72 0 ] 142
PBMC MC 120 143 1,324 2 79 1,668
PBMC NK 23 11 4 1,110 246 1,394
PBMC TC 55 10 58 464 7,757 8.344
SUM 1,822 240 1,560 1,578 8,099 13,299

Table 8. Cycle 7 assessment metrics.

PBMC

BC TA+TO DC PBMC MC PBMC NK PBMC TC
F1 0.909 0.361 0.82 0.747 0.944
PR 0.891 0.288 0.849 0.703 0.958
RE/SE 0.927 0.486 0.794 0.796 0.93
SP 0.989 0.995 0.972 0.977 0.904
ACC 0.894

The overall accuracy of Cycle 7 predictions is 89.4% (Table 7). In Cycle 7, 7.3% of B cells, 51.4%
of DC, 20.6% of monocytes, 20.4% of NK cells, and 7.0% of T cells were misclassified. The
highest misclassification rate was for DC (50.7% of experimental DC classified as monocytes),
NK cells (17.5% of experimental NK cells classified as T cells), monocytes (8.6% of experimental
monocytes were classified as DC and 7.2% of experimental monocytes classified as B cells), B
cells (5.8% of experimental B cells classified as monocytes), and T cells (5.6% of experimental T
cells classified as NK cells). These results were corroborated by additional classification
performance metrics (Table 8).
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4.5 Conclusions

We performed a cyclical refinement of ANN models by combining data from multiple unrelated
studies into unified training set for prediction of PBMC cell subtypes. We achieved high overall
accuracy of predictions 89.4%. We showed that ANN training using a limited number of related
data sets, generated in the same study, does not generalize well and has low accuracy when tested
with unrelated data sets. It is unclear how many diverse data sets are needed to achieve high
accuracy of trained models. Our data indicate that two distinct B cell data sets (13,596 instances)
produced an ANN model that performed well on an independent data set (F1=0.91, SE=0.93,
SP=0.99). At the same time, two distinct NK data set (10,088 instances) produced an ANN model
that had moderate performance on independent data set (F1=0.75, SE=0.80, SP=0.98). Having 10
or more data sets for each PBMC cell subtype appears to suffice for achieving a very high accuracy
of trained ANN maodels, as seen for prediction of T cells (Table 8).

Furthermore, we have demonstrated that ANN models can be trained for high accuracy and
excellent generalization properties without feature selection or dimensionality reduction. This will
enable fine tuning of future training of ANN models to predict rare cell types without the need to
redefine relevant features.

Our findings indicate that accurate prediction of PBMC-resident DC cannot be achieved by
training using tissue-resident DC and tumor ascites DC. This finding indicates that SCT may be
useful for developing diagnostic tests based on various tissue resident cell subpopulations, because
each of them is likely to have own shared patterns of gene expression.

Finally, we noted that most of misclassifications involved bilateral misclassification of DC and
monocytes and bilateral misclassification of NK cells and T cells. It is known that monocytes can
differentiate into DC [252] making these two cell types a part of the same lineage. NK cells
differentiate from the same precursor as T cells and B cells and may share molecular markers. At
this point we cannot determine the reasons for high number of misclassifications of NK cells and
T cells.

Page | 86



4.6 Discussion

To our knowledge, this is the first study that has applied supervised machine learning to data sets
from multiple unrelated studies to classify cell subtypes. The training set in the final cycle
exceeded 110,000 training instances.

We anticipate a rapid expansion of new studies that will share their data. This will create several
challenges. First, there is a need for more systematic classification of cell subtypes [42] that will
provide a new model of ontologies and cell taxonomies. Second, data sets are becoming larger and
they appear with increasing frequency. We anticipate that GEO repository may have more than
100,000 data sets for 10x single cell transcriptomics as early as the end of 2020. Unfortunately,
individual files are mostly of non-standard format requiring a significant effort in cleaning and
standardizing these data sets. The rapid growth of data will create significant challenges in
gathering, cleaning, standardizing, managing, and exchanging the data.

Our results indicate that accurate SCT classification can be made using ANN prediction models.
Although the major cell subtypes can be determined by a small number of cell surface expression
markers in cell sorting studies, these markers are often not captured in SCT data, and often subsets
of different cell subtypes express overlapping sets of surface markers. We have shown that
supervised machine learning can compensate for both limitations in measurements and biological
patterns overlap. In practice, this allows us to skip the cell sorting step and directly analyze mixed
PBMC samples.

Machine learning methods involve optimization of performance. Increasing the number and
quality of training data sets and generating high-quality test sets is the basic approach. More
advanced methods include feature extraction and dimensionality reduction, optimization of model
architecture and learning algorithms, exploration of multiple machine learning algorithms, and the
use of knowledge-based methods. The availability of large number of standardized SCT data sets
has enabled the application of supervised machine learning methods, paving the way for
development of new SCT-based blood tests.
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CHAPTER 5 STUDY Il - INCREMENTAL LEARNING

Systematically incremental learning experiment design and cyclical validation on SCT PBMC
classification have been deployed for ANN model training and testing in this study. This work has
been organized and published on the 2020 International Conference on Bioinformatics and
Biomedicine (BIBM) [65].

5.1 Abstract

In this study, we obtained and standardized 27 SCT data sets, derived from healthy PBMC samples
using 10x SCT. We used artificial neural networks (ANN) to assess the ability of ANN to classify
main PBMC cell types. Incremental learning by the gradual addition of new data sets to ANN
training improved classification. The overall prediction accuracy of the final step of incremental
learning reached 93% in 4-class classification.

5.2 Introduction

Supervised learning methods, such as artificial neural networks (ANN), can be used for advanced
SCT cell classification with the potential for automation of analysis. Previously we standardized a
selection of PBMC data sets and applied artificial neural networks (ANN) to explore its ability to
classify main cell types of PBMC. We achieved the accuracy of five-class classification of human
peripheral blood mononuclear cells (PBMC) to be approximately 90% [16]. In the current study,
we extended the previous model to a full, incremental learning model to classify 5 main cell types
of PBMC. Three research questions were pursued in this study:

. Can incremental learning (retrain ANN with newly generated data) improve the accuracy
of classification?

. Can this classification system learn by combining data from samples that are subject to
very different sample processing methods?

. How stable is ANN model performance as new independent data sets are added?
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5.3 Materials and Methods

5.3.1 Study design

We deployed incremental learning (data accumulation methodology [253]) for ANN model
training and testing. The design aims to study the data quality effect to single cell classification
performance, as simulating the real-life situation — when new diverse SCT data sets are generated
from different laboratories/hospitals and added into the previously existing training data set. In
each cycle, 2-fold cross validation, external validation with the next upcoming data set, external
validation with a qualified test data set (BroadS1 data sets), have been conducted to evaluate the
trained ANN model. At the end of this cycle, the next upcoming data set is added into the existing
training set and forms a new accumulated training set. In the next cycle, this newly generated
accumulated training set is used to train the ANN model, and the same validation steps are repeated
as the last cycle. In each cycle, the performance assessment is done with determined metrics, as
described in Methodology Chapter, for five cell types of PBMC.

The training data consisted of the 10x Gen data sets [10] and GEO DB data sets [251], derived
from multiple independent studies. The training and testing of ANN consisted of several iterated
cycles where training was done using continuously increasing independent multi-source data sets.
Nine 10x Gen data representing four cell classes (B cells, monocytes, NK cells, and T cells) were
used as the initial training data set (the first cycle, Table 9). Thirteen GEO DB data sets were
ordered based on study publication date and used in cycles 2, 3, and 4 as shown in (Table 9). Since
our training data did not have a dendritic cell set, the ANN predictor was trained as a 4-class
classifier. Overall, our study had 25 training-testing steps distributed over five training cycles.

Each training-testing cycle had three parts: internal cross-validation (2-fold), classification of new
incoming data sets, and external validation. The classification of new data sets was performed
using ANN models trained by all data sets available in the immediate previous cycle. BroadS1
data set was used as a test set for external validation (ICA dataset, singlecell.broadinstitute.org).
We consider it as a suitable testing data set since it was checked and annotated by experts. BroadS1
has a class DC with 142 instances of dendritic cells. Because we did not have DC in the training
sets, we merged DC from BroadS1 into monocyte test set.

The flow chart describing the design of this study is shown in Figure 36. The loop in the middle
of the chart was repeated for each of the 25 steps in our study. The data sets were added to the
training set ordered by the date of their addition to the GEO DB.
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5.3.2 Data

We collected, cleaned, and converted into standard format 27 SCT data sets of PBMC. These data
sets were generated from fresh and frozen blood samples using 10x sequencing technology. Nine
datasets were from 10x Gen; 13 datasets from 5 GEO studies (GSE103544, GSE112845,
GSE116130, GSE116683, and GSE124731). The BroadS1 dataset from study ID SCP345 was
used for the test set. The number of cells used in this study is shown in Table 10. Each individual
data set in this study was in the form of sparse matrix, having 30,698 rows representing human
genes, and up to 11,954 columns representing single cells. In each matrix the number of columns
was identical to the number of cells in each dataset.
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Table 9. The training set and testing set in each cycle of ANN incremental learning experimental design. Step

26 is added to indicate future inclusions of new data sets.

Cycle Step Action Training sets Testing sets Cell type
Cycle0  Step 1 Cross validation 10x dataset 10x dataset
Step 2 Classification 10x dataset MC0001 CDI14+ Monocytes
Step 3 Classification 10x dataset MC0002 CD 14+ Monocytes
Step 4 Classification 10x dataset BroadS1
Cyclel  Step5 Cross validation nTRS170915 nTRS170915
Step 6 Classification nTRS170915 nTCO101 CD8+ cells
Step 7 Classification nTRS170915 BroadS|
Cycle2  Step8 Cross validation nTRS180725 nTRS 180725
Step 9 Classification nTRS180725 BC0201 CDI19+ cells
Step 10 Classification nTRS180725 BroadS1
Cycle3  Step 11 Cross validation nTRS181015 nTRS181015
Step 12 Classification nTRS181015 NKO0301 NK cells
Step 13 Classification nTRS181015 TC0302 CD4+ T cells
Step 14 Classification nTRS181015 TC0303 CDS8+ T cells
Step 15 Classification nTRS181015 TC0304 iNKT (invariant
Natural Killer T cells)
Step 16 Classification nTRSI81015 TCO0305 MAIT (Mucosal-
associated Invariant T
cells)
Step 17 Classification nTRS181015 TC0306 Gamma Delta 1 T cells
Step 18 Classification nTRSI81015 TC0307 Gamma Delta 2 T cells
Step 19 Classification nTRS181015 BroadS|
Cycle4  Step 20 Cross validation nTRS190108 nTRS190108
Step 21 Classification nTRS190108 TC0408 CD4+ T cells
Step 22 Classification nTRS190108 TC0409 CD4+, CCR5+ CD69-
T cells
Step 23 Classification nTRS190108 BroadS1
Cycle5  Step24 Cross validation nTRS 190620 nTRS 190620
Step 25 Classification nTRS190620 BroadS|1
Step 26 Classification nTRS190620 ... ...
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Table 10. Total number of cells for different cell types and data sources implemented in this study.

Cell type/ Total number of cells 10x Gen GEODB BroadS1 Total
B cells 10.085 1,760 1,751 13,596
Dendritic cells 0 0 142 142
Monocytes 2.612 856 1.668 5.136
NK cells 8,385 309 1.394 10,088
T cells 64.347 8.789 8.344 81.480
Total 85,429 11,714 13,299 110,442
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Figure 36. Experimental design with incremental learning for ANN classification of PBMC cell types using

SCT data.
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5.4 Results

ANN classification of 10x SCT data sets from healthy PBMC samples was done using incremental
learning using independent data sets. We analyzed the change of accuracy of incremental learning
in each step on specific cell types. Then, we assessed the overall accuracy at the end of each cycle.
Finally, we assessed the performance of ANN classifier on specific cell types by considering all
performance measures.

5.4.1 Incremental learning

During the incremental learning, the initial ANN was trained by a combined data set composed of
nine 10x Gen data sets (B cells, monocytes, NK cells and six T cell data sets). Thirteen SCT data
sets of healthy PBMC samples from GEO database were adding for incremental learning in order:
M 5>M->T->B>NK->T>T->T->T->T->T—->T-T, where B, M, NK, and T stand for B cells,
monocytes, NK cells, and T cells, respectively. The results (Figure 37) show that the initial ANN
trained on 10x Gen data could predict NK cells with high accuracy and T cells with low accuracy
(50%), while the accuracy of classification of B cells (73%) and monocytes (85%) was
intermediate (Step 4, Figure 37). Adding monocytes to the training data increased the accuracy of
classification for monocytes while accuracy of classification of other cell types decreased slightly
(Step 7, Figure 37). Adding one T cell data set resulted in a notable increase in the accuracy of T
cells (from 47% to 92%), while the accuracy of NK cells decreased (from 96% to 80%) (Step 10,
Figure 37). Adding one NK data sets to training (Step 19, Figure 37), stabilized prediction
accuracies to be close to 90%. Adding multiple T cells stabilized the accuracy of classification of
B cells (90%) and monocytes (99%), and T cells (97%), while it did affect the accuracy of
classification of NK cells. The final accuracy of NK cells reached 73% (Step 25, Figure 37).
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Figure 37. ANN performance on cell type classification of the incremental learning experiment across

different cycle steps.

5.4.2 Overall accuracy

The overall average classification accuracy of B cells, MC+DC, NK cells, and T cells showed
steady improvement as the training set was increasing (Figure 38). The exception was a slight
decline in overall accuracy in step 7. The overall average of all these cell types across all the steps
in incremental learning procedure has grown from 0.62 to 0.93, from step 4 to the final step 25.

We used micro-average method to calculate the average value. Micro-average (total true
prediction/total number) weighs each sample equally whereas macro method weighs each class
equally. In our multi-class classification setup, micro-average is preferable when there is class
imbalance (considering DC class and TC class).
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Figure 38. The overall accuracy of the classification of ANNs during incremental learning across different

cycles. Data sets were added in order following study publication dates, from earliest to the latest.

The ANN model trained incrementally shows a steady improvement of the overall accuracy.
However, we can observe a lack of stability of accurate predictions for specific types of cells.
Adding a data set to training can markedly change predictions. For example, extensive changes
were seen between steps 10 and 19 (Figure 38). Adding a NK data set to training data increased
accuracy of B cell classification from 67% to 97%, and of NK cells classification from 79% to
84%. On the other hand, the accuracy of classification of monocytes declined from 99% to 94%
and of T cells from 92% to 90%. Adding multiple sets of T cells may cause changes in the accuracy
of NK cell classification (steps 23 and 25, Figure 38).

5.4.3 Sensitivity and specificity analysis

The SE/SP analysis tells us about positive prediction rates and negative prediction rates. The
results (Figure 39) show satisfactory predictions for monocytes. Classification of B cells shows
high specificity and sensitivity of ~90%. This means if a vast majority of cells predicted as B cells
are indeed B cells. On the other hand, 10% of actual B cells will be classified as some other cell
type. Another important observation is that we have a notable bilateral misclassification of T cells
and NK cells. We propose that this misclassification involves NK-like T cells [254].
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Figure 39. ANN predication performance on each cell type in the incremental learning experiment.

5.4.4 Final step results

The overall accuracy of the final step predictions reached Acc=93.0% (Table 11). In step 25, 10.6%
of B cells, 0.54% of monocytes, 26.8% of NK cells, and 2.6% of T cells were misclassified. The
highest misclassification rate was for NK cells — 26.5% of experimental NK cells were classified
as T cells. The second highest misclassification was for B cells — 6.3% of experimental B cells
were classified as monocytes, and 2.9% as T cells. 2.4% of experimental T cells were classified as
NK cells.
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Table 11. The confusion matrix of final training and testing cycle (step 25).

—

——__ Predicted
T B cells Monocytes NK cells T cells Sum
Experimental ——
B cells 1,565 111 25 50 1.751
Dendritic_cells 0 142 0 0 142

Monocytes 0 1,659 2 7 1.668
NK cells 1 3 1,021 369 1,394
T cells 10 10 201 8,123 8.344

Sum 1.576 1.925 1.249 8.549 13,299

These results were corroborated by the PR/RE and F1 classification performance metrics (Table
12).

Table 12. The assessment metrics of the final training and testing cycle (step 25).

B cells MC+DC NK cells T cells

Precision 0.993 0.862 0.817 0.950

Recall/Sensitivity 0.894 0.995 0.732 0.974
Specificity 0.999 0.977 0.981 0.914
F1 Score 0.941 0.923 0.773 0.962
Accuracy 0.930

5.5 Conclusions and discussion

Compared to the previous work [16], we used additional data sets and excluded several data sets
that do not represent healthy PBMC. The incremental learning demonstrated the overall accuracy
improvement from 89% to 93%. Gradual but steady improvement of the overall accuracy indicates
that the overall strategy is successful, and future improvements will be achieved by the addition of
new data sets. The addition of new data, however, needs to be done with due care. We observed
that new data sets could cause marked shifts of misclassifications from one class of cells to another.
We observed the bilateral misclassifications within the B cells-monocytes and NK cell-T cell pairs.
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An important observation from our study is that the training data and test data do not represent the
same sample processing steps. Our training data involve more processing steps than the test set,
since training data involve cell sorting by FACS instrument while the test set was annotated by
feature analysis and expert annotation. This indicates that although additional sample processing
steps do change gene expression profiles, the fundamental patterns of gene expression remain
preserved in the cells, thus enabling accurate classification. For bulk sequencing, FACS sorting
has minimal effects on gene expression profiles [241]. However, we found that in SCT gene
expression profiles show large differences between gene expression profiles of unsorted cells and
profiles of cells sorted by FACS [28]. ANN models showed robustness and the ability to capture
key patterns of cell classes irrespective of the sample processing.

There are several limitations of this study that will be addressed in future work. The training data
set, although diverse, is limited. We have only two independent data sets of NK cells, two sets of
B cells, and three sets of monocytes. Additional data sets are needed to capture the diversity of cell
subtypes. We do not have DC in training sets, and these data need to be added. The addition of
new data sets must be done with care to prevent large changes in predictions for specific cell types.
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CHAPTER 6 STUDY Il -INCREMENTAL LEARNING WITH
PURIFIED REFERENCE DATA AND FOUR SUPER SETS
SWAPPING EXTERNAL VALIDATION

The work of this chapter has been organized and documented into journal paper manuscript.

6.1 Abstract

We used 56 purified reference datasets to train ANN incrementally — over seven cycles of training
and testing. The sample processing involved four protocols: separation of PBMC, separation of
PBMC + enrichment (by negative selection), separation of PBMC + fluorescence-activated cell
sorting (FACS), and separation of PBMC + magnetic-activated cell sorting (MACS). The training
data set included between 85 and 110 thousand cells, and the test set had approximately 13
thousand cells. Training and testing were done with various combinations of data sets from four
principal data sources. The overall accuracy of classification on independent data sets reached 5-
class classification accuracy of 94%. Classification accuracy for B cells, monocytes, and T cells
exceeded 95%. Classification accuracy of natural killer (NK) cells was 75% because of the
similarity between NK cells and T cell subsets. The accuracy of dendritic cells (DC) was low due
to very low numbers of DC in the training sets.

The incremental learning ANN model can accurately classify the main types of PBMC. With the
inclusion of more DC and resolving ambiguities between T cell and NK cell gene expression
profiles, we will enable high accuracy supervised ML classification of PBMC. We assembled a
reference data set for healthy PBMC and demonstrated a proof-of-concept for supervised ANN
method in classification of previously unseen SCT data. The classification shows high accuracy,
that is consistent across different studies and sample processing methods.

Artificial Neural Network Single Cell Classification

Standardized SCT data

Figure 40. Graphic abstract for Study I11. This study is a baseline research to investigate the performance of
ANN models with purified reference SCT data.
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In this study, we prepared purified SCT datasets to perform incremental learning. Also, the newly
collected datasets of BroadS2 were added in the cycles, that brought unseen profiles and training
instances for dendritic cell class. In the second part of this study, four data sources swapping
external validation experiments has been performed, to investigate the effect of data generating
protocols to classification performance.

6.2 Introduction

Our earlier work demonstrated the potential of artificial neural networks (ANN) to classify healthy
PBMC cells in blood samples. In the original study, we achieved the accuracy of PBMC
classification (BC, DC, MC, NK, and TC) of 89.4% [16]. The follow-up study was performed
using an improved and expanded data set to perform incremental learning. Several irrelevant data
sets were removed, such as DC from non-blood samples (tonsils and tumor ascites) and T cells
fixed in methanol, and several new data sets were added to the training set. The classification
accuracy improved to 93.0% [65]. The introduction of assemblies of ANNSs with a new voting
function further improved the accuracy of classification to 94.7%, but this required a 100-fold
increase in computational processing time.

The previous two studies have demonstrated that high accuracy can be achieved in the single cell
classification of PBMC cell types. The limitation of these studies is that all testing was performed
using a single independent (of the training) test set that was annotated by experts. In this work, we
used experimentally labeled datasets to test the trained model. In the current work, we have
explored generalization properties of the ANN classification by incremental learning, the effects
of data protocols on classification accuracy, and have assessed the current accuracy of PBMC
classification by ANN. This study is vital for establishing a baseline for comparing healthy samples
with those representing various altered conditions, including gene expression changes in disease.

This study is an extension of our previous studies [16, 65]. The basic ANN classifier is the same
as in previous studies. The data sets used for training and testing are different: some of the data
sets used in [65] were removed and new data sets were added. Subsequent analysis of data sets
used in our previous study indicated that some of the training data represent cells that were
processed to the extent that they do not represent healthy PBMC well. The removed data sets
include those representing non-malignant cells generated from cancer patients (cutaneous T-cell
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lymphoma) pre- and post-therapy (GSM3478792 and GSM3558027) [255], ex vivo activated of T
cells (GSM3430548 and GSM3430549) [256], cells that represented mixtures of monocytes and
dendritic cells (GSM3258345 and GSM3258347) [257], and cells of mixed populations (selected
by designed sorting panel: CD19+ cells (GSM3258348) [257], CD8+ cells (GSM3087628) [49]).
One more high-quality test set, BroadS2, was added to our study (GSE132044, [18]).

Compared to former studies, in this study, we added instances representing dendritic cell class into
training sets, also brought one more independent data source into the models.

The first part of the study design included incremental learning with larger and more diverse data
sets than in our previous studies [16, 65]. The second part of the study involved a comparative
validation where all data from one source were used for performance testing while data from other
sources were used for training.

Incremental learning is endowed with the ability to continuously process the constantly emerging
SCT data, it can retain, integrate, recognize, and extract gene expression pattern of different cell
type from accumulated SCT data and newly absorbed data sets.

With multi-source independent data, data accumulation incremental learning can validate the
model performance on identifying the effective classification patterns from training knowledge.
The accumulation of old knowledge and new knowledge can help the model learn the classification
patterns better, and continuously improve the model's ability to make classification judgments.
The study has demonstrated the joint training method — traditional data accumulation method for
incremental learning. The data accumulation method is to retrain the model on currently all known
data. It is generally regarded as - the upper bound of the performance of incremental learning, with
the best effect among different learning frameworks. But the disadvantage exists that the training
cost is relatively higher.

Cross-validation is added at each training and testing step. The design has discussed how the
publication date, batch effect, sampling protocol, and other influencing factors affect the ANN
model's ability/behavior to classify the five cell types of PBMC. At the same time, the behavior of
ANN classifier on recognizing dendritic cell expression pattern has been discovered.

This study tries to explore four research questions:

« What is the best accuracy of ANN trained using SCRNA-seq data to classify five main classes of
PBMC?

« How does using data from different studies using different levels of sample processing affect the
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accuracy of single cell classification by ANN?

« What is the accuracy of classification when the ANN is trained using samples that have same
processing level but are from different studies?

« What are the effects of technical noise on the accuracy of ANN classification?

6.3 Materials and Methods

6.3.1 Study design

In the first part of this study, we deployed an incremental learning process for ANN model training
and testing as previously described [65]. Five data sets from BroadS1 study were combined to be
used as the test set. The training was performed incrementally — data were added to the training
set following the order of time of data sets acquisition. Seven cycles of training were done until
all training data sets were used. The overall assessment of classification performance was done
after Cycle 7. In the final step, we swapped BroadS1 and BroadS2 data sets and assessed the
classification accuracy with BroadS2 dataset as a test set. The incremental learning process is
illustrated in Figure 41.
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Figure 41. lllustration of the process of incremental learning (training and testing) by adding data sets to the training set and cyclical assessment of classification
accuracy. The cycles of learning were ordered by their publication dates to simulate the situation with real-life data accumulation. In the final step of incremental

learning, BroadS1 and BroadS2 datasets were swapped to observe the reproducibility of ANN results.
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Figure 42. Technical route diagram for the study design in Study I11. As illustrated, the study design includes two parts. The detailed is documented as following.
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Three types of classification tests were performed in each learning cycle (except Cycle 0 and the
Swapping Cycle, that do not have upcoming data sets):

. Internal 2-fold cross validation on the training set to check the internal consistency of the
training data,

. Classification accuracy on newly added data sets (upcoming data) before their inclusion in
the training set, to check to what extent the gene expression patterns of the added data sets are
already represented in the training set,

. Classification accuracy of the training set after inclusion of the added data sets using
standard independent test set (BroadS1).

The second part of this study involved a comparative analysis of PBMC classification of different
training and testing sets. We performed a comparative analysis of the classification of PBMC using
four parallel classification models using data sets from our sources:

. Training set: {10x U GEO U BroadS2}, testing set: {BroadS1}
. Training set: {10x U GEO U BroadS1}, testing set: {BroadS2}
. Training set: {GEO U BroadS1 U BroadS2}, testing set: {10x}

. Training set: {10x U BroadS1 U BroadS2}, testing set: {GEO}

The comparative analysis involved the assessment of classification accuracy and the interpretation
of results using the statistical properties of the data sets. A schematic diagram of the detailed
overall experimental design is shown as Figure 42.

The model training and testing steps were performed as illustrated. The voting results of the trained
neural networks were collected and analyzed of each step, in study part | and part Il (in Figure 42).
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6.3.2 Data

We selected 56 purified reference datasets that represent PBMC from healthy blood samples.
These data sets were collected from the NCBI GEO database (www.ncbi.nlm.nih.gov/geo), 10x
Genomics demonstration data [10], and Broad |Institute Single Cell Portal
(singlecell.broadinstitute.org/single_cell). All data sets were processed into our standardized
format that has 30,698 features (genes). Most analyses were done using raw data values of
standardized features, as provided by the source. Additional validation step was performed with
cells from BroadS2 that were subject to quality control: cells that had less than 300 positive
features, or less than 670 total counts were excluded, and the results were compared to the results
obtained from predictions that used raw data only. 10x demonstration data were generated using
standardized 10x scRNA-seq experimental protocol, including validated upstream data analysis
[10]. We consider these data sets as reference for PBMC cells processed by PBMC isolation,
enrichment (purification), freezing, thawing, and 10x processing.

Eleven data sets were extracted from the GEO database including GSM2773408, GSM2773409,
GSM3544603 (seven datasets in this GSM), GSM3209407, and GSM3209408 [209, 258, 259].
These data sets were generated from PBMC samples extracted from fresh whole blood of healthy
donors. These 11 data sets were produced using 10x protocol after PBMC isolation followed by
cell sorting by FACS (fluorescence-activated cell sorting) or MACS (magnetic-activated cell
sorting). We obtained two PBMC data sets from Broad Institute Single Cell Portal. The first data
set is from the study SCP345, and the second data set is from the study SCP424 (also published in
GEO GSE132044 [18]). We named these two data sets BroadS1 and BroadS2, respectively. These
data sets were produced using 10x protocol after PBMC isolation followed by annotation of cell
types by cell labeling algorithms, and manual labeling correction by experts. These data sets
represent a large variety of sample processing, experimental conditions, data analysis approaches,
and study purposes. The original test sets (BroadS1) and the newly added set (BroadS2) have
multiple repeated SCT measurements of samples from the same individuals at different times,
locations, or different chemistry. The same samples processed under the same conditions show
high reproducibility. When different chemistry (v2 vs. v3 with BroadS2) was used in the 10x
protocol, a modest but notable shift in gene expression reproducibility was observed [28]. The
summary information on the distribution of cell types across our data sources and their numbers is
shown in Table 13. The detailed description of data sets with associated metadata can be found in
Supplemental Table 1 (in Appendix 7 Supplemental Materials in Study 111, same as the followings).
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The number of data sources in our study is four, and the number of data sets is 56. PBMC comprises
five main cell types: B cells (BC), dendritic cells (DC), monocytes (MC), natural killer (NK) cells,
and T cells (TC). Cell types in our data set have multiple subtypes: NK cells have one subtype;
each of BC, DC, and MC has two cell subtypes; TC type has three cell subtypes (Figure 43). TC
subtypes are further divided into three sub-subtypes, each for CD8+ T cells and innate-like T cells,
and four sub-subtypes of CD4+ T cells. The actual number of PBMC subtypes at multiple levels
of ontology is likely to be in hundreds [163]. The total number of cells in our study is 115,190.
The test sets have 13,183 cells (BroadS1) or 12,292 cells (BroadS2). The distributions of gene
expression values across cells in each data set were visualized. Plotting module pl.violin from
SCANPY [124] was used for drawing violin plots.

Table 13. Summary description of 56 SCT data sets involved in this study. Cell numbers and the number of
data sets (values within brackets) are shown per cell type. The data sources are described in the main text.
BC — B cells, DC — dendritic cells, MC — monocytes, NK — natural Killer cells, TC — T cells. BroadS1 is the
original test set.

CELL TYPES - CLASSES

SOURCES BC DC mC NK TC TOTAL CELLS
10x Demo 10,085 (1) 0 2,612 (1) 8,385 (1) 64,341 (6) 85,423 (9)
GEO 0 0 856 (2) 309 (1) 3,127 (8) 4,292 (11)
BroadS1 1,660 (1) 142 (1) 1,661 (1) 1,394 (1) 8,326 (1) 13,183 (5)
BroadS2 1,884 (4) 270(7) 2,132 (8) 842 (4) 7,164 (8) 12,292 (31)
TOTAL 13,629 (6) 412 (8) 7,261 (12) 10,930 (7) 82,958 (23) 115,190 (56)
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Figure 43. The ontology of cell types and subtypes in our study. The designation of cell subtypes and sub-sub
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types is provided to show the diversity of cell subtypes used in this study. Because the classification task in
this work focuses on the classification of five main types, the descriptions of cell subtypes and sub-sub types

have been omitted.
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The data are represented as sparse matrices, where the list of cell identifiers (cell ID) occupies the
top row (starts from column 2), and the list of gene names (features) occupies the first column
(starts from row 2). The first matrix position (1,1) is blank, while other matrix values represent
gene expression counts of a given gene in the given cell determined by the matrix position (gene
name, cell ID). Our standardized gene list contains 30,698 genes that are arranged in the same
order. Most of the values in an expression matrix are zero.

6.4 Results

6.4.1 Density distribution

Density distributions of gene expression within data sets showed a great variety (Figure 44). Data
sets from GEO (cells sorted by FACS) show a high median gene expression value (between 2700
and 3300 counts). GEO data sets MC02 and MCO03 showed broad quartile ranges and unimodal
density distributions. GEO data sets TC13 and TC14 showed intermediate quartile ranges with
bimodal distributions. On the other hand, GEO data sets NK02, and TC07-TC12 showed high
median gene expression values (around 3000 counts) and narrow quartile ranges, most with
bimodal density distributions. NKO2 and TCO07 data sets showed unimodal distributions and
narrow quartile ranges. Bimodal distributions indicate the presence of more than one cell
subpopulation.
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Figure 44. Density distributions of gene expression across 56 data sets used in the current study. A) violin
plots of B cells, monocytes, and dendritic cells. B) violin plots of NK cells and T cells. BC01, MC01, NKO01,
and TCO01-TCO06 are from 10x demonstration data; MC02, MC03, NK02, and TC07-TC14 are from GEO
data set; BC02, DC01, MCO04, NKO03, and TC15 are from BroadS1; the remaining data sets BC03-BCO06,
DC02-DC08, MC05-MC12, NK04-NKO07, and TC16-TC23 are from BroadS2. The maximal width of each of

the violin plots was set to one (“1”).
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Data sets from BroadS1, BC02, DC01, MCO04, NKO03, and TC15 showed a high median value of
gene expression and intermediate breadth of quartile ranges. The majority of BroadS1 cell type
data sets showed unimodal distribution, while MC04 showed a bimodal distribution, most likely
representing CD14+ and CD16+ monocyte subtypes. We noted that all BroadS1 data have high
gene expression counts (4880 > median counts > 2815, across BroadS1 data sets), and high number
of positive features (1890 > median features > 790) than BroadS2 where expression counts (1843
> median counts >1163, across BroadS2 data sets) and positive features (1508 > median features
> 611) (Supplemental Table 2). BroadS2 data sets showed wider interquartile ranges than BroadS1
data sets. A large proportion of BroadS2 data sets had shown distinct bimodal distributions (Figure
44 B), indicating that this data may contain distinct subtypes within the indicated cell type.
Bimodal counts of gene expression were also observed in T cell data sets from BroadS2 data set
and in monocytes from BroadS1.

6.4.2 Incremental learning

The average composition of the training sets and the compositions of test sets are shown in Table
14. The composition of the training sets is stable across cycles (Figure 45). Test sets match well
the healthy ranges [260, 261] while DC was severely underrepresented in the training sets,
monocytes were underrepresented, and T cells were overrepresented (Table 14). The DC were
included in the training set only in Cycles 4-7 and their representation in the training set remained
low, approximately 10- to 20-fold lower than their representation in test sets. The training set in
Cycle 0 included only samples that were from 10x demonstration data — processing of these cells
included PBMC extraction, purification by bead-enrichment, freezing, thawing, and 10x
processing. Cycles 1-3 included the addition of cells sorted by FACS or MACS to the 10x data set.
Testing in all cycles was performed using minimally processed (PBMC extraction and freezing)
data set BroadS1. The final round, swapping, involved two steps: a) training data set included 10x,
GEO, and BroadS2 data, and testing was done using BroadS1 and b) training set included 10x,
GEO, and BroadS1 data, and the entire BroadS2 data set was used for testing.

The results of ANN classification are shown in Figure 46. The internal cross-validation showed
reproducibly high accuracy ranging from 99.9% to 99.3%. The accuracy of classification of new
independent data sets was initially low (82.0% in Cycle 0 and 24.3% in Cycle 1, then it rapidly
increased and stabilized between 92% and 99% from Cycle 2. The external validation with
BroadS1 data set showed low accuracy of classification in Cycles 0 and 1, followed by a rapid
increase to 92.2%, followed by a gradual improvement in accuracy that reached 94.6% in Cycle 7.
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The swapping step, where BroadS2 was used as a test set showed the accuracy of internal cross-
validation of 99.2% and external validation accuracy of 91.7%. Taken together, the results indicate
that the overall accuracy of 5-class classification is between 92 and 94%.

Table 14. The cell type compositions of training and testing sets. The proportions of the main PBMC cell
types are shown for the healthy range [260, 261], training sets, and test sets (BroadS1 and BroadS2).

CELL TYPE Range Trsining sts proadst sroadss
B Cells 5-15% 11.44+0.36% 12.59% 15.33%
Dendritic Cells 1-2% 0.09£0.18% 1.08% 2.20%
Monocytes 10-30% 4.44+1.05% 12.60% 17.34%
NK Cells 5-10% 9.6410.21% 10.57% 6.85%
T Cells 40-70% 74.3910.93% 63.16% 58.28%
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Figure 45. Data sets used in training cycles appear in the time sequence as we acquired them. The increase in

the number of cells in training sets was gradual and the proportions of cell types were stable. The new sets of

cells tested in the current cycle were appended to the subsequent training set. For example, monocytes from
GSM2773408 (425 cells) and GSM2773409 (431 cells) were classified using the training set from 10x dataset

(Cycle 0), then were included in the training set for Cycle 1.

Page | 113



THE ACCURACY OF
CLASSIFICATION DURING INCREMENTAL LEARNING

0.993 0.992
1.000 N ° * * Sy +

0.950 N 4
_—\/ 0.972 0.946 0.917

0.900
0.850
0.800
0.750
0.700
0.650
0.600
0.550
0.500
0.450
0.400
0.350
0.300
0.250
0.200
0.150
0.100
0.050
0.000 1 1 1 1 1 1 1 1
Q N ™ © A

& & éeﬁ' (}e?’ & éejo & NG '(i‘o"

) o) o) o) o) ) (o) o)

Overall Accuracy (ACC)

—e— Cross Validation —a— External Validation Added Data

Figure 46. The internal cross-validation showed extremely high accuracy (>99.2% in all cycles). After early
instability (Cycle 1) the classifier starts converging towards the internal cross-validation line. With the
increase of the number of data sets added to the training set, new data files are predicted with steadily
increasing accuracy (added data line). The swapping step showed that the overall accuracy of the current

system is within the range of 92-94%.

6.4.3 External validation

The Cycle 7 and the swapping produced results for EXP 1 and EXP 2 (Figure 46 and Table 15).
The remaining part of our study involved training of the ANN classifier by
GEO+BroadS1+BroadS2 and testing with 10x data (EXP 3, Table 15), and training of the ANN
classifier by 10x+BroadS1+BroadS2 and testing with GEO data (EXP 4, Table 15). Sample
processing alone has a profound effect on gene expression pattern recognition (Table 15). The
prediction model trained on a combination of samples processed by enrichment or FACS/MACS
cell sorting, can be used for high accuracy prediction of minimally processed samples (94.6% and
91.7%, in EXP 1 and 2, Table 15). The model trained with a combination of minimally processed
samples can reach higher accuracy, when testing with samples processed by enrichment (98.3%,
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EXP3, Table 15) or cell sorting (93.5%, EXP 4, Table 15).

Table 15. Classification accuracy for modeling experiments where the testing set derived entirely from one
source, while training sets were combined from other sources. The results also show the F1 measure for

individual cell types. Further details are available in Supplemental Tables 3, 4, and 5.

* SAMPLE CLASSIFICATION
EXP TEST SET PROCESSING ACCURACY F1 VALUES

BC—-0.963, DC—0.880,

1 BroadS1 Separation 94.6% MC-0.983, NK—-0.781,
TC-0.964
BC-0.962, DC—-0.000,

2 BroadS2 Separation 91.7% MC - 0.958, NK - 0.695,
TC—-0.946

e BC—0.969, DC— NA,

3 10x Demo Enrichmené 98.3% MC-0.873, NK—0.954,

TC—-0.995
Separation, BC—NA, DC=NA,

4 GEO FACS or MACS 93.5% MC-0.989, NK—0.700,
TC-0.955
BC-0.953, DC-0.887,

5 BroadS1 Separation 94.5% MC -0.983, NK-0.792,
TC-0.961
BC-0.876, DC—0.000,

6 BroadS2 Separation 88.1% MC-0.971, NK-0.592,
TC-0.927

*EXP 1-4 involve three training sets and one testing set. EXP 5 and 6 involve only BroadS1 and BroadS2 data sets.

The overall performance of classification differs between individual cell types (Table 15, EXP 1
and 2): B cells, monocytes, and T cells show high accuracy with F1 values exceeding 0.95.
Classification performance of NK cells shows lower accuracy with F1 value in the vicinity of 0.75.
Quality control of BroadS2 data set (removal of cells that have total counts lower than 670 or
number of positive features lower than 300) did not affect classification performance (EXP 2a and
EXP 2b, Supplemental Table 5). Classification of dendritic cells was unstable, F1=0.88 in EXP 1
and 0.00 in EXP 2 (Table 15). When two-fold external validation with BroadS1 and BroadS2 data
sets were performed (EXP 5 and 6, respectively), the overall accuracy in EXP 5 was 94.5%, and
in EXP 6 was 88.1%. The inclusion of data sets with high median gene expression (GEO, 2700-
3300 and BroadS1, 2800-4900, Supplemental Table 2) in the training data set results in lower cell
classification accuracy (EXP 2 as compared to EXP 1, and EXP 6 as compared to EXP 5, Table
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15). Consistently, adding BroadS1 to the training set in the swapping step, as compared to Cycle
3, results in lower classification accuracy tested on BroadS2 (92.3-91.7%, EXP 7 and EXP 2,
Supplemental Tables 3, 4, and 5). ANN model has demonstrated well generalization ability when
performing four supersets swapping, it has achieved an average accuracy of 94.5%. Differences in
gene expression brought about by various generation protocols have led to differences in
predictions for individual cell types, such as the prediction of monocytes was 87.3% in EXP 3
(when trained on a combination of minimally processed samples and samples sorted by
FACS/MACS), while in EXP 1, 2, and 3, the monocytes classification accuracy was 98.3%, 95.8%,
and 98.9%, respectively (Table 15).

6.5 Conclusions

Overall, our results demonstrate that supervised ML is a viable option for classifying cell types
from single cell expression data. Patterns that are characteristic of cell types are preserved in single
cell gene expression data even when the single cell samples are processed using different
processing steps. Data sets derived from minimally processed samples (PBMC separation only)
alone can be used to predict cell type from samples that are additionally processed (we achieved a
prediction accuracy of 98.3% for enriched and 93.5% for sorted cells, Table 15). Gene expression
pattern characteristics of a given cell type are preserved in samples that have additional processing
steps and these sets can be used for accurate predictions of minimally processed samples (93%
accuracy on BroadS1 data set was achieved by training set consisting of 10x and GEO data, Figure
46 and Supplemental Tables 3, 4, and 5). That is suitable for broad application. The training data
set — the reference set — is composed of multiple data sets that represent various sample processing
conditions and contain sufficient biological variability. The ANN classifier is robust — the system
can tolerate a proportion of cells that have gene expression lower than quality control thresholds
(in our studies it is 670 for gene expression counts and 300 for positive features).

Two-fold internal cross-validation has shown that once a data set is added to the training set, the
patterns contained in that set will be remembered by the classifier. The classifier generalizes well,
and generalization properties improve with the addition of new data. Once a data set representing
a particular cell type and sample processing protocol is added to the training data set, the ANN
will learn this data type. When data sets where a particular cell type, biological condition, and
experimental processing protocol is well, that is very high (>99.2%, Figure 46).

The overall classification performances in EXP 1 and 2 (Table 15) are satisfactory (94.6% and
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91.7%), also in EXP 3 and 4 (98.3% and 93.5%). Training data used in EXP 1 and EXP 2 are
representative of all three sample processing protocols: i. separation (of PBMC), ii. separation +
enrichment, and iii. separation + cell sorting. Training data used in EXP 3 did exclude separation
+ enrichment protocol data that was used for generating test data in the same experiment. Similarly,
test data in EXP 4 were generated using separation + cell sorting protocol, while the corresponding
training data represented samples produced by other processing protocols. A well-established
classification theory concept in ML is that the training set must be representative of the variability
that is present in real cases. Our results clearly show the effects of the training sets that are not
fully representative. Even the average prediction accuracy of four supersets swapping reaches
94.5%, the effect of enrichment or cell sorting in changing gene expression pattern still appears in
the results - when the training set includes data sets of samples by enrichment or cell sorting (EXP
1 and 2), the prediction performance is decreased, compared to when training set includes
minimally processed samples (EXP 3 and 4). The data sets of minimally processed samples are
found with better representative properties. A problem for SCT is that processing steps such as
enrichment or cell sorting are part of the experimental validation of results that are missing in
minimally processed samples. Our results of EXP 1 and 2 show high accuracy of classification but
cannot be validated directly by experiments. On the other hand, the cell type in EXP 3 and 4 is
known, and the classification accuracy are 98.3% and 93.5% when similar data sets are present in
the training set.

EXP 1-8 (Supplemental Table 5) results indicate that the average gene expression level of data
sets used in training has an influence on classification accuracy, particularly in situations where
the training set is limited. The results indicate that the classification of cell types is better in data
sets that have moderate gene expression levels, with gene counts between 1000 and 2000 per cell.
This observation needs further study to confirm the actual influence of gene counts on
classification accuracy. The analysis of factors that possibly influence prediction accuracy in this
study is presented in the Discussion section.

In summary, we have demonstrated that ANN, a supervised ML method, is capable of high
accuracy classification of five main cell types of healthy PBMC. The accuracy is very high for B
cells, monocytes, and T cells. The classification accuracy of NK cells is lower, because of their
similarity with subsets of T cells (such as NK-like T cells, subsets of CD8+ T cells, and subsets of
innate T cells). This problem was noted in [10], where the authors reported that it was challenging
to separate cytotoxic T cells and NK cells since they have overlapping feature spaces. The accuracy
of the classification of DC is low because of the underrepresentation of DC in the training sets,
and this problem should be overcome by adding additional DC samples.
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6.6 Discussion

This work demonstrates the potential of supervised ML methods to classify single cells from their
gene expression counts. We achieved the 5-class classification accuracy of 94% using 56 data sets
derived from healthy PBMC that were processed by different experimental procedures applied to
PBMC samples. An important finding is that once a dataset representative of a cell type, condition
(in this case healthy PBMC), and a specific sample processing protocol is added to the training set,
similar data sets will be classified with very high accuracy (>99%).

Several factors limit the accuracy of our 5-class classification of PBMC. They include lack of
training data (for DC) and similarity of cell subtypes with cells from other classes (NK cells), and
training data with high median gene counts. Additional factors include undefined classes or
subclasses of cells that are normally found in peripheral blood but are not included in current
training set. Such cells, for example, include CD34+ cells (circulating hematopoietic cells that may
represent between 0.1 and 0.3% of PBMC [261]. Natural killer T (NKT) cells have markers of
both T cells (CD3+) and NK cells (CD56+) and are present in circulating PBMC [262] and can
easily be confused with NK cells. On the other hand, CD8+ NK cells [263] share properties with
cytotoxic T cells. Given the similarity of gene expression profiles, is not surprising that in our
study, 2.6% (218) of T cells from BroadS1 and 8.7% (624) of T cells from BroadS2 were classified
as NK cells. Conversely, 22.9% (319) of NK cells from BroadS1 and 6.7% (56) of NK cells from
BroadS2 were classified as T cells. FACS sorting showed that NK cells from 10x data were 92%
pure, while CD8+ cytotoxic cells were 98% pure. Further investigation, including advanced
clustering methods (such as [264, 265]) and the analysis of misclassifications, will be pursued to
improve PBMC classification.

One challenge for the classification of cells from SCT data arises from the need for experimental
validation of cell types as opposed to expert annotation in minimally processed samples.
Experimental sample processing steps such as bead enrichment (negative selection) produce
homogeneous samples (one cell type or subtype) whose purity can be verified by cell sorting.
Alternatively, cells can be sorted by FACS or MACS procedures that help sort cells, and provide
a measurement of purity, percentage of contaminating cells, and cell properties (e.g. [258]).
Depending on the purpose of single cell study, various sample processing workflows may be
deployed (Figure 47). The difficulty with processed samples is that each processing step induces
changes in gene expression profiles. These profile changes are significant, and they prevent direct
comparison of cells from studies that follow different protocols. Minimally processed samples
have similar gene expression to the native blood cells. The annotation of single cells in this case,
is done by various tools that utilize gene expression markers and are normally inspected and
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corrected manually, introducing annotation bias. Protein markers and gene expression markers do
not match perfectly, the expression of proteins and corresponding mRNA significantly correlate
only in about one-third of targets [266, 267]. Since SCT data sets are sparse and a large proportion
of expressed genes are missing, simple marker-based assignments are insufficient. A selection of
in silico methods is needed in combination with experimental validation for conclusive assignment
of cell types and subtypes.

A' Blood Centri- Ficoll Freezing/ 10x
Collection fugation Isolation Thawing Protocol

B . Blood Centri- Ficoll Freezing/ ;:rr;hf; 10x
Collection fugation Isolation Thawing P =S Protocol
~ Processing
| 1
. . FACS or
C. (for gene expression studies) > MAGS > GEO
. . FACS or
D, (for functional studies) Culture > MACS GEO (not used)
Bead
E. (for gene expression studies) Enrich- 10x Demo
ment

Figure 47. Sample workflows relevant for our study: A. Workflow involving minimally processed samples
(BroadS1, BroadS?2), B. Generic flow for 10x studies, C. Workflow of samples processed by FACS or MACS,
may include multi-step processing (GEO data sets in our study), D. Workflow for functional studies, PBMC
samples are often cultured overnight along with bioactive agents, followed by FACS/MACS, E. Workflow
using negative selection by bead enrichment (used in 10x demonstration study). Workflow D was not used in
this study because culturing with bioactive agents generates cellular responses not relevant for profiling of
PBMC from healthy blood.
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Supervised ML has distinct advantages in comparison with unsupervised clustering when used for
classification tasks. The main advantage is that once reference sets are available, standardized
analysis can be performed across samples that represent various biological conditions. Single cell
technologies applied to PBMC require the ability to analyze minimally processed samples directly
and accurately and reproducibly determine cell types, subtypes, and their status from single cell
expression profiles. To achieve this goal, we need standardized sample processing workflows and
SOP of upstream single cell analysis and supervised ML methods for downstream analysis. Several
sample processing protocols were demonstrated as reproducible and are available (see
support.10xgenomics.com/single-cell-gene-expression/sample-prep). SCT samples can be
analyzed using existing SOPs and they yield highly reproducible results (as demonstrated, for
example, in [18, 28]).

Given that the SCT part is stable, supervised ML requires that training data are representative of
all major sample processing protocols. Supervised ML analysis can classify any future sample
collected, prepared, and analyzed using one of the validated protocols with the expected accuracy.
Our results indicate that the accuracy of classification from validated protocols should be above
98%, which matches cell purity from standard cell sorting methods. New sample processing
protocols can be validated by splitting minimally processed samples, perform supervised method
(such as ANN) classification on one partition of the sample, and performing additional processing
steps to confirm the numbers or proportions of cell types in the second partition. In this study we
have defined a reference data set for 10x PBMC 5-class classification that provides 94% accurate
classification. Our future goal is to refine classification of DC, by increasing the number of DC
data in the training set and resolve ambiguities between NK cells and subsets of T cells (non-
classical T cells and CD8+ T cells) that are misclassified due to their gene expression similarity.
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CHAPTER 7 STUDY IV - VULNERABILITY OF ANN-SCT-
PBMC CLASSIFIERS

In this chapter, we studied the vulnerability of ANN-SCT-PBMC models, using five groups of
non-representative datasets and seventeen rounds of 4-supersets-swapping external validation.

7.1 Abstract

The vulnerability and robustness of the ANN-SCT-PBMC model can be affected by SCT data
representativeness. This study aims to verify the vulnerability and robustness of the ANN-SCT-
PBMC model under the cumulative impact of five confounding factors: ‘empty cells’, ‘other
tissue’, ‘dead cells’, ‘activated cells’, and ‘mixed population’. We used 56 reference datasets and
17 non-representative datasets from four independent data sources for deploying 17 rounds of four
parallel external cross-validation experiments, to study the classification performance of the model.

The overall average accuracy of four parallel external validation (among 10x, GEO, BroadS1, and
BroadS2) increased from 0.660 to 0.945 in 17 train-test rounds when cumulatively eliminating
non-representative datasets. The prediction on BroadS1 and BroadS2 testing sets showed high
accuracy (averagely 0.937 and 0.914 in 17 rounds). The GEO testing set showed an overall upward
trend, it increased with 24.41% of accuracy. The accuracy of the 10x testing set had significant
improvement, from 0.059 in Round 1 to 0.983 in Round 17. The performance for four testing sets
all converged to above 0.917 at the last swapping round. From the F1-score of each class, BC, MC,
and TC prediction was robust, the prediction of NK had lower performance, while the prediction
of rare class DC was unstable and affected largely. From the error rate of each cell subtype,
misclassification mainly occurred in ‘NK’, ‘nonT’, ‘DC’, ‘pDC’, four innate-like T cell subtypes
(“INKT’, ‘MAIT’, ‘Vd1’, and ‘Vd2’), and subtypes of the ‘Empty Cells’ group, the ‘Other Tissue’
group, the ‘Dead Cells’ group, and the ‘Mixed Population’ group.

Our results revealed that when trained with sufficient reference datasets, the ANN-SCT-PBMC
model is robust and can survive a small number of non-representative instances hidden in the
training set. The model can discriminate between and assess the relative representativeness of SCT
data when it has only been trained on high-quality reference datasets. The confounders of different
properties can have varying effects on model vulnerability. The factors that can affect model
vulnerability include - the proportion of reference and non-representative datasets, the proportion
of the classes in training and testing sets, the similarity of gene expression between cell types and
subtypes, and the properties of non-representative datasets, etc.
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7.2 Introduction

The quality and representativeness of data has an impact on the classification performance of
supervised machine learning artificial neural network (ANN) models [268, 269]. In the process of
studying using ANN for PBMC classification based on SCT gene expression profiles (ANN-SCT-
PBMC classification), we found that non-representative data (cells with confounding factors such
as ‘empty cells’, ‘other tissue’, ‘dead cells’, ‘activated cells’, and ‘mixed population’) can be easily
mixed in the data set. It can have implications for accurate classification of PBMC using ANN
models at single-cell resolution. The presence of non-representative data can affect model training
and prediction results.

This study attempts to explore the relationship between the vulnerability and robustness of the
ANN-SCT-PBMC model and the representativeness of the datasets. Meanwhile, this study
designed four parallel external cross-validation experiments to investigate the specific effects of
non-representative components on model performance when they were included in SCT datasets
from different sources.

This study aims to identify:

1. The effect of non-representative data to ANN-SCT-PBMC classification performance:
the model performance in four parallel external cross-validation experiments (4-
supersets-swapping) when progressively eliminating non-representative data of
different properties.

2. The specific factors affecting the vulnerability of the ANN-SCT-PBMC model.

3. With the gradual elimination of non-representative datasets, the robustness of the ANN-
SCT-PBMC model for the five classes (BC, DC, MC, NK, and TC) in the 4-supersets-
swapping experiment.

4. With the gradual elimination of non-representative datasets, the robustness of the ANN-
SCT-PBMC model for different cell subtypes in the 4-supersets-swapping experiment.

7.3 Materials and Methods

This study focuses on the vulnerability testing and robustness validation of ANN model, with the
effect of different groups of non-representative PBMC SCT data sets. This study is an extension
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of previous studies [16, 65]. In this study, the entire data sets have included five groups of non-
representative data sets and one group of 56 clean reference data sets (the same as the healthy
PBMC samples used in incremental learning study [146]).

The fundamental architecture of ANN classifier and the assessment metrics of classification
performance are the same as in earlier research.

The 56 clean data sets [146] have 10x Demo, GEO, BroadS1, and BroadS2, four data sources. The
five groups of non-representative data sets represent groups of “Empty Cells”, “Other Tissue”,
“Dead Cells”, “Activated Cells”, and “Mixed Population”, sourcing from GEO database. These
groups contain common PBMC datasets that are easily confused and misused as reference datasets.
In this study, they were used to test the influence of the representativeness of the training set and
the confounding factors on the classification model.

The study design has involved comparative vulnerability testing using both non-representative
data sets and clean data sets, with the method of four supersets swapping [146].

7.3.1 Study design

We deployed a "from noise to clean" experimental design to validate and examine the vulnerability
and robustness of ANN-SCT-PBMC classification model.

In the first round of the experiment, the datasets for training and testing consist of all clean datasets
and non-representative datasets. All datasets are divided into four super sets according to the data
source, and four parallel ANN training and testing steps (Steps 1-4, Figure 48 B) are performed in
4-super-sets-swapping manner — three super sets are used as training set, while use the fourth super
set to test the trained network, then iteratively swap the next super set as testing set. After one
round of 4-super-sets-swapping training and testing, it collects the classification results to each
testing set, and evaluates model performance of this round. Then enter the second round. In this
round, one non-representative data set is eliminated from all datasets, and the ANN training and
testing of 4-super-sets-swapping is performed again. The same steps are then repeated,
cumulatively removing the next non-representative data set in the next round until the final round
- only clean reference datasets exist. The detailed workflow is shown in Figure 48 A). The order
of decreasing deletion of the non-representative data sets is based on arbitrary order, from the least
representative to the closest to clean data, in the order of eliminating: ‘Empty Cells’ — ‘Other

Tissue” — ‘Dead Cells’ — ‘Activated Cells” — ‘Mixed Population’ (as shown in Figure 49).
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SINGLE START IN ONE TRAIN-TEST SWAPPING ROUND:
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END INTERPRETATION
TRAINING SET TESTING SET

Figure 48. Schematic diagram of study design. A) shows the workflow of model training and testing.
Classification results are collected and analyzed with various trained neural networks and testing sets in
different rounds. B) demonstrates the components of training set and testing set in one round of four-super-
sets-swapping. There are four steps in one round. As an example, in Step 1, the sum of 10xDemo, GEO, and

BroadS2 are used as training set, while BroadS1 is used as testing set to assess the classification accuracy.

In this study, there are in total 17 rounds of 4-super-sets-swapping ANN training and testing. As
an example, ‘Round 1’ (as shown in Figure 49) is the first round of ANN training and testing, in
the first step of it (Step 1, Figure 48 B): 9 reference data sets (of 10x data source); 11 reference
data sets, 50 empty cells, and GSM3162632 [270], GSM3162630 [270], GSM3087629 [49],
GSM3430548 [256], GSM3430549 [256], GSM3478792 [255], GSM3558027 [255],
GSM3258345 [257], GSM3258347 [257], GSM3258346 [257], GSM3258348 [257], and
GSM3087628 [49] (of GEO data source); 31 reference data sets (of BroadS2 data source); these
(as ticked with check marks in Figure 49) are used to train the network. The complete BroadS1
data sets are used as the testing set.

In Step 2 (Figure 48 B), 31 reference data sets (of BroadS2) are used as testing set, others are used
as training set. Similarly, in Step 3 and 4 (Figure 48 B), data sets of 10xDemo and of GEO, are
used to test their corresponding trained networks, respectively. In the following Round 2 to Round
17 (Figure 49), the eliminated data in each round (each column in the figure) is illustrated as blank
(Figure 49). The non-representative data is eliminated one at a time in the rounds.
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The last round (Round 17) includes 4-super-set-swapping train-test on 56 clean reference data sets.
The seventeen rounds of 4-super-sets-swapping train-test experiments were done until all non-
representative data sets were eliminated. The voting results of the trained neural networks were
collected and analyzed of each step in each round.
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SOURCE DATA SETS PROPERTY ROUND-1 ROUND-2 ROUND-3 ROUND-4
10x SRP073767 9-Data-Sets v Vv v v
BroadS1 SCP345 5-Data-Sets - Vv v" v v
Broads2 SCP424/5/6 31-Data-Sets v v v v
GEO GEO 11-Data-Sets Vv v v v
N/A 25-Empty-Cells v -
B/ 2o el Empty Cells \, Y - -
N/A 5-Empty-Cells ' v / v -
N/A S5-Empty-Cells i v
G5M3162632 Tumor_Ascites_DC ) ) v v ol
GSM3162630 Tonsil_DC Other Tissue v v 7 7
G5M3087629 Methanol_SSC_T8 Dead Cells v v
GEO G5M3430548 Donorl_ IL-10-Producing_Foxp3-_T4 v v v W
G5M3430549 Donor2_ IL-10-Producing Foxp3- T4 P P v v'; \"'
GSM3478792 Nonmalignant P5 CD3+CD5intS5Cint_T4 v v /
GSM3558027 Nonmalignant PS5 _CD3+CD5intS5Cint_T4 Afth v v v ¥
G5M3258345 HLA-DR v v
G5M3258347 HLA-DR_Control v v v v
GSM3258346 CD19 Mixed Population v v o
GSM3258348 CD19_Control v v v
GSM3087628 CcD8 Vv v v ¥y

ROUND-5 ROUND-6 ROUND-7 ROUND-8 ROUND-9 ROUND-10 ROUND-11 ROUND-12 ROUND-13 ROUND-14 ROUND-15 ROUND-16 ROUND-17

v v -
o o Ay of ~ _ -
v v v v -
J J A Y, v -/ - -
’ I G 7 V] _ N
o v W v v v v W -
-y i - vy v o -y J
o o v Vv v W

Figure 49.

Ilustration of involved data sets of ANN train-test in Round 1 to 17. In the final round of 4-super-

sets-swapping, solely 56 reference data sets were included. The study design aims on testing the vulnerability

of ANN-SCT-PBMC classification model with confounding factors on data representativeness.
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The results of Round 5, 7, 8, 12, 17 (in Figure 49) represents the model performance when
iteratively cumulatively depleting ‘Empty Cells, ‘Other Tissue’, ‘Dead Cells’, ‘Activated Cells’,
and ‘Mixed Population’ data groups. For these rounds, we also used 1-Sensitivity [271, 272] to
assess the classification error rate of each cell subtype:

TP

1 — Sensitivity = 1 — TP+ FN

where, TP — true positives (class positives classified as positives), FN — false negatives (class
positives but predicted as negatives).

For Round 1 to 17, we performed assessment with confusion matrix, accuracy (ACC), specificity,
sensitivity/RE, PR, and F1-score, same as in previous studies [65, 146]. Specifically, we used
accuracy (ACC) for multi-class overall assessment and used F1-score for individual cell type
assessment (i.e., for BC, DC, MC, NK, and TC).

The comparative analysis within Round 1 to 17 demonstrated the vulnerability and robustness of
ANN classifier with the effect of SCT PBMC data representativeness.

7.3.2 Data

The 56 clean data sets [146] representing PBMC from healthy blood samples were selected. Their
data set group property is described as “clean” in this study.

The other 17 data sets are considered as “non-representative” data sets, they are sourced from GEO
database and form “Empty Cells”, “Other Tissue”, “Dead Cells”, “Activated Cells”, and “Mixed
Population” five non-representative data groups. The datasets were collected and standardized to
30,698 gene list, and converted to five different file formats, in this study, MTX file format was
mainly used for ANN training and testing, considering computational efficiency. The gene
expression of each cell profile used in training and testing is filtered and standardized raw gene
counts (quality control), captured and sequence aligned by 10x SCT protocol.

For “Empty Cells”, we put 10, 5, 2, and 1 empty cells under each class (BC, DC, MC, NK, and
TC) of GEO data, in the Round 1, 2, 3, and 4, individually. The four rounds contained 50, 25, 10,
and 5 empty cells in total, respectively. From the Round 5, ‘Empty Cells’ noise is not included in
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the loop. These round-reduced empty cells were populated with the labels of five classes and
treated as five non-representative datasets. The gene expression of the empty cells is zero,
simulating the effect of “dropout” instances (in real-life single cell sequencing situation) to the
ANN SCT classification model.

Two dendritic cells data sets have formed “Other Tissue” group, one is ‘tumor ascites dendritic
cells (GSM3162632) [270]" and the other is ‘tonsil dendritic cells (GSM3162630) [270]’. They
are tissue-residential dendritic cells samples, the SCT gene expression of those dendritic cells are
different from those of peripheral blood circulating dendritic cells.

The data set GSM3087629 [49] represents “Dead Cells”, the biological sample of it is CD8+ T
cells of healthy frozen PBMCs fixed with methanol reagent. After processing with methanol
fixation, the cells are pictured with specific instantaneous gene expression status, that is different
from the gene expression level of fresh cells or frozen-thawed cells.

GSM3430548 [256], GSM3430549 [256], GSM3478792 [255], and GSM3558027 [255] represent
for “Activated Cells” data group. GSM3430548 and GSM3430549 are 1L-10 producing Foxp3-
CD4+ T cells from healthy blood samples of two donors, they are specifically selected activated
CD4+ T cells for functional study. GSM3478792 and GSM3558027 are nonmalignant P5
CD3+CD5intSSCintCD4+ T cells from fresh blood of a 61-year-old male patient donor, pre- and
post- stage IVA Sézary syndrome (T4N1MOB2) treatment. The CD4+ T cells in those two data
sets are in activated functional status, their gene expression can be different from normal
circulating CD4+ T cells in healthy individual samples.

In “Mixed Population” group, there are five data sets - GSM3258345 [257], GSM3258347 [257],
GSM3258346 [257], GSM3258348 [257], and GSM3087628 [49]. The first four data sets come
from one series GSE116683 [257]. GSM3258345 and GSM3258347 are pair data sets of HLA-
DR+ cells, GSM3258347 is the control group. They are designed to target live enriched HLA-
DR+ cells and deplete other blood lineages (CD235a, CD3, CD4, CD8, CD19, CD56). They are
mixed populations of cells expressed HLA-DR cell surface receptor. Monocytes constitutively
express HLA-DR, those two data sets are labeled under “MC” class. GSM3258346 and
GSM3258348 are pair data sets of CD19+ cells, they are enriched and selected by FACS cell
sorting, that solely targeting live CD19+ cells and depleting other blood lineages (CD235a, CD3,
CD4, CD8, HLA-DR, CD56). They are labeled with “BC” class, as CD19 is typical cell protein
marker of B cells. They are mixture of various cell populations expressed CD19 protein marker,
other than B cells expressed CD19 marker. Those four data sets are sampled from healthy fresh
blood. GSM3087628 is a mixture of cell groups expressed CD8 protein marker, that is sorted by
magnetic beads of MACS cell sorting. It is labeled as the “TC” class, as CDS8 is a regular marker
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of T cells.

The total number of cells in this study is 145,605. Table 16 summarized the data sets and cells
numbers of each class involved in this study. Table 17 shows as a brief metadata for 17 non-
representative reference data sets, it includes information such as series 1D, publication date, cell
type and the labeling class.

Table 16. An overview of the 73 SCT data sets used in this study is as below. Cell numbers and the number of

data sets are shown for each class.

NUMBER OF CELLS AND DATA SETS OF CLASSES

Sources BC DC mC NK TC Total Cells

10x Demo 10,085 (1) 0 2,612 (1) 8,385 (1) 64,347 (6) 85,429 (9)

GEO 1,796 (3) 4,362 (3) 3,311 (4) 319 (2) 24,912 (15) 34,700 (27)

BroadS1 1,660 (1) 142 (1) 1,661 (1) 1,394 (1) 8,326 (1) 13,183 (5)

BroadS2 1,884 (4) 271 (8) 2,132 (8) 842 (4) 7,164 (8) 12,293 (32)

Total 15,425 (9) 4,775(12) | 9,716 (14) | 10,940 (8) | 104,749 (30) | 145,605 (73)

Table 17. The summary of the 17 non-representative data sets.

SOURCE SERIES DATE CELLTYPE CLASS
10-Empty-Cells-in-BC BC
10-Empty-Cells-in-DC DC

N/A N/A 10-Empty-Cells-in-MC MC
10-Empty-Cells-in-NK NK
10-Empty-Cells-in-TC TC

GSM3162632 Tumor Ascites Dendritic Cells

5/30/2018 _ — DC
GSM3162630 Tonsil Dendritic Cells
GSM3087629 | 7/25/2018 CD8+ T Cells (Methanol SSC) TC

GEO GSM3430548 11/7/2018 IL-10 Produc?ng Foxp3-CD4+ T Cells (Donor 1) TC

GSM3430549 IL-10 Producing Foxp3-CD4+ T Cells (Donor 2)
GSM3478792 | 1/31/2019 Nonmalignant P5 CD3+CD5intSSCintCD4+ T Cells
GSM3558027 | 7/25/2019 Nonmalignant P!S(ffl:j:f:::;;i)SCintCD4+TCeIIs TC
GSM3258345 HLA-DR+ Cells .
GSM3258347 HLA-DR+ Cells (Control)

10/15/2018
GSM3258346 CD19+ Cells
GSM3258348 CD19+ Cells (Control) BC
GSM3087628 | 7/25/2018 CD8+ Cells TC
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The Figure 50 shows the cell subtypes and their proportions in four data sources. In clean data sets,
there are 4 subtypes (‘BC’ of 10x, ‘Bn’/ ’Bm’ of BroadS1, ‘BC’ of BroadS2) of B cells, 3 subtypes
(‘DC’ of BroadS1, ‘DC’/ ’pDC’ of BroadS2) of dendritic cells, 6 subtypes (‘M14’ of 10x, ‘M14’
of GEO, ‘M14°’/ °M16’ of BroadS1, ‘M14°/’M16’ of BroadS2) of monocytes, 4 subtypes (‘NK’ of
10x, ‘NK’ of GEO, ‘NK’ of BroadS1, ‘NK’ of BroadS2) of NK cells, and 24 subtypes
(‘CD45RA+CD25-T4naive’/  ‘T4’/  ‘CD45RA+T8naive’/  ‘T8/  ‘CD45RO+T4mem’/
‘CD4+CD25+Treg’ of 10x, ‘T4’/ ‘T8’/ ‘iINKT’/ ‘MAIT’/ ‘Vd1’/ ‘Vd2’/ ‘T4’/ ‘CCR5+CD69-T4’
of GEO, ‘aTreg’/ ‘nonT’/ ‘rTreg’/ ‘T4em’/ ‘T4naive’/ ‘T8em’/ ‘T8naive’/ ‘Tncl’ of BroadS1, and
‘T4°/ ‘T8’ of BroadS2) of T cells.

In 17 experimental data sets (highlighted in yellow in Figure 50), it has other 3 subtypes of
dendritic cells, 7 of T cells, 3 of monocytes, and 3 of B cells. The hierarchical relationship of these
cell subtypes has been drawn in the ontology of PBMC [146].

In the four super sets (10x, GEO, BroadS1, and BroadS2), the frequency of cell numbers in each
class (BC, DC, MC, NK, and TC) are corresponded to the reference values of healthy interval
ranges in PBMC, as described in previous studies [65, 146].
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DATA SOURCE CELL SUBTYPE SUBTYPE NUMBER CLASS FREQUENCY
BC 10085 BC 11.81%
M14 2612 MC 3.06%
NK 8385 NK 9.82%
CD45RA+CD25-T4naive 10479
10x (CLEAN) T4 11213 85423
CD45RA+T8naive 11953 TC 75.32%
T8 10209
CD45RO+T4mem 10224
CD4+CD25+Treg 10263
M14 856 MC 2.47%
NK 309 NK 0.89%
T4 222
T8 310
iNKT 325
VAN 382 TC 9.01%
vd1 284
Vd2 204
T4 965
CCR5+CD69-T4 435
10-Empty-Cells-in-BC 10 BC 0.03%
10-Empty-Cells-in-DC 10 DC 0.03%
10-Empty-Cells-in-MC 10 MC 0.03%
GEO (ALL) 10-Empty-Cells-in-NK 10 NK 0.03% 34700
10-Empty-Cells-in-TC 10 TC 0.03%
TumorﬁA?mtestC 1613 DC 12.50%
Tonsil_DC 2739
Methanol_SSC_T8 4753
Donorl_ IL-10-Producing_Foxp3-_T4 1247
Donor2_IL-10-Producing_Foxp3-_T4 1902 TC 46.44%
Nonmalignant_P5_CD3+CD5intSSCint_T4 4486
Nonmalignant_P5_CD3+CD5intSSCint_T4 Afth 3725
HLA-DR 48 MC 7.05%
HLA-DR_Control 2397
DY 25 BC 5.15%
CD19_Control 1760
CD8 5662 TC 16.32%
Bn 1169 BC 12.59%
Bm 491
DC 142 DC 1.08%
M14 1263 MC 12.60%
M16 398
NK 1394 NK 10.57%
Broads1 (CLEAN) alreg 921 13183
nonT 426
rTreg 1072
Tdem 75 TC 63.16%
T4naive 1134
T8em 1031
T8naive 1336
Tncl 1431
BC 1884 BC 15.33%
DC 202 DC 2.20%
pDC 68
BroadS2 (CLEAN) mig 1:2039 MC 17.34% 12292
NK 842 NK 6.85%
1c 3380 TC 58.28%
T8 3784
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Figure 50. The cell subtypes and proportions in each data source. Subtypes of one same class are highlighted
in similar color hue. The color bar shows the level of abundance in ‘Subtype Number’, ‘Frequency’, and

‘Total Number’.

In four super sets swapping, the testing sets can have 85,423 cells (10x), 34,700 cells (GEO),
13,183 cells (BroadS1) or 12,292 cells (BroadS2). The training sets can have 133,306 cells ({10x
U GEO U BroadS1}), 132,415 cells ({10x U GEO U BroadS2}), 110,898 cells ({10x U BroadS1
U BroadS2}), 60,175 cells ({GEO U BroadS1 U BroadS2}).

7.4 Results

7.4.1 Overall accuracy of four testing sets in each round

The results of overall ANN classification are shown in Figure 51. It shows the prediction accuracy
of the testing set for four parallel train-test steps, within seventeen swapping rounds.
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VULNERABILITY EXPERIMENT RESULTS - OVERALL ACC IN EACH
SWAPPING ROUND
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Figure 51. Accuracy of 4-super-sets-swapping in Round 1 to 17. The predication on BroadS1 and BroadS?2
testing sets showed high accuracy (averagely 0.937 and 0.914 in seventeen rounds). With the
representativeness of data sets increased during seventeen rounds, the model performance on 10x testing set
had significant improvement, from 0.059 in Round 1 to 0.983 in Round 17. The average of the external
validation to four sets showed upward trend on overall accuracy. All four data sets showed a trend of
convergence, eventually reaching over 0.917. In the final round, the average accuracy of the four supersets
reached 0.945.

With cumulatively eliminating non-representative data sets in training set, the classification
accuracy of testing set BroadS1 (the black line in Figure 51) remained above 0.912 across
seventeen rounds. The average prediction accuracy of BroadS1 testing set was 0.937 for PBMC 5-
class classification.

The classification performance on BroadS2 data sets overall remained above 0.866. With the
adjustment and alteration in the training set, the prediction results for the BroadS2 data sets
fluctuated, but the overall classification performance remained relatively high, with an average
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accuracy of 0.914 in total seventeen rounds.

The prediction performance on the 10x Demo testing set has shown a significant improvement
across the seventeen rounds, the overall accuracy has increased from 0.059 in Round 1 to 0.983 in
Round 17 (Figure 51). From Round 1 to 5, by removing ‘Empty Cells’ in the training set, the
prediction performance on 10x improved by 0.069 of accuracy. Considering the large data
proportion of clean data sets in the training set (60,125 reference cells of 60,175 total cells, 99.92%,
as shown in Figure 49 and Figure 50), the ANN model was sensitive and vulnerable to ‘Empty
Cells’ confounding factor hidden in the training data. When testing with 10x data sets, the model
vulnerability was largely affected by representativeness of the training data. During Round 1 to
Round 12, with the groups ‘Empty Cells, ‘Other Tissue’, ‘Dead Cells’, and ‘Activated Cells’
included in the training set, overall accuracy on 10x Demo data sets swinged up and down around
0.119. Different numbers of empty cells and different noise properties of the non-representative
instances in the training set have irregular negative effects on classification accuracy. Since R12,
there was a rapid increase in accuracy, until the R17 accuracy rose to 0.983. From R12 to R17, the
training set gradually removed the data sets of ‘Mixed Population’ group, one at a time.

For GEO testing set, the neural networks in seventeen rounds were trained by the reference data
sets of 10x, BroadS1, and BroadS2 (as shown in Figure 49). The entire classification results on
GEO testing set showed an overall upward trend. From Round 1 to 17, it increased 24.41% of
accuracy, when eliminating confounding data sets in both training and testing sets, within 4-super-
sets swapping experiments. The results of GEO in the seventeen rounds demonstrated the effect
of the components of testing set to model accuracy evaluation in multi-class classification.

The gray line in Figure 51 showed the average accuracy of the 4-super-sets-swapping external
validation results. During Round 1 to Round 17, it demonstrated a steadily increase in overall
accuracy. With the improvement of data representativeness, the overall accuracy rose from 0.660
to 0.945, for four independent super sets train-test swapping experiments.

From Figure 51, the performance for four testing sets all converged to above 0.917 at the last
swapping round. Taken together, when with high data representativeness (solely included clean
reference data sets), the external validation accuracy of four independent sets for ANN-SCT-
PBMC 5-class classification ranged from 0.917 to 0.983, with the average of 0.945.
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7.4.2 F1-score of individual cell types in each round

We measured F1-score value of each cell type (BC, DC, MC, NK, and TC) prediction for seventeen
swapping rounds. Fl-score is the harmonic mean of precision and recall, in our 5-class
classification, it was the main metric used in individual cell type evaluation. The results of F1-
score of each class in each round for four parallel testing have shown as Figures 52-55.

7.4.2.1 Testing with BroadS1

When the training set included data source of 10x, GEO, and BroadS2, testing with BroadS1
(Figure 52), the prediction performance of BC, MC, TC was quite robust, F1-score steadily
remained 0.943 to 0.983, averagely 0.961. The Fl-score of NK class was around 0.773, for
seventeen rounds.

VULNERABILITY EXPERIMENT RESULTS - F1-SCORE OF EACH TYPE -
TEST SOURCE - BROADS1

——  ———— ¢ —F—— - —— . - a—"

0.70

Fl-score

B_cells —=—Dendritic_cells —#—Monocytes —&—NK_cells —8—T_cells

Figure 52. F1-score results of five cell types in 4-super-sets-swapping rounds, with BroadS1 as the testing set.

The prediction performance of BC, MC, NK, and TC were stable, while it of DC was close to zero in Round 6
and 13. The F1-score of BC, MC, TC were kept around 0.961, and it of NK was around 0.773, during

seventeen rounds.

Page | 135



The classification to 142 dendritic cells of BroadS1 was affected by non-representative data sets
in the training set. It was unstable, it was 0.000 of F1-score measure in Round 6 and 0.027 in
Round 13, while remaining 0.693 to 0.880 for other rounds. When gradually removed 30,408 of
non-reference cells out of 132,415 of total cells (22.96%), the model classification performance
was not affected much, when it comes to BC, MC, NK, and TC.

The DC prediction was fragile, while gradually removed 4,362 of non-reference dendritic cells out
of 4,632 total dendritic cells in training set. With a small amount of instances, the model behavior
on DC was quite vulnerable and it was largely affected by the number, proportion, and properties
of the non-reference data of five classes, that were hidden in the training set.

7.4.2.2 Testing with BroadS2

When we used BroadS2 as the testing set and the data sourcing from 10x, GEO, and BroadS1 as
the training set, the prediction results (Figure 53) on each cell type was quite similar to the
experiments when testing with BroadS1 (Figure 52). From Figure 53, the F1-score on BC, MC,
and TC during seventeen rounds stabilized around 0.947, compared to 0.961 when tested with
BroadS1 (Figure 52). The F1-score to NK demonstrated a slightly more up-and-down trend —
averagely 0.681, with the lowest value of 0.536 in Round 10.
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VULNERABILITY EXPERIMENT RESULTS - F1-SCORE OF EACH TYPE -
TEST SOURCE - BROADS2
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Figure 53. F1-score of five cell types in 4-super-sets-swapping rounds, with BroadS2 as the testing set. The

classification performance of BC, MC, and TC class were stable, it remained around 0.947. The F1-score of NK
class was around 0.681, during seventeen swapping rounds. The model prediction of DC was irregular, that

was 0.310 in average.

In Round 10, both the F1-score of NK and TC decreased, the NK F1-score decreased by 0.127,
the TC F1-score decreased by 0.045, compared to Round 9. In Round 11, the F1-score of NK and
TC prediction increased back to 0.734 and 0.952, respectively. The ANN model was sensitive to
changes in the representativeness of the gene expression profiles that comprise the training set.

In Round 10, the training set included 4,486 cells of the data set
‘Nonmalignant P5 CD3+CD5intSSCint T4’ and 3,725 cells of
‘Nonmalignant P5 CD3+CDS5intSSCint_ T4 Afth’ (both of the group ‘Activated Cells’), under
TC class. The existing of the set ‘Nonmalignant P5 CD3+CD5intSSCint T4’ confounded the
model pattern recognition ability on NK-TC binary classification.

This set was a T cell set while sampled from patient fresh blood —a 61-year-old male patient donor,
with stage IVA Sézary syndrome (T4AN1MOB2) being treated. The gene expression of this T cell
set was different from it of normal healthy T cell set, that caused the misclassification between NK
and TC —as in Round 10, 793 more T cells in BroadS2 (that has totally 7,164 T cells) was predicted
as NK cells, compared to Round 9.
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In Round 11, the training set eliminated the data set ‘Nonmalignant P5 CD3+CDS5intSSCint T4’
while kept the data set ‘Nonmalignant P5 CD3+CDS5intSSCint T4 Afth’, that was the pair T cell
set of the patient after therapy. The gene profile of patient T cell set after therapy demonstrated
less influence on model vulnerability. The inclusion of 3,725 after-therapy T cells increased the
classification performance of NK and TC.

The prediction on DC class showed irregular results, the F1-score of DC was 0.310 in average,
during seventeen swapping rounds. Similar to when testing with BroadS1, the DC prediction was
largely affected by the non-representative data of five classes, in the training set.

7.4.2.3 Testing with 10x

The results of 10x testing set showed as Figure 54, that had F1-score results of four classes — BC,
MC, NK, and TC. All four classes showed a trend from a low initial F1-score value (averagely
0.036) to a gradual increase until it converged to a high F1-score value (averagely 0.948). The
results of 10x testing set clearly showed the significant impact of non-representative data sets to
ANN-SCT-PBMC classification model — when gradually purifying and cleaning training set from
non-reference data, the classification ability for each class was improved, and it reached the highest
point when there were only clean reference sets included in the training set (as shown in Figure
54, in Round 17, the F1-score for BC, MC, NK, and TC classification, was 0.969, 0.873, 0.954,
and 0.995, respectively).
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Figure 54. F1-score of four cell types in 4-super-sets-swapping rounds, with 10x as the testing set. The results
showed the impact of groups of non-representative data on ANN-SCT-PBMC classifier, especially when it

accounts for a large proportion of the training set.

As listed in Figure 50, 10x data source contains 85,423 cells, which accounts for a large proportion
in the data composition of four sources (58.67% of the sum of all data sets). The 85,423 cells of
10x set are qualified reference gene profiles. When the 10x set was not included in training set
(Figure 54), ANN-SCT-PBMC model was heavily impacted by the proportion of reference data
sets in training set — that was 49.47% in Round 1, while 100.00% in Round 17. Unlike when the
large reference set 10x was included in the training set and maintained basic robustness for BC,
MC, NK, and TC prediction (Figure 52 and Figure 53), the model was vulnerable in 10x testing
experiments (Figure 54) — that trained with the combination of GEO, BroadS1, and BroadS2.

In Round 16, without the balancing benefits from other classes, when solely the 5662 cells of data
set ‘CD8’ (of ‘Mixed Population’ group) included in non-reference sets, the model was affected
largely — the F1-score for all four classes was decreased, by 0.086, 0.172, 0.015, and 0.007, for
BC, MC, NK, and TC, individually. In Round 16, the model was trained by 13,183 cells of
BroadS1, 12,292 cells of BroadS2, 4,292 reference cells of GEO, and 5662 CD8 cells of GEO.
The ‘CD8’ cells are the mixture of sorted cell populations that expressed CDS8 protein marker. The
CD8 receptor exists on the surface of different cell types within PBMC, including NK cells, innate-
like T cells, cytotoxic CD8+ T cells, dendritic cells [273], and that caused the confusion on
prediction to BC, MC, NK and TC classes.
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7.4.2.4 Testing with GEO

The predictions of the four classes showed a gradual convergence trend from Round 5, and reached
the maximum value in the last round (Round 17, Figure 55).

VULNERABILITY EXPERIMENT RESULTS - F1-SCORE OF EACH TYPE -
TEST SOURCE - GEO
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Figure 55. F1-score of five cell types in 4-super-sets-swapping rounds, with GEO as the testing set. The model
demonstrated pattern recognition ability in distinguishing representative and non-representative data in GEO,
after being jointly trained by 10x, BroadS1, and BroadS2 reference data sets. The F1-score of four classes (BC,
MC, NK, and TC) showed a trend of increasing and convergence within seventeen rounds. In Round 17, the
F1-score of MC, NK, and TC reached 0.989, 0.700, and 0.955.

As shown in Figure 55, the model jointly trained by the 10x, BroadS1, and BroadS2 reference data
sets had certain pattern recognition ability for the representative data and non-representative data
in GEO. The model had good classification performance on representative data in GEO, while had
low performance on non-representative data. In Round 17, after gradually eliminating non-
representative sets of five groups, the F1-score value for MC, NK, and TC was 0.989, 0.700, and
0.955, respectively. Generally, the F1-score of BC and MC kept around 0.702~0.729, the F1-score
of TC remained averagely around 0.922, and it of NK class steadily increased from 0.180 in Round
1t00.700 in Round 17. The prediction F1-score of DC class kept around 0.001, as shown in Figure
55. The 1,613 cells of ‘Tumor_Ascites DC’ data set and the 2,739 cells of ‘Tonsil DC’ data set
were correctly not predicted as DC class, that demonstrated the pattern recognition ability of the

Page | 140



model. The SCT gene expression profiles of ‘“Tumor Ascites DC’ and ‘Tonsil DC’ data sets are
different from those of healthy circulating dendritic cells of PBMC. These two sets are dendritic
cells sampled from tumor ascites and tonsil tissue. Additionally, the calculation result of F1-score
was also affected by the imbalance of multi-class classification.

7.4.3 Subtype classification performance in Round 1, 5, 7, 8, 12, and 17

— group comparison

The classification evaluation to each cell subtype was measured by 1-Sensitivity, that is used as
measurement for error rate. We measured the value of 1-Sensitivity of subtypes in Round 1, 5, 7,
8, 12, and 17, specifically. These are the rounds when each entire group of non-representative sets
was eliminated. For example, in Round 12, the entire group of ‘Activated Cells’ was removed
from 4-super-sets-swapping train-test experiment, as compared to Round 8, that included
‘Activated Cells’ and ‘Mixed Population’ groups. Group comparisons of subtype error rates in
these rounds demonstrated the robustness of the model to different subtypes when faced with
changes in data profiles across groups.

7.4.3.1 Subtype performance of testing set BroadS1

There are 14 cell subtypes in the testing set BroadS1, as shown in Figure 56. Within the group
comparison of Round 1, 5, 7, 8, 12, and 17, the subtype error rate (refers to 1-Sensitivity in the
study) showed an overall downward trend — i.e., the model performance for subtypes generally
improved as the non-representative groups were pulled out. Among them, the subtypes ‘NK’ and
‘nonT” (Figure 56) had high error rate across the six rounds, with an average of 0.220 and 0.464,
respectively.
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Figure 56. The performance of subtype prediction within group comparisons, used BroadSl1 as testing set.
The subtypes ‘NK’ and ‘nonT’ had high error rate, 0.220 and 0.464 in average. ANN model steadily

recognized subtype patterns, with various non-representative sets included in training set, in six rounds.

Even in Round 17, 99.07% of the misclassifications in the NK class was ‘T cells’, which is related
to the biological similarity hidden in the gene expression profiles of NK cells and T cells. As
expected, 'nonT" had a high classification error rate, roughly half of 'nonT' were classified as ‘NK
cells’ and the other half were classified as ‘T cells’, in all six rounds. There was a potential paradox
in original annotation of ‘nonT’ subtype: there were two labelling methods for the BroadS1 dataset,
one of which annotates the 'nonT' cell population as ‘non-T cells’, while the other method identifies
them as ‘T cells’. This group of cells has specific gene expression intermediate between NK cells
and T cells.

Taken together, the results for BroadS1 subtypes indicated that the model can sensitively identify
cell populations with confounding gene expression profiles, to a certain extent. Furthermore, the
model showed robustness across group comparisons in six rounds.

7.4.3.2 Subtype performance of testing set BroadS2

The classification results for the 8 subtypes of BroadS2 varied widely in six rounds. The subtypes
‘DC’ and ‘pDC’ had extremely high error rates (the average over six rounds were 0.823 and 0.971).
The ‘BC’, ‘NK”’, and ‘T8’ exhibited average error rate as 0.071, 0.162, and 0.126, respectively.
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Figure 57. The performance of subtype prediction within group comparisons, taken BroadS2 as testing set.

Compared to Round 1 and Round 5, the error rates of ‘DC’ and ‘pDC’ were significantly decreased
in Round 7, which excluded the ‘Empty Cells’ data group, and ‘Tumor Ascites DC’ and
‘Tonsil DC’ data sets of the ‘Other Tissue’ group. The ‘empty-cells’, ‘non-healthy’, and ‘non-
peripheral’ sets had a greater impact on the prediction of DC than those confounding factors of
other groups. At the same time, due to the small sample size (‘sample’ refers to data samples), the
DC class was more affected by non-representative datasets, showing larger vulnerability in the six
rounds.

As the number of samples of non-representative T cells gradually decreased, the predictions of
subtypes ‘NK’ and ‘T8’ exhibited a “trade-off” trend - the ‘NK’ error rate decreased, while the
“T8’ prediction error rate increased.

In general, when BroadS2 was used as the testing set, the vulnerability of ANN model was affected
by the number of samples within the category, the type of non-representative data, and the
similarity of gene expression profiles.

7.4.3.3 Subtype performance of testing set 10x

With groups of confounding factors included, the 9 subtypes of the 10x testing set had high error
rate in Round 1, 5, 7, 8, and 12. Among these rounds, the average error rate of ‘BC’, ‘NK’, and 6
T cell subtypes was 0.902. While in Round 17, the subtype error rate of the 10x testing set showed
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a sharp drop, with an average of 0.026 for the 9 subtypes. When the 10x dataset (that has a large
sample size) was not included in the training set, the model robustness was significantly affected
by the non-representative data sets (in Round 1, 5, 7, 8, and 12).

SUBTYPE CLASSIFICATION PERFORMANCE - GROUP COMPARISON -
TEST WITH 10X
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Figure 58. The performance of subtype prediction within group comparisons, used 10x as testing set. The
average error rate of 9 subtypes decreased from 0.863 to 0.026, when gradually excluded non-representative
sets from experiments. The variations in the types and proportions of non-representative datasets had a

significant impact on the model's robustness.

The error rate of 6 T cell subtypes (‘CD45RA+CD25-T4naive’, ‘T4’, ‘CD45RA+T8naive’, ‘T8,
‘CD45RO+T4mem’, and ‘CD4+CD25+Treg’, Figure 58) dropped in Round 7 (average value
0.767) and then rose again in Round 8 and Round 12 (average value 0.870 and 0.932, respectively).
The robustness of the model was affected heavily by variations in the types and proportions of
non-representative datasets within the five classes.

7.4.3.4 Subtype performance of testing set GEO

When testing with GEO data source, the five non-representative groups were included in the
testing set. The network was trained with clean reference data sets of 10x, BroadS1, and BroadS2.
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In the testing set, there are 11 subtypes from reference datasets and 13 subtypes from non-
representative datasets.

SUBTYPE CLASSIFICATION PERFORMANCE - GROUP COMPARISON - TEST WITH GEO
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Figure 59. The performance of subtype prediction within group comparison, testing with GEO.

In the reference set subtypes, the misclassification was concentrated in the four innate-like T cell
subtypes - ‘iINKT’, ‘MAIT’, “Vd1’, and ‘Vd2’ (the average of 1-Sensitivity value was 0.209). They
have special gene expressions different from those of conventional T cells.

Among the non-representative subtypes, misclassification occurred mainly in the ‘Empty Cells’
group, the ‘Other Tissue’ group, the ‘Dead Cells’ group, and the ‘Mixed Population” group (Figure
59). For these groups, the values of 1-Sensitivity were 1.000, 1.000, 0.298, and 0.368, individually.

The results indicated that, ANN model trained on high-quality reference datasets have a certain
ability to screen and identify the representativeness of SCT data. The voting results of the neural
network trained with high-quality instances can be used to evaluate the SCT data
representativeness.
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7.5 Conclusions

7.5.1 Overall accuracy

Overall, the results indicated that the non-representativeness of data can negatively affect the
ANN-SCT-PBMC model classification performance. The model was vulnerable and had low
classification accuracy when there were non-representative instances included in the datasets
(overall average accuracy was 0.660 in Round 1, Figure 51). As the non-representative data was
gradually stripped from the datasets, the average accuracy gradually increased, across the four
external cross validation experiments, eventually converging to 0.945 (Figure 51).

When high-quality reference data accounts for more than half of the total training instances (e.g.
10x dataset, accounting for 58.67% of the sum of all datasets), the model is robust against changes
in attributes and proportions of non-representative components hidden in the training set. As from
the results, the five-class classification average accuracy of BroadS1, BroadS2, and GEO testing
set fluctuated between 0.912~0.946, 0.866~0.941, 0.752~0.935, respectively; while the fluctuation
range of 10x testing set was relatively large, between 0.054~0.983 (Figure 51).

7.5.2 F1-score of 5 classes

From the F1-score of each cell type, while being affected by non-representative instances, the class
with small scale (the “rare class™) is more vulnerable (e.g. the DC class had irregular and unstable
predictions, Figure 52 and Figure 53). The performance of model for rare class can be greatly
influenced by the attributes and proportions of the data.

When the training set contains reference data source with large cardinality, the model is robust to
the predictions of BC, MC, NK, and TC classes and remains stable over 17 rounds (Figure 52,
Figure 53, and Figure 55). Compared with BC, MC and TC classes, NK prediction had lower F1-
score results. Due to the similar SCT gene expression profile to TC instances, the prediction
performance of NK was greatly restricted.

When the training set contains large number of non-representative instances, with the continuous
reduction of non-representative instances and the increase of high-quality reference instances, the
F1-score for BC, MC, NK and TC demonstrated a gradual increase and convergence in 17 rounds,
with a final average of 0.948 (Figure 54).
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7.5.3 Performance on subtypes

From the results of the six group comparisons, it can be seen that the classification performance
for subtypes varies with the properties and proportions of different non-representative groups.

In the BroadS1 testing set, subtype misclassification occurred mainly in ‘NK’ and ‘nonT’, that was
traced to the highly confounding gene expressions of NK cells and T cells.

Meanwhile, the ‘DC’ and ‘pDC’ subtypes in BroadS2 consistently had high error rate across 17
train-test rounds, with an average of 0.823 and 0.971, respectively (Figure 57). Compared to other
non-representative data groups, the ‘Empty Cells’ group and the non-representative DC instances
in the ‘Other Tissue’ group had a greater impact on DC class prediction. The error rate for the two
DC subtypes both decreased when these groups were excluded from the training set.

When the large reference set 10x was excluded from the training set, the non-representativeness
of the dataset has a significant effect on model performance. The 9 subtypes of the 10x testing set
had high error rates in Round 1, 5, 7, 8, and 12. In Round 17, the subtype error rate dropped
dramatically, with an average of 0.026 for the 9 subtypes (Figure 58).

From the results of GEO subtypes, it can be clearly seen that the model trained by high-quality
reference datasets has a certain ability to identify and evaluate the representativeness of SCT data.
The model had low error rates for subtypes of the reference datasets and high error rates for non-
representative datasets. Misclassifications focused on four innate-like T cell subtypes ‘INKT”’,
‘MAIT’, ‘Vd1°, and ‘Vd2’; one subtype of ‘Empty Cells’ group; two subtypes of ‘Other Tissue’
group; one subtype of ‘Dead Cells’ group; and five subtypes of ‘Mixed Population’ group. It
indicated that the model was more vulnerable to non-representative instances from ‘Empty Cells’,
‘Other Tissue’, ‘Dead Cells’, and ‘Mixed Population’ groups, than the ‘Activated Cells’ group.

7.5.4 Final overall conclusions

Comprehensively, the ANN-SCT-PBMC model is robust when trained with sufficient reference
instances, it can tolerate a small number of non-representative instances hidden in the training set.
Among the five classes, the prediction performance of the rare class can fluctuate greatly. At the
same time, the model purely trained by high-quality reference sets has the ability to distinguish
and evaluate the relative representativeness of SCT data. Of the five confounding factors, the
‘Empty Cells’, ‘Other Tissue’, ‘Dead Cells’, and ‘Mixed Population’ groups can have greater
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influence than the ‘Activated Cells’ group.

In final conclusion, in this study, the factors that can affect the vulnerability of the ANN-SCT-
PBMC model include

a. the proportion of the reference datasets and the non-representative datasets in the
training set,

b. the proportion of the classes in the training set and the testing set,
c. the similarity of gene expression between cell types and cell subtypes,

d. the properties of the non-representative datasets (the least relevant non-representative
datasets can have a higher impact and the specific impact needs to be confirmed by
further study).

7.6 Discussion

This study demonstrates the effect of decreasing non-representative datasets one by one on the
robustness of the ANN-PBMC-SCT model in four external cross-validation experiments. The
results found that the ratio of reference and non-representative datasets has a large impact on model
performance. As shown in Figure 60, when the reference datasets occupy a large proportion of the
training set, the model can counteract the negative effects of non-representative instances (Figure
60, A and B); while when the non-representative datasets occupy a large proportion of the training
set, the model's vulnerability increases with the number of non-representative instances (Figure 60,
C). More in-depth discussions can include — investigating the number of reference instances
required to train a qualified ANN-SCT-PBMC model, and the number of non-representative
instances it can tolerate.
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Figure 60. The illustration for the effect of the proportion of reference and non-representative datasets on
model performance. The A), B), C), and D) represent the specifics of the training and testing sets in four
external cross-validation experiments in this study when non-representative instances are involved. Different
symbol sizes imply the relative proportions of different data sources (e.g., 10x, BroadS1, BroadS2, GEO
reference set, and GEO non-representative set account for roughly 59%, 9%, 8%, 3%, and 21% of total

instances).

Meanwhile, the classification results on the GEO testing set indicate that the model trained on
sufficient pure reference data has the ability to evaluate the representativeness of SCT data (Figure
60, D). The voting results of the model can be used as a metric for scoring the representativeness
of the dataset [269].
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A limitation of this study is that the experimental design shows only one potential order of
cumulative reduction of the five groups of confounders, and results under other alternative orders
can be done in further studies - our focus of this study is to reveal the trends in the performance
changes brought about by the accumulation of non-representative datasets. The confounders of
different properties have different effects on model vulnerability. The impact of individual
confounders on model performance can be explored in further study.

It is worth noting that the non-representative datasets used in our study only represents part of the
SCT samples, and more instances from other sources are needed to complete further validation
with larger sample size.

Furthermore, in addition to the five confounding factors included in this study (the ‘Empty Cells’,
‘Other Tissue’, ‘Dead Cells’, ‘Activated Cells’, and ‘Mixed Population’ groups), model
performance is also affected by other factors (described in SCT cell ontology), such as

a. the “Maturation status: Immature/Transitional/Mature” in “Cell Properties” dimension;

b. the “Developmental stage: Fetal/Pediatric/Young/Middle-age/Elderly” in “Organism
Properties” dimension;

c. or the “Sample preparation: Isolation/Staining-and-purity-assessment/Cell-sorting” in
“Experimental Settings” dimension; etc.

The effect of these other confounding factors on the ANN-SCT-PBMC model vulnerability needs
to be explored further.
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CHAPTER 8 GENERAL CONCLUSIONS AND FUTURE WORK

8.1 General Conclusions

This research demonstrated and proved the concept that single cell classification can be done with
purely supervised ML method ANN and multi-source independent SCT data. The ANN-SCT-
PBMC classification models have achieved good performance with various datasets generated
from multisource studies. It has demonstrated adequate gene expression profile pattern recognition
and classification ability, also good robustness to SCT datasets with diverse sample conditions.

This research collected and standardized PBMC SCT reference datasets from various data
sources (GEO database, Broad Institute, and 10x Genomics Demonstration), with five main cell
types (B cells, dendritic cells, monocytes, natural Killer (NK) cells, and T cells). Corresponding
metadata has been organized for the qualitative description and statistical properties of SCT
datasets. We designed and described the multi-dimensional single-cell ontology for PBMC SCT
classification. It used over 163 dimensions to category and characterize single cells, based on prior
knowledge in immunology and single cell domain. In the pilot study, we used 27 SCT datasets
of 121,281 single cell instances to achieve the accuracy of classification of PBMC of 89.4% and
proved the concept that using purely supervised machine learning method to classify single cells.
In the initial study of incremental learning, we selected 27 SCT datasets that derived from
healthy PBMC samples. We used methods of cyclical holdout internal cross-validation, external
validation, and validation on added datasets to evaluate SCT classification performance. The
cyclical incremental learning that simulating real-life situation by the gradual addition of new
independent data sets to ANN training improved classification. In the final cycle, the overall
accuracy reached 93.0% for 4-class classification. In the follow-up expanded incremental
learning study, we sorted solely clean representative data and newly collected dataset BroadS2
and explored the effect of different data processing protocols to ANN models. BroadS2 dataset
has brought reference dendritic cells into the training sets. With 56 clean reference datasets and
seven cycles of training and testing, the overall accuracy of 5-class classification reached 94.6%.
Classification accuracy for B cells, monocytes, and T cells exceeded 95%. Classification accuracy
of NK cells kept around 75% caused by the similarity between NK cells and T cell subsets. The
accuracy of dendritic cells was limited due to small proportion of numbers in the training sets. We
also analyzed the impact of different processing methods to gene expression profiles and SCT
classification. The results indicated that datasets derived from minimally processed samples
(PBMC separation only) contributed to SCT gene expression pattern recognition. Building upon
these, we used other 17 non-representative datasets of five groups: ‘empty cells’, ‘other tissue’,
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‘dead cells’, ‘activated cells’, and ‘mixed population’, and 17 rounds of four parallel external
cross-validation (four-supersets-swapping) experiments to explore the vulnerability of ANN-
SCT-PBMC classification models. Our findings showed that the ANN-SCT-PBMC model was
robust and could tolerate non-representative instances hidden in the training set when trained with
sufficient reference datasets. When the model has been trained on purified high-quality reference
data, it can distinguish and evaluate the representativeness of SCT data. The factors that affected
model vulnerability include - the proportion of reference and non-representative datasets, the
proportion of the classes in training and testing sets, the similarity of gene expression between cell
types and subtypes, and the properties of non-representative datasets, etc.

Overall, our research demonstrates that supervised ML ANN is a viable option for single cell
classification. This research gives solution to the current “eleven grand challenges” of SCT data
analysis. It built reference datasets for PBMC SCT classification. It solves the difficulties in single
cell classification using purely supervised ML ANN, that demonstrates generalization and
robustness on various upcoming data sets.

Cell ontology and biological explanation with gene expression profile were used to comprehend
the performance of ANN classifier. We found that other than the ‘cell properties’ (inherent gene
expression of cell types), other dimensions in cell ontology can have significant impact on SCT
classification performance, such as - data generation protocol (cell sorting), tissue source
(peripheral circulating or tissue-residential), cell state (healthy, methanol fixation, or functionally
activated), cell labeling (mixed population).

The results revealed that well-defined, rigorous, and detailed annotation of true classes is the key
issue of ANN SCT classification. The results indicated that adequate reference data, produced
under exacting and stringent SCT protocols, and labeled with a comprehensive and in-depth multi-
dimensional cell ontology are necessary for highly accurate single cell classification, which can
support future predictive health development. The machine-simulated purely supervised single cell
classification models can maximize the potential value of SCT data, it can help achieve future
systematic regular detection of human health, early disease diagnosis and prevention, as well as
development in hematology.
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8.2 Future Work

Our work has limitations as start-up research in the field, further study could be done on:

1. Data: Need more reference data sets. With more SCT data sets of multi-dimensional subtypes
of PBMC, a classification model based on multi-dimensional PBMC cell ontology can be built and
evaluated with metrics.

2. Model: This study proves the concept of using SCT data and ANN to do supervised single cell
classification. Optimized methods with model structure and parameter changing or comparison
with different supervised ML methods can be used to explore the performance of SCT
classification.

3. Metadata: This study focuses on healthy PBMC SCT data training and testing, focusing on
proof-of-concept validation and generating benchmark reference data for data quality control and
disease/function PBMC data pattern recognition. When it comes to potential further functional
study situations, the model can be trained with disease data sets (sample of CLL patients), and
used for disease single cell prediction.

4. Incremental learning: In this study, we deployed the traditional incremental learning — manual
data accumulation. We aimed on observing model performance on independent SCT datasets.
Combined reference data on specific dimension of cell ontology, ensemble learning can be used
in research on model learning efficiency.

5. Class imbalance: In this study, we kept data class distribution as collected, simulating the real
frequency of each cell type in human blood. A study on balanced class classification can be
explored with under-sampling, over-sampling, and advanced-sampling methods.

6. Divide and conquer: Further explore the misclassification of TC and NK, MC and BC, and the
identification and differentiation of intermediate cell subtypes.

7. Model vulnerability: Further explore the effect of other dimensions (in the multi-dimensional
cell ontology) on SCT classification performance, such as ‘maturation status’, ‘developmental
stage’, ‘gender’, etc.
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Appendix 2 Reference SCT Datasets

All datasets from this study are available at http://projects.met-
hilab.org/SCTdata/PBMC001
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Appendix 5 PBMC Dimensions
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Appendix 6 Cell Ontology Construction Metadata (PBMC Section)
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Appendix 7 Supplemental Materials in Study 111

* J.Zhong, M. Lyu, H. Jin, Z. Cao, L. T. Chitkushev, G. Zhang, D. B. Keskin, and V. Brusic,
“Artificial Neural Networks for classification of single cell gene expression,” bioRXiv,
2021.

% Supplemental Table 1. Metadata describing samples as described by the sources.

1. Datasets that are included in incremental learning experiments:
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Seurce Series Date Cell Type Class Sample Condition Donors Separation
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D56+ NK n.w_”_m NK healthy fresh blood
CD8+ CTLs (Cytotoxic T cells)
10x Genomics SRPOT3767 2017/01/16 CD4+CD45R0O+ Memory T cells donar A, all cells n/a
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GSVZTTI408 2018/10/15 CD14-CD 16 Monogytes MC healthy fresh blood donor 2 centrifuge, ficoll
NK cells NK
CD4+T cells
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GEQ GSM3544603 2019/01/08 INKT (invariant Natural r T cells) TC healthy fresh blood two donors (IGPR998, IGPR399) centrifuge, ficoll
MAIT (Mucosal-associated Invariant T cells)
Gamma Delta 1T cells
Gamma Delta 2 T cells
COMIBI07 2019/06/20 CO4r T cells TC | healthy fresh bood one indhidusl centrituge, ficall
GSM3209408 CD4+CCRE+CDES- T cells one individual
R e - T o e
Dendritic cells DC .
Broads1 SCP345 2019/07 Monocytes MC | healthyfrozen bood  |T© 90M0rS ampame;ﬂ%:%wzﬂmmw BRI AT AT nla
B calis ec | | TTTTTTTTTTTTTTTTTTTITITTTTT
CD4+T cells TC
CD14+ Monocytes MG
CD16+ Monocytes
Cytotoxac T cells TC
Dendritic cells DC
NK cells NK
Plasmacytoid Dendritic cells DC
B cells BC
CD4+T cells C
CD14+ Monocytes MG
CD16+ Monocytes
Cytotoxic T cells TC
Dendritic cells DC
. NK cells MK
BroadS2 Mwom_u_hwmmomukn_ wmm__uu.wmmw 2020/04/06 Plasmacytoid Dendritic cells DC healthy frozen blood pbme1. pbme2. different days n/a
B cells BC
CD4+T cells TC
CD14+ Monocytes MG
CD16+ Monocytes
Cytotoxic T cells TC
Dendritic cells DC
NK
B cells BC
CD4+T cells TC
CD14+ Monocytes e
CD16+ Monocytes
Cytotoxic T cells TC
Dendritic cells DC
NK cells NK
Plasmacytoid Dendritic cells DC
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Sorting Strategy Other Purity Extraction & Sequencing Reads Upstream Alignment |Genome Build Reference
~100% pure by FACS

98% pure by FACS

92% pure by FACS

98% pure by FACS

GemCode platform Countess Il Automated Cell Cou| 98% pure by FACS Chromium Single-Cell 3" method (10X Genomics)
95% pure by FACS
98% pure by FACS
99% pure by FACS
99% pure by FACS

bead-enriched from PBMC,
negative selection

mina NextSeq500 10X Cell Ranger vi GRCh37 (hg19) Zheng et al, 2017

MACS stained HLA-DR, CD14, CD16 magnetic beads 93-95% CD14+CD16- [ Chromium Single-Cell 3' Reagent (v2) Kit (10X Genomics) | lllumina HiSeq 2500 | 10X Cell Ranger v1.3.1 | GRCh37 (hg19)| Goudot et al, 2017

FACS various overnight fasting n/a Chromium Single-Cell 3" method (10X Genomics)

lumina NextSeq 500 [ 10X Cell Ranger V2.1.0 | GRCh38 (hg38)| Gutierrez et al, 2019

FACS Aria Il (BD Biosciences) n/a n/a Chromium Single-Cell 3' Reagent (v2) Kit (10X Genomics) | lllumina HiSeq 2500 | 10X Cell Ranger v2.0.1 [ GRCh38 (hg38) [ Woodward et al, 2019

multiple regression and naive

Bayes optimization, cells >=400 gene present n/a n/a Chromium Single-Cell 3' method (10X Genomics) n/a 10X Cell Ranger n/a n/a
correlation
pbmcl_10x_V2_A Chromium Single-Cell 3' Reagent (v2) Kit (10X Genomics)
pbmc1_10x_\v2_B Chromium Single-Cell 3' Reagent (v2) Kit (10X Genomics)

Louvain community detection
algorithm, k-NN, marker n/a n/a
genes

lllumina HiSeq 2500 | 10X Cell Ranger v1.2.0 | GRCh38 (hg38) Ding et al, 2020

pbmcl_10x_v3 Chromium Single-Cell 3' Reagent (v3) Kit (10X Genomics)

pbmc2_10X v2 Chromium Single-Cell 3' Reagent (v2) Kit (10X Genomics)
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2. The non-representative datasets that are included in model vulnerability experiments:

Source Series Date Cell Type Class Sample Condition
GSM3162632 Tumor Ascites Dendritic cells tumor ascites
2018/05/30 - — bc —
GSM3162630 Tonsil Dendritic cells tonsil tissue
GSM3087629 2018/07/25 CD8+ T cells (methanol SSC) TC healthy frozen PBMCs
GSM3430548 IL-10 producing Foxp3-CD4+ T cells
2018/11/07 = TC healthy blood
GSM3430549 IL-10 producing Foxp3-CD4+ T cells
GSM3478792 2019/01/31 nonmalignant P5 CD3+CD5intSSCintCD4+ T cells .
GEO - - - TC patient fresh blood
GSM3558027 2019/07/25| nonmalignant P5 CD3+CD5intSSCintCD4+ T cells (after therapy)
GSM3258345 HLA-DR+ cells MC
GSM3258347 HLA-DR+ cells (control
2018/10/15 ( ) healthy fresh blood
GSM3258346 CD19+ cells BC
GSM3258348 CD19+ cells (control)
GSM3087628 2018/07/25 CD8+ cells TC healthy fresh blood
Donors Separation Sorting Strategy Other
ovarian cancer patients ated as HLA-DR+CD11c+CD1c+CD16-
- p centrifuge, ficoll |bead-enriched, negative sele g cell culture >10 days
healthy patients (both male and female) gated as HLA-DR+CD11c+CD14-
anonymous, healthy donors from NIH Blood Bank LeucoSep tube MACS Dynabeads™ CD8 Positive Isolation Kit methanol fixation
healthy donor 1 . . . . . . .
Biocoll separatiol MACS enriched using MACS CD4 beads (Miltenyi) activated cells
healthy donor 2
61-year-old male patient donor, with stage IVA Sézary § centrifuge, ficoll FACS Aria Il (BD Biosciences) activated cells
healthy donor . .
= designed to target live HLA-DR+ cells and de|
control
centrifuge, ficoll FACS enriched, mixed populations
healthy donor . .
designed to target live CD19+ cells and deple]
control
n/a centrifuge, ficoll MACS Dynabeads ™ CD8+ Isolation Kit magnetic beads

Purity Extraction & Sequencing Reads Upstream Alignment |Genome Build Reference
n/a Chromium Single-Cell 3' Reagent (v2) Kit (10X Genomics) | lllumina HiSeq 2500 | 10X Cell Ranger V2.0.1 | GRCh38 (hg38) [ Tang-Huau et al, 2018
n/a Chromium Single-Cell 3' Reagent (V2) Kit (10X Genomics) | lllumina NextSeq 500| 10X Cell Ranger \2.0.1 | GRCh38 (hg38) Chen et al, 2018
n/a Chromium Single-Cell 3' method (10X Genomics) lllumina HiSeq 4000 10X Cell Ranger GRCh37 (hg19) [ Brockmann et al, 2018
. . . . ) 10X Cell Ranger V2.2 §
n/a Chromium Single-Cell 5' method (10X Genomics) lllumina HiSeq 4000 GRCh38 (hg38) | Borcherding et al, 2019
10X Cell Ranger V2.1
Mumina MiSeq
. ) i HiSeq X Ten
n/a Chromium Single-Cell 3' method (10X Genomics) = = 10X Cell Ranger v1.3.1 | GRCh37 (hg19) Ranu et al, 2019
lllumina MiSeq
HiSeq X Ten
n/a Chromium Single-Cell 3' Reagent (v2) Kit (10X Genomics) | lllumina HiSeq 3000 | 10X Cell Ranger v2.0.1 | GRCh38 (hg38) Chen et al, 2018
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% Supplemental Table 2. The results of basic statistical analysis of the data sets.

LEGEND

Q1,02,Q3,Q4: Quartiles

IQR: InterQuartile Range, Q3-Q1
R=Range=Max-Min

Below QC threshold (670-300)
Above QC threshold (670-300)

1. Data sets that are included in incremental learning experiments:

Source Series Date Cell Type Class Strategy Tag Cell Number (N)
CD19+ B cells BC BCO1 10085
CD14+ Monocytes MC Mco1 2612
CD56+ NK cells NK NKO1 8385
CD8+ CTLs (Cytotoxic T cells) TCOL 10209
10x Genomics SRP073767 2017/01/16 CD4+CD45R0O+ Memory T cells GemCode platform TCO2 10224
CD4+CD25+ Treg cells © TCO3 10263
CD4+CD45RA+CD25- Naive T cells TC04 10479
CD4+ Th cells TCO5 11213
CD8+CD45RA+ Naive CTLs (Cytotoxic T cells) TCO06 11953
GSM2773408 CD14+CD16- Monocytes MC02 425
2018/10/115 MC stained HLA-DR, CD14, CD16
GSM2773409 CD14+CD16- Monocytes MCo3 431
NK cells NK NK02 309
CD4+ T cells TCO7 222
CD8+ T cells TC08 310
GEO GSM3544603 2019/01/08 iNKT (invariant Natural Killer T cells) © various TC09 325
MAIT (Mucosal-associated Invariant T cells) TC10 382
Gamma Delta 1 T cells TC11 284
Gamma Delta 2 T cells TC12 204
GSM3209407 CD4+ T cells TC13 965
2019/06/20 TC Aria Il (BD Biosciences)
GSM3209408 CD4+CCR5+CD69- T cells TC14 435
B cells BC BC02 1660
Dendritic cells DC DCo1 142
BroadS1 SCP345 2019/07 Monocytes MC cells >=400 gene present Mco4 1661
NK cells NK NKO03 1394
T cells TC TC15 8326
B cells BC BCO3 288
CD4+ T cells TC TC16 550
CD14+ Monocytes e MCO05 640
CD16+ Monocytes MC06 102
pbmcl_10x_v2_A
Cytotoxic T cells TC TC17 1174
Dendritic cells DC DCO02 55
NK cells NK NKO4 166
Plasmacytoid Dendritic cells DC DC03 26
B cells BC BCO4 388
CD4+ T cells TC TC18 908
CD14+ Monocytes MC Mco7 379
CD16+ Monocytes mco8 73
pbmc1_10x_v2_B
Cytotoxic T cells TC TC19 954
Dendritic cells DC DCo4 33
NK cells NK NKO5 263
Broads2 GSE132044/ SS((:JPP‘:?ZZ‘:S‘ SCP425 and 2020/04/06 Plasmacytoid Dendritic cells DC DCO5 12
B cells BC BCOS 346
CD4+ T cells TC TC20 960
CD14+ Monocytes MC MCo9 354
CD16+ Monocytes pbmc1_10x_\3 MC10 %8
Cytotoxic T cells TC TC21 962
Dendritic cells DC DC06 38
NK cells NK NKO0B 194
B cells BC BCO6 862
CD4+ T cells TC TC22 962
CD14+ Monocytes MC MC11 436
CD16+ Monocytes pbme2_10% 2 MC12 50
Cytotoxic T cells TC TC23 694
Dendritic cells DC DCo7 76
NK cells NK NKO7 219
Plasmacytoid Dendritic cells bC DCo8 30
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Column_Sum (total number of countsin each cell)
Min | %<670 | Q1 (25%) Q2/ Median (50%) Mean | Q3 (75%) | Max | Range (R) | IQR Standard Deviation (o) Skewness (Sk) Kurtosis (K)
460 3.24 1029 1231 1424 1601 6862 6402 572 663.68 2.07 5.85
567 29.20 653 776 1079 1034 9005 8438 381 966.31 3.86 16.11
445 2.42 1349 1576 1661 1850 6451 6006 501 605.60 1.59 5.29
432 1.05 1344 1620 1671 1901 7632 7200 557 543.90 1.46 5.79
496 0.94 1238 1500 1609 1835 10255 9759 597 601.76 2.50 17.14
383 3.88 1010 1218 1301 1475 7278 6895 465 490.82 2.37 12.86
358 3.90 980 1181 1222 1385 6775 6417 405 395.98 1.91 10.28
416 3.26 1076 1320 1390 1585 8767 8351 509 520.59 2.37 15.95
| 34| o84 | 1220 | us__ | _1505 | 673 |ago1|  aes7__ | a4 46211 146 391
853 0 2252 3303 3641 | 4661 | 11194| 10341  |2409| 181252 | o080 |  oes |
871 0 2174 3282 3574 4530 15009 14138 2355 2005.85 1.62 5.08
2627 0 2965 3107 3113 3263 3644 1017 298 206.52 0.21 -0.46
2191 0 2664 2745 2791 2909 3291 1100 244 191.17 0.37 0.45
2505 0 2698 2803 2865 3045 3369 864 347 210.10 0.55 -0.81
2177 0 2764 2952 2949 3149 3521 1344 385 248.10 -0.34 -0.13
2206 0 2751 2827 2903 3105 3445 1239 353 222.47 0.30 -0.35
2167 0 2817 3033 3018 3198 3541 1374 381 232.98 -0.18 -0.52
2544 0 2773 2944 2966 3159 3522 978 385 224.20 0.12 -1.13
447 9.64 2360 2844 2755 3399 9134 8687 1039 1157.46 -0.03 1.48
_ilz_ __5.22____2_422 _______ 2_79_3 _____ 2_711 __21_9:1__ 91_31____8717 731 955.77 0.53 6.25
2026| 0 2551 2815 3069 | 3355 | 7227 | 5201 | so4 | 77550 | 182 | 32 |
2614 0 4386 4880 4860 5327 7106 4492 941 721.39 -0.02 0.70
2146 0 2664 3040 3295 3945 5691 3545 1281 801.33 0.71 -0.53
2148 0 2969 3210 3276 3489 5884 3736 520 484.70 1.27 3.41
_1_8415_ __ 9 1 _2_8£8 _______ ?2.18 _____ _15!.19_ | 3480 7782 5937 662 560.48 1.19 4.71
626 | 0.69 1033 1190 1192 | 1326 | 1969 | 1343 | =293 | 21798 | o042 | o058 |
724 0 1130 1293 1287 1410 2594 1870 279 226.35 0.91 3.44
366 6.56 962 1171 1181 1405 1972 1606 443 332.75 0.03 -0.30
824 0 1210 1476 1466 1660 2223 1399 449 313.80 0.25 -0.51
672 0 1123 1251 1254 1385 2173 1501 262 198.75 0.20 0.58
946 0 1110 1320 1388 1585 2100 1154 475 331.44 0.59 -0.69
955 0 1307 1400 1409 1522 1938 983 215 185.01 0.19 0.20
913 0 1058 1455 1454 1860 2007 1094 802 405.35 0.06 -1.68
717 0 1057 1168 1189 1278 2052 1335 221 211.11 1.08 2.13
361 0.33 1196 1291 1294 1388 2117 1756 192 181.73 0.20 3.74
270 5.54 1063 1229 1207 1386 2018 1748 323 292.74 -0.49 0.80
946 0 1479 1652 1620 1843 2100 1154 364 307.64 -0.60 -0.30
455 0.10 1150 1258 1263 1355 1971 1516 204 157.39 0.54 1.80
971 0 1054 1198 1296 1301 2040 1069 247 325.02 1.21 0.29
999 0 1206 1310 1343 1439 2127 1128 233 196.08 1.09 2.03
947 0 1079 1567 1456 1713 1970 1023 634 380.56 -0.06 -1.72
720 0 12956 1520 1419 1655 2155 1435 359 324.59 -0.78 -0.45
709 0 937 1599 1436 1790 2238 1529 853 425.39 -0.35 -1.43
798 0 1155 1367 1498 1884 2420 1622 729 411.23 0.55 -0.95
993 0 1203 1300 1339 1445 2321 1328 242 198.89 1.76 6.43
774 0 1610 1737 1726 1866 2249 1475 256 208.88 -0.77 1.98
873 0 1071 1164 1172 1240 1527 654 169 156.84 0.42 0.22
1000 0 1707 1843 1803 1967 2350 1350 260 267.41 -1.03 1.24
631 0.12 1260 1402 1397 1526 2478 1847 266 228.63 0.24 1.30
85 0.73 1272 1432 1403 1542 2302 2217 270 242.42 -0.99 5.23
521 0.92 1237 1533 1503 1723 2385 1864 486 345.50 -0.05 -0.37
979 0 1055 1415 1553 2068 2372 1393 1013 508.80 0.25 -1.68
810 0 1391 1521 1505 1622 2324 1514 231 206.84 -0.07 1.73
903 0 1149 1253 1311 1371 2141 1238 222 268.94 1.38 1.82
942 0 1362 1511 1526 1667 2329 1387 305 227.74 0.49 1.29
926 0 1030 1163 1423 1879 2364 1438 849 522.83 0.88 -0.97
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Column_Positive (number of genes with counts > 0)

Min | %<300 | Q1 (25%) Q2/ Median (50%) Mean [ Q3 (75%) | Max | Range (R) | IQR Standard Deviation (o) Skewness (Sk) Kurtosis (K) Reference
197 | 2.82 417 474 524 574 | 1854 1657 157 178.62 1.87 271
267 | 4.10 332 378 455 461 | 2393| 2126 129 244.58 3.37 12.61
223 | 080 614 701 722 798 |2073| 1850 184 200.08 1.18 3.68
213 | 091 501 567 578 633 |2216| 2003 132 140.12 1.51 7.77
217 | 081 482 552 579 635 | 2677| 2460 153 164.45 2.44 15.23 Zheng et al, 2017
19 | 1.98 463 542 562 625 [2311| 2121 162 165.61 2.04 10.05

188 | 273 421 486 496 550 |2130| 1942 129 122.74 1.60 8.45
204 | 1.94 460 541 558 626 |2435| 2231 166 162.65 1.99 11.53

LMLy 158 1 442 4% [ sa1 | s56  [a3a8] d207 _jan4f 1 mro0 12 | 317

382 o 907 1186 1217 | 1496 | 2715| 2333 589 423.06 0.38 Y R
35| o0 876 1163 1184 | 1425 | 3402| 3087 548 437.55 0.90 1.99 Goudot et al, 2017
57| o 788 864 878 964 | 1975 1418 176 154.83 1.45 7.78
87| o 774 883 870 966 | 1417 930 191 168.05 -0.06 0.46
92| o 853 930 932 1016 | 1360 868 163 153.78 -0.21 0.72
sia| o 807 890 903 985 |1720| 1215 178 176.91 1.19 4.36 Gutierrez et al, 2019
s03| o 849 942 922 1018 | 1484 981 169 156.62 -0.42 1.04
61| o 832 928 922 1015 [ 1563 1102 183 164.87 -0.01 1.56
s0| o 834 919 015 998 |1691| 1101 164 178.36 071 3.55

32 | a87 834 955 899 1057 | 2548| 2516 223 293.06 -0.46 213

Woodward et al, 2019
361 253 | 689 [ ____988 _ [ 960 | 1071 [2548] 2492 1183 | __ _ _ 2 26207 ____|___014_ __[__° 58 __ | o __]

a9 o 697 790 952 986 | 4286 3797 289 490.49 2.99 10.54
695 | o 1661 1890 1875 | 2096 |2986| 2201 435 397.53 017 0.77
490 | o 653 839 938 1170|2351 1861 517 353.18 0.91 013 nia
49 | o 802 902 920 1001 | 2365| 1876 199 194.21 1.85 8.87
a6 | o | 797 | oo7 | o35 | 1020 |4368| 3882 232 240.52 2.86 21.29
230 | 174 582 739 770 049 | 1648| 1418 | 367 | 2 26563 | o046 | o002 | 7
32| o 678 884 878 1056 | 2252| 1870 378 262.97 0.65 1.63

89 | 13.28 410 611 679 013 | 1658 1569 503 360.45 0.64 -0.36
35| 0 731 088 1019 | 1241 |1859| 1504 510 347.32 0.46 -0.62
290 | 0.09 555 775 763 946 | 1850| 1569 391 242.05 035 0.08
593 | o0 749 981 1024 | 1228 |1736| 1143 478 322,59 0.67 -0.50
52| o 757 952 931 1065 | 1631| 1179 308 219.97 0.38 0.32
s91| o 718 912 1064 | 1525 |1662| 1071 806 413.32 0.38 -1.66
38| o 680 784 814 893 | 1728| 1370 | 213 223.93 115 2.36

88 | 033 805 011 014 1016 [ 1749| 1661 211 195.76 0.34 2.38

sa | 7.65 512 676 707 901 |1686| 1632 389 301.99 0.38 013
63| o0 1083 1256 1231 | 1465 |1772| 1209 382 318.55 -0.48 -0.49

136 | 0.10 769 862 862 943 | 1636 1500 174 152.95 0.60 335
50| o 700 840 933 044 | 1670| 1100 | 244 318.17 1.18 0.29
49| o 818 013 934 1010 | 1755| 1266 192 198.76 1.22 3.02
s7%6| o 723 1199 1104 | 1380 |1637| 1061 657 386.95 -0.04 -1.69 Ding et al, 2020
02| o 970 1184 1002 | 1323 | 1817| 1415 353 323.38 073 -0.49
91| o 614 1268 1112 | 1465 |1915| 1524 | 851 423.13 -0.34 -1.44
30| o0 821 1034 1166 | 1534 |2119| 1769 713 417.50 051 0.92
682 © 873 977 1008 | 1115 |1980| 1208 242 196.79 1.75 6.10
85| o0 1283 1405 1306 | 1534 |1935| 1450 250 211.80 -0.85 223
so| o 743 840 845 909 | 1321 751 166 162.46 0.91 1.32
64| © 1378 1508 1473 | 1618 |2037| 1373 240 260.52 -0.93 1.18
201 | 023 849 1003 997 1165 | 2185| 1984 | 316 27351 0.15 0.66

14 | 083 857 1062 1028 | 1209 |1970| 1956 352 271.67 -0.44 0.93

164 | 252 768 1046 1058 | 1342 |2041| 1877 574 401.39 0.03 0.65
598 | o0 708 963 1183 | 1679 |2030| 1432 o71 508.93 031 -1.65
36| o0 972 1120 1083 | 1227 |2019| 1673 255 254.89 -0.22 111
s77| o 815 914 977 1040 [1794| 1217 225 265.69 1.31 1.58
20| o 938 1107 1070 | 1220 |1993| 1573 295 270.23 0.06 1.31
s81| o0 685 857 1083 | 1494 | 2049| 1468 808 523.84 0.93 -0.85
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2. The non-representative data sets that are included in model vulnerability experiments:

Source Series Date Cell Type Class Strategy Group Cell Number (N)
Tumor Ascites Dendritic cells tumor tissue 1613
201 her T
GSM3162630 018/05/30 Tonsil Denditic cells e tonsil tissue Other Tissue 2739
GSM3087629 2018/07/25 CD8+ T cells (methanol SSC) C methanol fixation Dead Cells 4753
GSM3430548 IL-10 producing Foxp3-CD4+ T cells 1247
2018/11/07 : T IL-10 producing Activated Cells
GSM3430549 IL-10-producing Foxp3-CD4+ T cells, 1902
GSM3478792 2019/01/31 P5 CD3+CD5INtSSCIntCD4+ T cells 4486
GEO T functional study Activated Cells
GSM3558027 2019/07/25 P5 CD3+CD5IntSSCintCD4+ T cells (after therapy) 3725
GSM3258345 HLA-DR+ cells -~ 8
HLA-DR+ cells (control) : ; 2397
2018/10/1! elected by designed panel | Mixed Population
GSM3258346 G015 CD19+ cells sc selected by designed pane ed Popd 26
GSM3258348 CD19+ cells (control) 1760
GSM3087628 2018/07/25 CD8+ cells TC selected by designed panel | Mixed Population 5662

Column_Sum (total number of countsin each cell)
Min | %<670 | Q1 (25%) Q2/ Median (50%) Mean | Q3(75%) | Max | Range (R) | IQR Standard Deviation (o) Skewness (Sk) Kurtosis (K)
675 0 2122 3004 3080 3877 11511 10836 1755 1357.05 1.16 3.98
825 0 5323 7081 9119 10309 62353 61528 4987 6397.48 2.90 11.98
835 0 1787 2686 2790 3402 33385 32550 1615 1531.10 4.53 60.15
1424 0 4341 5855 6345 7860 25281 23857 3520 2835.92 1.37 4.02
815 0 2733 3631 3893 4832 16781 15966 2099 1732.94 1.28 4.44
1575 0 4017 4969 5158 5910 27095 25520 1893 2100.48 2.30 12.08
1058 0 3872 4615 4797 5413 29910 28852 1541 1663.79 3.02 27.48
421 2.08 3795 6270 7039 9530 18584 18163 5735 4119.06 0.80 0.26
1058 0 2240 3316 3771 4724 21431 20373 2484 2190.60 2.02 7.21
22 7.69 2673 4288 4320 5797 8445 8423 3124 2250.02 -0.23 -0.61
1951 0 2972 4067 5252 5679 50189 48238 2707 4212.31 3.97 22.74
980 0 2924 3455 3681 4145 57391 56411 1221 1533.98 9.14 273.39
Column_Positive (number of genes with counts > 0) Reference
Min | %<300 | Q1 (25%) Q2/ Median (50%) Mean [ Q3 (75%) | Max | Range (R) | IQR Standard Deviation (o) Skewness (Sk) Kurtosis (K)
218 0.81 797 965 959 1110 2695 2477 313 292.71 0.90 4.43
Tang-Huau et al, 2018
401 0 1526 1848 2089 2397 6354 5953 872 829.60 1.55 2.61
309 0 612 815 814 959 4369 4060 347 284.57 1.89 12.34 Chen et al, 2018
479 0 1589 2031 2047 2511 4638 4159 922 671.89 0.30 0.15
Brockmann et al, 2018
311 0 875 1162 1203 1458 3705 3394 583 467.31 0.83 1.63
94 0.02 1246 1458 1500 1690 5147 5053 444 471.00 1.37 5.01 .
Borcherding et al, 2019
60 0.08 1117 1268 1310 1467 4859 4799 350 336.16 1.76 10.53
233 2.08 1181 1474 1477 1839 2751 2518 658 522.09 -0.16 0.02
38 1.75 903 1205 1239 1541 3911 3873 638 481.48 0.61 1.41
Ranu et al, 2019
20 30.77 236 747 751 1199 1546 1526 963 494.13 -0.07 -1.48
78 1.25 974 1228 1402 1583 5285 5207 609 665.77 2.04 5.98
336 0 869 963 998 1075 5717 5381 206 258.82 2.92 28.55 Chen et al, 2018
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+« Supplemental Table 3. The assessment of classification performance for incremental

learning by cycles and steps.

LEGEND

2-fold cross-validation
New set classification
Test Result (BroadS1)
Final Result - BroadS1
Final Result - BroadS2
Nan - not analyzed

Data Sets TP TN FP__FN | #ofCells | Acc | sE sp PR RE F1 AcC

BCOL 0078 75330 8 7 85423 | 0.99982 | 0.99931 009989 | 0.99921 0.99931 | 0.99926
L Monocytes Mco1 2582 82780 31 30 85423 0.99929 | 0.98851 0.99963 | 0.98814 0.98851 | 0.98832

Stepl  [2-fold cross validation NKo1 38 77016 22 27 | 8423 | 099943 | 0.99678 099971 | 0.99737 099678 | 0.99707 | O
TC01-TCO6 64290 21028 54 51 85423 0.99877 | 0.99921 0.99744 | 0.99916 0.99921 | 0.99918

Step 2 added-predict MC02 374 0 0 51 425 0.88000 | 0.88000 NA 1.00000 0.88000 | 0.93617 0.82009
Cycle 0 Step 3 added-predict MC03 328 0 0 103 431 0.76102 | 0.76102 NA 1.00000 0.76102 | 0.86429
BCO2 1378 11523 0 282 13183 0.97861 | 0.83012 1.00000 | 1.00000 0.83012 | 0.90718
Mcoa 1483 11403 119 178 13183 0.97747 | 0.89284 0.98967 | 0.92572 0.89284 | 0.90898

Stepd  |BroadSi-test Dendritic cells DCOL 0 0 0 14| 13183 |o000000( 000000 NA NA 000000 | 0.00000 | 0.81863
NK03 1377 o546 2243 17 | 13183 | 082857 | 0.98780 0.80974 | 0.38039 098780 | 0.54926
Tc1s 6550 488 29 1772| 13183 | 086338 | 078717 0.99403 | 0.99550 078717 | 0.87920
BCOL 10074 76187 7 11 | 86279 | 099979 | 0.99891 0099991 | 0.99931 0.99891 | 0.99911

steps  |2-fold cross validation MCo1-Mco3 3436 8770 41 32 | ses | 099915 [ 099077 099950 [ 0.sms21 0.99077 | 0ma9 | o
NKo1 8341 77881 13 44 | 86279 | 099934 | 0.99475 099983 | 0.99844 0.99475 | 0.99659
Tco1-TC06 64292 21863 75 49 | 86279 | 0.99856 | 0.99924 0.99658 | 0.99883 0.99924 [ 0.99003
Step6__|added-predict NK02 309 0 0o 309 100000 | 1,00000 __NA__| 100000 _1.00000 | 100000
Step7 __|added-predict Tco7 56 0 0166 22 025025 | 025225 NA__| 1.00000_0.25225 | 0.40087
Step8 _|added-predict Tcos 97 0 0 o 310 031290 | 031290 __NA | 1.00000_0.31290 | 0.47665

cyde 1 Step9 _|added-predict Tcoo 3 0 0 319 325 0.01846 | 001846 __NA | 1.00000 _0.01846 | 0.03625 | 0.24263
Step10__|added-predict Tc10 7 0 0 375 382 001832 | 001832 __NA | 1.00000_0.01832 | 0.03598
Step 11 added-predict TC11 10 0 0 274 284 0.03521 | 0.03521 NA 1.00000 0.03521 | 0.06802
Step 12 added-predict TC12 9 0 0 195 204 0.04412 | 0.04412 NA 1.00000 0.04412 | 0.08451
BCO2 1159 11523 0 501 13183 0.96200 | 0.69819 1.00000 | 1.00000 0.69819 | 0.82228
Monocytes | Mco4 1661 10912 610 0O 13183 | 0.95373 | 1.00000 094706 | 0.73140 1.00000 | 0.84487

Step13  |Broadsi-test Dendritic cells DCOL 0 ) 0 142 13183 |o000000( 000000 NA NA 000000 | 0.00000 | 0.78230
NKO3 1371 9572 2217 23 13183 0.83008 | 0.98350 0.81194 | 0.38211 0.98350 | 0.55038
Tc1s 6122 4814 43 2004| 13183 | 082955 | 073520 0.99115 | 0.99303 073529 | 0.84494
BCOL 10080 78219 11 5 88315 | 0.99982 | 0.99950 0.99986 | 0.99891 0.99950 | 0.99920

step14  |2-fold cross valication Mco1-Mco3 306 8425 2 62 | sas | 099905 | 098212 099974 | 099358 09822 | 09wE2 [
NKO1-NK02 8634 79584 27 60 | 88315 | 099901 [ 0.99310 0.99966 | 0.99688 0.99310 | 0.99499
Tco1-Tc12 66025 22137 110 43 | ss315 | 0.99827 | 0.99935 0.99506 | 0.9983¢ 0.99935 | 0.99884

Step 15 added-predict TC13 956 0 0 9 965 0.99067 | 0.99067 NA 1.00000 0.99067 | 0.99531 0.99143
Cycle 2 Step 16 added-predict TC14 432 0 0 3 435 0.99310 | 0.99310 NA 1.00000 0.99310 | 0.99654
BCO2 1431 11523 0 229 13183 0.98263 | 0.86205 1.00000 | 1.00000 0.86205 | 0.92591
Monocytes Mco4 1624 11361 161 37 13183 0.98498 | 0.97772 0.98603 | 0.90980 0.97772 | 0.94254

Step 17 BroadS1-test Dendritic cells DCO1 0 0 0 142 13183 0.00000 | 0.00000 NA NA 0.00000 | 0.00000 | 0.92217
NKO3 931 11616 173 463 13183 0.95176 | 0.66786 0.98533 | 0.84330 0.66786 | 0.74540
TC15 8171 4165 692 155 13183 0.93575 | 0.98138 0.85753 | 0.92192 0.98138 | 0.95072
BCO1 10081 79615 15 4 89715 0.99979 | 0.99960 0.99981 | 0.99851 0.99960 | 0.99905

Step 18 2-fold cross validation MC01-MC03 3411 86226 21 57 89715 0.99913 | 0.98356 0.99976 | 0.99388 0.98356 | 0.98869 0.99819
NKO1-NK02 8642 80991 30 52 | 89715 | 0.99909 | 0.99402 099963 | 0.99654 099402 | 0.99528
Tco1-Tc14 67419 22151 96 49 | so71s | 0.99838 | 0.99927 0.99568 | 0.99858 0.99927 [ 0.90802
Step19_|added-predict BC03 20 0 0 a8 288 083333 | 083333 NA | 1.00000_0.83333 | 0.90000
Step20__|added-predict Tci6 59 0 0 1 550 0.08000 | 0.98000 __NA__| 1.00000 _0.98000 | 0.98990
Step21__|added-predict MCos 50 0 0o 540 100000 | 100000 __NA__| 100000 _1.00000 | 100000

Step22__|added-predict MCo6 1020 0o 102 100000 | 100000 NA_| 1.00000 1.00000 | 200000 | (oo
Cycle 3 Step23__|added-predict Tc1 11080 0 6 1174 | 094378 | 094378 NA__| 100000 _0.94378 | 0.97108
Step24__|added-predict bCoz 0 0 0 s 55 0.00000 | 0.00000 __NA__| 0.00000__0.00000 | 0.00000
Step25__|added-predict NK04 1280 0 38 166 077108 | 077108 __NA__| 1.00000_0.77108 | 0.87075
Step26__|added-predict bCos 0 0 0 % 2% 0.00000 | 0.00000 __NA__| 0.00000__0.00000 | 0.00000
BCO2 1445 11523 0 216 | 13183 | 0.98362 | 0.86983 100000 | 100000 0.86988 | 0.93041
Monocytes | Mcoa 1652 11344 178 9 13183 | 098582 | 0.99458 098455 | 0.90273 0.99458 | 0.94643

Step27  |Broadsi-test Dendritic cells DCOL 0 ) 0 142 13183 |o000000( 000000 NA NA 000000 | 0.00000 | 0.92953
NKO03 1058 11529 260 336 13183 0.95479 | 0.75897 0.97795 | 0.80273 0.75897 | 0.78024
TC15 8100 4366 491 226 13183 0.94561 | 0.97286 0.89891 | 0.94285 0.97286 | 0.95762
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_ BCO1, BCO3 10364 82308 35 9 92716 | 0.99953 | 0.99913 0.99957 | 0.99663 0.99913 | 0.99788
Monocytes | MCO1-MCO3, MCO5-MC06 4150 8435 71 60 | 92716 | 0.99859 | 0.98575 099920 | 0.98318 0.98575 | 0.98446
Step28  |2-fold cross validation Dendritic cells DC02-DC03 0 o635 0 8 | 92716 |09913[ 000000 100000| NA 000000 | 0.00000 [ 0.99612
NK cells NKO1-NK02, NK04 8724 83795 61 136 | 92716 | 099788 | 0.98465 099927 | 0.99306 0.98465 | 0.98384
TC01-TC14, TC16-TC17 69118 23331 193 74 | 92716 | 099712 | 0.99893 0.99180 [ 0.99722 0.99893 | 0.99807
Step29__|added-predict 377 0 0 u 388 0.97165 | 097165 __NA | 1.00000_0.97165 | 0.98562
Step30__|added-predict 9030 0 s 908 099449 | 099449 NA | 1.00000_0.99449 | 0.99724
Step31__|added-predict mco7 378 0 0 1 379 0.99736 | 099736 NA_ | 100000 0.99736 | 0.99868
oyclea Step32__|added-predict Monocytes 73 0 0o 73 100000 | 100000 NA | 1.00000 1.00000 | L0000 | oo
Step33__|added-predict _TCIS 9% 0 0 © 954 098742 | 098742 NA | 100000 0.98742 | 0.99367
Step34__|added-predict Dendritic cells DC04 2 0 0 o 33 072727 | 072727 __NA__| 100000 _0.72727 | 0.84210
Step35__|added-predict NKcells NKOS 13 o 0 150 263 0.42966 | 042966 NA | 1.00000 _0.42966 | 0.60107
Step36__|added-predict pDC DCOS 11 0 0 1 2 0.91667 | 091667 __NA | 1.00000 _0.91667 | 0.95652
BCO2 1501 11521 2 159 | 13183 | 098779 | 0.90422 0.99983 | 0.99867 0.90422 | 0.94910
Monocytes | Mcoa 1637 11389 133 24 | 13183 | 0.98809 | 0.98555 0.98846 | 0.92486 0.98555 | 0.95424
Step37  |Broadsi-test Dendritic cells DCO1 90 13022 19 52 | 1318 | 099461 | 0.63380 099854 | 0.82569 0.63380 | 0.71713 | 0.93120
NK cells NKo3 853 11659 130 541 | 13183 | 0.94910 | 061191 0.98897 | 0.86775 0.61191 | 071771
Tc1s 8195 4234 623 131 | 13183 | 094281 | 0.98427 087173 | 0.92935 098427 | 0.95602
BCOL, BC03-BCO4 10744 84952 13 17 | 95726 | 099969 | 0.99842 0.99985 | 0.99879 0.99842 | 0.99860
Monocytes | MCO1-MCO3, MCO5-MC08 4607 0982 82 55 | 95726 | 099857 | 0.98820 099910 | 0.98251 0.98820 | 0.98535
Step38  |2-fold cross validation Dendritic cells DC02-DCOS 70 95598 2 56 | 95726 | 099939 [ 0.55556 099998 | 0.97222 0.55556 | 0.70707 | 0.99540
NK cells NKO1-NK02, NK04-NK0S 8908 86534 69 215 | 95726 | 099703 | 097643 099920 | 0.99231 097643 | 0.98431
TC01-TC14, TC16-TC19 70957 24398 274 o7 | o576 | 0.9912 | 0.99863 0.98889 [ 0.99615 0.99863 | 0.99739
Step39 _|added-predict BCOS 34 0 0 > 346 099422 | 099422 NA | 100000 0.99422 | 0.89710
Step40__|added-predict Tc20 96 0 0 1 960 008542 | 098542 NA_ | 1.00000_0.98542 | 0.99266
Step4l _|added-predict 353 0 0 1 354 099718 | 099718 NA | 1.00000_0.99718 | 0.99859
Cycle s Step42__|added-predict 98 0 0o 98 1.00000 | 100000 __NA__| 100000 _1.00000 | 100000 | 0.96917
Step43__|added-predict 9238 0 0 962 0.97505 | 097505 __NA | 1.00000_0.97505 | 0.98737
Step44__|added-predict Dendritic cells DC0G 30 0 08 38 078947 | 078947 __NA | 100000 0.78947 | 0.88235
Stepd5__|added-predict NK cells NK0G 52 0 0w 194 078351 | 078351 NA | 100000 0.78351 | 0.87862
BCO2 1526 11517 6 134 | 13183 | 0.98938 | 0.91928 0.99948 | 0.99608 0.91928 | 0.95614
Monocytes | Mco4 1610 11457 65 51 | 13183 | 099120 | 0.96930 0.99436 [ 0.96119 0.96930 | 0.96523
Stepds  |Broadsi-test Dendritic cells DCOL 6 13032 9 136 | 13183 | 098500 | 0.04225 0.99931 | 0.40000 0.04225 | 0.07643 | 0.93545
NK cells NK03 1083 11435 353 311 [ 13183 | 0.94%3 | 07769 0.97006 [ 0.75418 0.77690 | 0.76537
Tc1s 8107 4439 418 219 | 13183 | 095168 | 0.97370 091394 | 0.95097 097370 | 0.96220
BCOL, BC03-BCO5 1109 87551 20 17 | 98678 | 0.99963 | 0.99847 0099977 | 0.99820 0.99847 | 0.99833
Monocytes | MCO1-MCO3, MCO5-MC10 5060 93470 94 54 | 98678 | 099850 [ 0.98944 0.99900 | 0.98176 0.98944 | 0.98559
Stepd7  |2-fold cross validation Dendritic cells DC02-DC06 65 o812 2 99 | 98678 | 0.99898  0.39634 0.99998 | 0.97015 039634 | 0.56277 | 0.99435
NK cells NKO1-NK02, NK04-NK06 9066 89237 124 251 | 98678 | 0.99620 | 0.97306 0.99861 | 0.98651 097306 | 0.97974
TCo1-TC14, TC16-TC21 72839 25384 318 137 | 98678 | 0.99539 | 0.99812 0.98763 [ 0.99565 0.99812 | 0.99688
Stepd8 _|added-predict BCo6 854 0 08 862 095072 | 099072 __NA__| 1.00000__0.99072 | 0.99534
Stepd9 _|added-predict Tc2 %51 0 0 1 962 0.08857 | 098857 __NA | 1.00000 _0.98857 | 0.99425
Step50__|added-predict mc1L 350 0 1 436 099771 | 099771 __NA | 1.00000_0.99771 | 0.99885
oycles Step51__|added-predict [Monoeytes w12 50 0 0o 50 100000 | 100000 NA | 1.00000 1.00000 | L0000 | o o
Step52__|added-predict Tc23 654 0 00 694 094236 | 094235 NA | 100000 0.94236 | 0.97032
Step53__|added-predict Dendritic cells DCO7 &2 0 0 1 76 081579 | 081579 NA | 100000 0.81579 | 0.89855
Step54__|added-predict NKcells NKO7 2030 0 16 219 0.92694 | 092694 NA | 100000 0.92694 | 0.96208
Step55__|added-predict pDC DCo8 2% 0 0 4 30 0.86667 | 0.86667 __NA | 1.00000 _0.86667 | 0.92857
_ BCO2 1530 1153 0 130 | 13183 | 0.99014 | 0.92169 1.00000 | 100000 0.92169 | 0.95925
Monocytes | Mcos 1635 11430 92 26 | 13183 | 099105 | 098435 0.99202 [ 0.94673 0.98435 | 0.96517
Step56  |Broadsi-test Dendritic cells DCOL 80 13025 16 6 | 1318 | 099408 [ 056338 099877 | 0.83333 056338 | 0.67227 | 0.93803
NK cells NK03 1158 11397 392 236 | 13183 | 0.95236 | 0.83070 0.96675 [ 0.74710 0.83070 | 0.78663
Tc1s 7963 4540 317 363 | 13183 | 094842 | 0.95640 0.93473 | 0.96171 095640 | 0.95905
BCOL, BC03-BC06 11949 90001 37 20 | 102007 | 0.99944 | 0.99833 0099959 | 0.99691 0.99833 | 0.99762
. Monocytes | MCO1-MCO3, MCO5-MC12 5533 96284 123 67 | 102007 | 099814 | 0.98804 099872 | 0.97825 098804 | 0.98312
Step 57 :;;1‘;:‘::::;""’ Dendritic cells DC02-DC08 93 101736 1 177 | 102007 | 0.99826 [ 0.34444 099999 | 0.98936 034444 | 0.51098 | 0.99278
NK cells NKO1-NK02, NK04-NK07 9245 92308 163 291 | 102007 | 099555 | 0.96948 0.99824 | 0.98267 0.96948 | 0.97603
Tco1-TC14, TC16-TC23 74450 26962 413 182 | 102007 | 0.99417 | 0.99756 0.98491 [ 0.99448 0.99756 | 0.99602
Cycde?7 | Jew (futuredata) ... ... e | e |
BCO2 1544 1150 3 116 | 13183 | 0.99097 | 093012 0.99974 | 0.99806 0.93012 | 0.96289
Monocytes | Mcos 1615 1511 11 46 | 13183 | 099568 | 097231 0.99905 [ 099323 0.97231 | 0.98266
Step58  |BroadSi-test Dendritic cells DCOL 136 13010 31 6 13183 | 099719 | 0.95775 099762 | 0.81437 0.95775 | 0.88026 | 0.94614
NK cells NK03 1072 151 278 322 | 13183 | 095449 | 07691 0.97642 [ 078407 0.76901 | 0.78134
Tc1s 8106 4470 387 220 | 13183 | 0.9539% | 097358 092032 | 0.95443 097358 | 0.96391
BCO1-BCO2 11713 91103 50 32 | 102898 | 099920 | 0.99728 099945 | 0.99575 0.99728 | 0.99651
- y Mco1-Mcoa S041 97707 88 62 | 102898 | 0.99854 | 0.98785 0.99910 | 0.98284 098785 | 0.98534
Swapping  Step59 (Z;ZTGC;TB‘::::')""' Dendritic cells DCOL 71 10275 71 0 102898 [ 099931 | 100000 0.99931 | 0.50000 1.00000 | 0.66667 | 0.99189
NK cells NKOL-NK03 9801 92432 287 378 | 102898 | 0.99354 | 0.96286 0.99690 | 0.97155 096286 | 0.96719
Tco1-Tc1s 75420 26742 374 362 | 102898 | 0.99285 | 0.99522 0.98621 | 0.98507 0.99522 | 0.99514
BC03-BC06 1875 10269 139 9 12292 | 0.9879 | 0.99522 098664 | 0.93098 0.99522 | 0.96203
Monocytes  MC05-MC12 23 9985 175 9 12292 | 098503 | 0.99578 098278 | 0.92385 0.99578 | 0.95847
Swapping  |Step60  [Broads2-test Dendritic cells DC02-DC08 0o 12021 1 270| 1222 | 097795 | 0.00000 0.99992 | 0.00000 0.00000 | 0.00000 [ 0.91734
NK cells NK04-NK07 780 10826 624 62 | 12202 | 094419 | 092637 0.94550 [ 0.55556 0.92637 | 0.69457
TC16-TC23 6498 5051 77 666 | 12202 | 093955 | 0.90704 0.98498 | 0.98829 0.90704 | 0.94592
TP TN ___FP__FN | #ofCells | ACC SE sp PR RE FL

Page | 191



7

steps.

LEGEND

2-fold cross-validation
New set classification
Test Result (BroadS1)
Final Result - BroadS1
Final Result - BroadS2
Nan - not analyzed

CYCLES STEPS TRAINING SETS

Cycle 0
Stepl 10x dataset 10x dataset
Step2 10 dataset GEO_la
Step3 10 dataset GEO_1b
Step4  10x dataset Broads (test)

% Supplemental Table 4. Confusion matrices for incremental learning by cycles and

TESTING SETS
Accuracy: 0.9987 2-fold cross-validation
Precision: 0.9998 0.9837 0.9968 0.9994
Recall/Sensitivity: 0.9990 0.9922 09973 0.9991
Specificity: 1.0000 0.9995 0.9997 0.9981
F1_Score: 0.9994 0.9880 09971 0.9992
B_cells Monocytes NK_cells T_cells All-true|
B cells 4979 3 0 2 4984
Monocytes 0| 1271] 1 9 1281
NK_cells o 2 4101] 9 4112]
T cells 1 16| 12| 32306 32335
All-predicted 4980) 1292 4114 32326 42712
Accuracy: 0.9986
Precision: 0.9986 0.9924 09979 0.9989
Recall/Sensitivity: 0.9996 0.9850 0.9963 0.9993
Specificity: 0.9998 0.9998 0.9998 0.9968
F1_Score: 0.9991 0.9887 09971 0.9991
B_cells Monocytes NK_cells T_cells All-true|
8_cells 5099) 0 0 2 5101
Monocytes 3 1311] 0 17 1331
NK_cells o 1 4257| 15 4273
T cells 4 9 9 31984 32006
All-predicted 5106] 1321 4266 32018 42711
Accuracy: 0.9987
Precision: 0.9992 0.9881 09974 0.9992
Recall/Sensitivity: 0.9993 0.9886 0.9968 0.9992
Specificity: 0.9999 0.9996 0.9997 09974
F1_Score: 0.9993 0.9883 09971 0.9992
B_cells Monocytes NK_cells T_cells| All-true|
B cells 10078] 3 0 4| 10085|
Monocytes 3| 2582 1] 2§| 2612
NK_cells o 3 8358| 24| 8385|
T cells 5 25| 21] 64290] 64341
All-predicted 10086 2613 8380) 64344 85423
Accuracy: 0.8800 New set classification
Precision: 1.0000 0.0000
Recall/Sensitivity: 0.8800 0.0000
Specificity: Nan 0.8800
F1_Score: 0.9362 0.0000
Monocytes NK_cells All-true]
Monocytes 374 51] 425
All-predicted 374 51 425
Accuracy: 0.7610 New set classification
Precision: 1.0000 0.0000
Recall/Sensitivity: 07610 0.0000
Specificity: Nan 0.7610
F1_Score: 0.8643 0.0000
Monocytes| NK_cells All-true|
Monocytes 328 103 431
All-predicted 328 103 431
Accuracy: 08186 Test Result (Broads1)
Precision: 1.0000 0.0000 09257 03804 0.9956
Recall/Sensitivity: 0.8301 0.0000 08928 0.9878 07872
Specificity: 1.0000 1.0000 0.9897 0.8097 0.9940
F1_Score: 0.9072 0.0000 0.9090 0.5493 0.8792
B cells| Dendritic_cells Monocytes’ NK_cells T cells All-true]
B cells 1378] 0 8 262 12 1660
Dendritic_cells 0| 0 111] 31] 0| 142)
Monocytes 0| 0 1483 178 0| 1661
NK_cells 0| 0 0 1377 17 1394
T cells 0| 0 0 1772 6554 8326)
All-predicted 1378] 0 1602 3620) 6583] 13183
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Cycle 1
Step5  10x+GEO_1

Step6 10x+GEO_1

Step7 10x+GEO_1

Step8  10x+GEO_1

Step9  10x+GEO_1

Step 10 10x+GEO_1

Step11 10x+GEO_1

Step12 10x+GEO_1

10x+GEO_1

GEO_2a

GEO_2b

GEO_2c

GEO_2d

GEO_2e

GEO_2f

GEO_2g

Accuracy: 0.9986 2-fold cross-validation
Precision: 0.9998 0.9898 09974 0.9990
Recall/Sensitivity: 0.9986 09922 09957 0.9993
Specificity: 1.0000 0.9996 0.9997 0.9970
F1_Score: 0.9992 09910 0.9965 0.9991
B_cells Monocytes NK_cells. T_cells All-true|
B_cells 4981] 1 1 5 4988]
Monocytes 0| 1654 1 12 1667
NK_cells 0| 3 4145| 15 4163
T _cells 1 13| 9 32299 32322
All-predicted 4982] 1671 4156] 32331 43140
Accuracy: 0.9983
Precision: 0.9988 0.9867 09995 0.9987
Recall/Sensitivity: 0.9992 0.9895 09938 0.9992
Specificity: 0.9998 0.9994 0.9999 0.9961
F1_Score: 09990 0.9881 0.9967 09989
Predicted B_cells Monocytes NK_cells. T_cells| All-true|
B_cells 5093] 1 0 3 5097
Monocytes 3 1782 1 15 1801
NK_cells 0| 1 4196| 25 4222
T _cells 3 2 1 31993 32019
All-predicted 5099 1806 4198] 32036 43139
Accuracy: 0.9984
Precision: 0.9993 0.9883 0.9984 0.9988
Recall/Sensitivity: 0.9989 0.9908 0.9948 0.9992
Specificity: 0.9999 0.9995 0.9998 0.9966
F1_Score: 0.9991 0.9895 0.9966 0.9990
Predicted B_cells Monocytes NK_cells T _cells All-true
B_cells 10074 2 1 8| 10085,
Monocytes 3 3436 2 27| 3468|
NK_cells 0| 4 8341] 40 8385,
T _cells 4 35| 10 64292 64341
Allpredicted 10081 3477 8354 64367 86279
Accuracy: 1.0000 New set classification
Precision: 1.0000
Recall/Sensitivity: 1.0000
Specificity: Nan
F1_Score: 1.0000
NK_cells All-true]
NK_cells 309 309
All-predicted 309 309
Accuracy: 02523 New set classification
Precision: 0.0000 0.0000 1.0000
Recall/Sensitivity: 0.0000 0.0000 02523
Specificity: 03514 0.9009 Nan
F1_Score: 0.0000 0.0000 0.4029
Monocytes NK_cells T _cells All-true!
T cells 144 22| 56) 222
All-predicted 144] 22| 56| 222
Accuracy: 03129 New set classification
Precision: 0.0000 0.0000 1.0000
Recall/Sensitivity: 0.0000 0.0000 03129
Specificity: 05355 07774 Nan
F1_Score: 0.0000 0.0000 04767
Monocytes NK_cells T cells All-true]
T _cells 144 69) 97| 310
All-predicted 144] 69| 97, 310
Accuracy: 0.0185 New set classification
Precision: 0.0000 0.0000 1.0000
Recall/Sensitivity: 0.0000 0.0000 00185
Specificity: 0.7169 0.3015 Nan
F1_Score: 0.0000 0.0000 0.0363
Monocytes NK_cells T_cells Au-m£|
T cells 92| 227 6 325
All-predicted 92, 227 6] 325
Accuracy: 0.0183 New set classification
Precision: 0.0000 0.0000 1.0000
Recall/Sensitivity: 0.0000 0.0000 00183
Specificity: 05733 0.4450 Nan
F1_Score: 0.0000 0.0000 0.0360
Monocytes| NK_cells T cells Au-m£|
T _cells 163 212 7 382
All-predicted 163] 212 7 382
Accuracy: 0.0352 New set classification
Precision: 0.0000 0.0000 1.0000
Recall/Sensitivity: 0.0000 0.0000 00352
Specificity: 0.8697 0.1655 Nan
F1_Score: 0.0000 0.0000 0.0680
Monocytes NK_cells T cells A\I—lrLﬁI
T _cells 37, 237 10 284
All-predicted 37 237] 10| 284|
Accuracy: 0.0441 New set classification
Precision: 0.0000 0.0000 1.0000
Recall/Sensitivity: 0.0000 0.0000 0.0441
Specificity: 0.8186 02255 Nan
F1_Score: 0.0000 0.0000 0.0845
Monocytes NK_cells T cells All-true]
T _cells 37, 158 9 204
All-predicted 37] 158 9 204
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Cycle2

Step 13 10x+GEO_1

Step 14 10x+GEO_1+2

Step 15 10x+GEO_1+2

Step 16 10x+GEO_1+2

Step17 10x+GEO_1+2

Broads1 (test)

10x+GEO_1+2

GEO_3a

GEO_3b

BroadS1 (test)

Accuracy: 0.7823
Precision: 1.0000 0.0000 07314 03821 0.9930
Recall/Sensitivity: 0.6982 0.0000 1.0000 0.9835 0.7353
Specificity: 1.0000 1.0000 09471 0.8119 0.9911
F1_Score: 0.8223 0.0000 0.8449 05504 0.8449
B cells| Dendritic_cells Monocytes NK_cells T _cells All-true]
8 cells 1159 0 52| 422 27| 1660
Dendritic_cells 0| 0 142) 0| 0| 142
Monocytes 0| 0 1661 0| 0| 1661
NK_cells 0| 0| 7| 1371] 16) 1394
T cells 0| 0 409 1795 6122 8326
All-predicted 1159 0 2271] 3588] 6165, 131?'
Accuracy: 0.9982
Precision: 0.9988 09928 09977 0.9984
Recall/Sensitivity: 0.9992 0.9828 09933 0.9994
Specificity: 0.9998 0.9997 09997 0.9952
F1_Score: 0.9990 0.9878 09955 0.9989
B_cells Monocytes NK_cells. T_cells All-true|
B_cells 4967 1 0| 3 4971
Monocytes 2 1653 2 25| 1682
NK_cells 1 3 4286 25| 4315]
T cells 3 8 8 33171 33190
All-predicted 4973] 1665 4296 33224 44158
Accuracy: 0.9980
Precision: 0.9990 0.9943 09961 0.9983
Recall/Sensitivity: 0.9998 0.9815 09929 0.9993
Specificity: 0.9999 0.9998 0999 0.9949
F1_Score: 0.9994 0.9879 09945 0.9988
B_cells Monocytes NK_cells. T cells All-true|
B_cells 5113] 0 0 1 5114
Monocytes 5 1753 3 25| 1786)
NK_cells 0| 0 4348| 31] 4379)
T cells 0| 10| 14 32854 32878
All-predicted 5118 1763 4365 32911 44157
Accuracy: 0.9981
Precision: 0.9989 0.9936 0.9969 0.9983
Recall/Sensitivity: 0.9995 09821 09931 0.9993
Specificity: 0.9999 0.9997 09997 0.9951
F1_Score: 0.9992 09878 0.9950 0.9988
B_cells Monocytes NK_cells. T cells All-true|
B_cells 10080) 1 0 4 10085
Monocytes 7 3406) 5 50) 3468]
NK_cells 1 3 8634 56 8694
T_cells 3 18| 22| 66025 66068
All-predicted 10091] 3428] 8661] 66135 88315
Accuracy: 0.9907
Precision: 0.0000 1.0000
Recall/Sensitivity: 0.0000 0.9907
Specificity: 0.9907 Nan
F1_Score: 0.0000 0.9953
NK_cells T _cells All-true]
T cells 9 956 965
All-predicted 9 956 965
Accuracy: 0.9931
Precision: 0.0000 1.0000
Recall/Sensitivity: 0.0000 0.9931
Specificity: 09931 Nan
F1_Score: 0.0000 0.9965
NK_cells T_cells All-true]
T _cells 3 432 435
All-predicted 3 432 435
Accuracy: 09222
Precision: 1.0000 0.0000 0.9098 0.8433 09219
Recall/Sensitivity: 0.8620 0.0000 09777 0.6679 0.9814
Specificity: 1.0000 1.0000 0.9860 0.9853 0.8575
F1_Score: 0.9259 0.0000 09425 0.7454 0.9507
| B_cells Dendritic_cells Monocytes NK_cells T_cells All-true|
B cells 1431 0 22| 17 190) 1660]
Dendritic_cells 0| 0 138 0| 4 142)
Monocytes 0| 0 1624 1 36 1661]
NK_cells 0| 0 1 931 462 1394]
T _cells 0| 0 0 155, 8171] 8326|
All-predicted 1431 0 1785 1104] 8863 13183

Test Result (Broads1)

2-fold cross-validation

New set classification

New set classification

Test Result (BroadS1)
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Cycle 3
Step 18 10x+GEO

Step 19 10x+GEO

Step20 10x+GEO

Step 21 10x+GEO

Step22 10x+GEO

Step 23 10x+GEO

Step 24 10x+GEO

Step 25 10x+GEO

10x+GEO

Broads2_la

Broads2_1b

Broads2_1c

Broads2_1d

Broads2_le

Broads2_1f

Broads2_1g

Accuracy: 0.9982 2-fold cross-validation
Precision: 0.9990 09917 09970 0.9985
Recall/Sensitivity: 0.9994 0.9840 09938 0.9993
Specificity: 09999 0.9997 09997 0.9955
F1_Score: 0.9992 0.9878 0.9954 0.9989
B_cells Monocytes NK_cells. T_cells All-true|
B_cells 4981] 1 0 2 4984
Monocytes 1 1663 1 25 1690)
NK_cells 1 3 4302] 23] 4329)
T _cells 3 10) 12| 33830 33855
All-predicted 4986 1677 4315| 33880 44858
Accuracy: 0.9982
Precision: 0.9980 0.9960 0.9961 0.9986
Recall/Sensitivity: 0.9998 0.9831 0.9943 0.9993
Specificity: 0.9997 0.9998 0.999 0.9959
F1_Score: 09989 0.9895 0.9952 0.9990
B_cells Monocytes NK_cells. T_cells| All-true|
B_cells 5100) 0 0 1 5101
Monocytes 7 1748 3 20 1778]
NK_cells 0| 0 4340) 25 4365,
T _cells 3 7 14 33589 33613
All-predicted 5110) 1755 4357 33635 44857
Accuracy: 0.9982
Precision: 0.9985 0.9938 0.9965 0.9986
Recall/Sensitivity: 0.9996 0.9836 0.9940 0.9993
Specificity: 0.9998 0.9998 0.999 0.9957
F1_Score: 0.9991 0.9887 09953 0.9989
B_cells Monocytes NK_cells T _cells All-true!
B_cells 10081] 1 0 3 10085,
Monocytes 8| 3411 4 45| 3468|
NK_cells 1 3 8642] 48] 8694
T _cells 6 17| 26| 67419 67468
Allpredicted 10096 3432 8672 67515 89715
Accuracy: 0.8333 New set classification
Precision: 1.0000 0.0000 0.0000
Recall/Sensitivity: 0.8333 0.0000 0.0000
Specificity: Nan 09722 0.8611
F1_Score: 0.9091 0.0000 0.0000
B_cells Monocytes T_cells All-true]
B_cells 240 8 40 288
All-predicted 240 8 40 288
Accuracy: 0.9800 New set classification
Precision: 0.0000 0.0000 1.0000
Recall/Sensitivity: 0.0000 0.0000 0.9800
Specificity: 0.9855 0.9945 Nan
F1_Score: 0.0000 0.0000 0.9899
Monocytes NK_cells T cells All-true!
T cells 8| 3 539 550
All-predicted 8| 3 539 550
Accuracy: 1.0000 New set classification
Precision: 1.0000
Recall/Sensitivity: 1.0000
Specificity: Nan
F1_Score: 1.0000
Monocytes All-true]
Monocytes 640 640
All-predicted 640 640
Accuracy: 1.0000 New set classification
Precision: 1.0000
Recall/Sensitivity: 1.0000
Specificity: Nan
F1_Score: 1.0000
Monocytes All-true]
Monocytes 102] 102)
All-predicted 102 102)
Accuracy: 0.9438 New set classification
Precision: 0.0000 0.0000 1.0000
Recall/Sensitivity: 0.0000 0.0000 0.9438
Specificity: 09821 0.9617 Nan
F1_Score: 0.0000 0.0000 09711
Monocytes NK_cells T_cells| Au-m£|
T _cells 21] 45 1108] 1174]
All-predicted 21 25| 1108] 1174
Accuracy: 0.0000 New set classification
Precision: 0.0000 0.0000
Recall/Sensitivity: 0.0000 0.0000
Specificity: Nan 0.0000
F1_Score: 0.0000 0.0000
Dendritic_cells Monocytes' All-true]
Dendritic_cells 0| 55| 55|
All-predicted 0| 55| 55|
Accuracy: 07711 New set classification
Precision: 0.0000 1.0000 0.0000
Recall/Sensitivity: 0.0000 07711 0.0000
Specificity: 0.9699 Nan 0.8012
F1_Score: 0.0000 0.8707 0.0000
Monocytes NK_cells T cells All-true]
NK_cells 5 128 33| 166
All-predicted 5 128 33| 166)
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Step 26 10x+GEO BroadS2_1h Accuracy: 0.0000 New set classification

Precision: 0.0000 0.0000
Recall/Sensitivity: 0.0000 0.0000
Specificity: Nan 0.0000
F1_Score: 0.0000 0.0000
Dendritic_cells Monocytes! All-true]
Dendritic_cells 0| 2| 26|
All-predicted 0| 26| 26|
Step27 10x+GEO Broadsl (test) Accuracy: 0.9295 Test Result (Broads1)
Precision: 1.0000 0.0000 09027 0.8027 0.9428
Recall/Sensitivity: 0.8699 0.0000 0.9946 0.7590 09729
Specificity: 1.0000 1.0000 0.9846 09779 0.8989
F1_Score: 09304 0.0000 0.9464 0.7802 09576
B cells| Dendritic_cells Monocytes’ NK_cells T cells All-true]
8_cells 1444] 0 31] 37, 148] 1660
Dendritic_cells 0| 0 142) 0| 0| 142)
Monocytes 0| 0 1652 0| 9 1661
NK_cells 0 0 2 1058 334 1394
T cells 0| 0 3 223 8100) 8326|
All-predicted 1444 0 1830 1318] 8591] 13183]
Cycled
Step 28 10x+GEO+Broads2_1  10x+GEO+Broads2_1 Accuracy: 0.9964 2-fold cross-validation
Precision: 09988 0.0000 09842 0.9897 0.9976
Recall/Sensitivity: 0.9984 0.0000 0.9894 0.9876 0.9987
Specificity: 0.9999 1.0000 09993 0.9989 0.9929
F1_Score: 0.9986 0.0000 0.9868 0.9886 0.9982
B cells| Dendritic_cells Monocytes' NK_cells T _cells All-true]
B cells 5101 0 1 4 3 5109
Dendritic_cells 2 0 19| 10| 6 37,
Monocytes 2 0 2053] 0| 20| 2075|
NK_cells 0| 0 1 4309) 53] 4363]
T cells 2 0 12| 31] 34729 34774
Allpredicted 5107 0 2086 4354 34811 46358]
Accuracy: 0.9958
Precision: 0.9945 0.0000 0.9822 0.9964 0.9968
Recall/Sensitivity: 0.9998 0.0000 09822 0.9818 0.9992
Specificity: 09993 1.0000 0.9991 0999 0.9907
F1_Score: 0.9972 0.0000 0.9822 0.9890 0.9980
8 cells| _Dendritic_cells Monocytes NK_cells T _cells All-true]
B cells 5263 0 0 0| 1 5264
Dendritic_cells 11 0 28| 1 4 44
Monocytes 10| 0 2097] 0| 28] 2135
NK_cells 3 0 1 4415) 78] 4497|
T _cells 5 0 9 15 34389 34418
All-predicted 5292 0 2135) 4431] 34500 46358
Accuracy: 0.9961
Precision: 0.9967 0.0000 0.9832 0.9930 0.9972
Recall/Sensitivity: 0.9991 0.0000 0.9858 0.9847 0.9989
Specificity: 0.9996 1.0000 0.9992 0.9993 09918
F1_Score: 0.9979 0.0000 0.9845 0.9888 0.9981
B cells| Dendritic_cells Monocytes’ NK_cells T cells All-true]
B cells 10364] 0 1 4 4 10373
Dendritic_cells 13 0 47, 11 10| 81]
Monocytes 12 0 4150 0| 48 4210)
NK_cells 3 0 2 8724 131] 8860)
T cells 7 0 21] 46] 69118] 69192
All-predicted 10399) 0 4221 8785) 69311] 92716
Step29 10x+GEO+Broads2_1  Broads2_2a Accuracy: 09716 New set classification
Precision: 1.0000 0.0000
Recall/Sensitivity: 09716 0.0000
Specificity: Nan 09716
F1_Score: 0.9856 0.0000
8 cells T_cells All-true]
B cells 377 11] 388
All-predicted 377 1 388
Step30 10x+GEO+Broads2_1  Broads2_2b Accuracy: 0.9945 New set classification
Precision: 0.0000 0.0000 1.0000
Recall/Sensitivity: 0.0000 0.0000 0.9945
Specificity: 09956 0.9989 Nan
F1_Score: 0.0000 0.0000 0.9972
Monocytes NK_cells T _cells All-true]
T cells 4 1 903 908
All-predicted 4 1 903 908
Step31 10x+GEO+Broads2_1  Broads2_2c Accuracy: 0.9974 New set classification
Precision: 1.0000 0.0000
Recall/Sensitivity: 0.9974 0.0000
Specificity: Nan 0.9974
F1_Score: 0.9987 0.0000
Monocytes T_cells All-true]
Monocytes 378 1 379
All-predicted 378 1 379
Step32 10x+GEO+Broads2_1  Broads2_2d Accuracy: 1.0000 New set classification
Precision: 1.0000
Recall/Sensitivity: 1.0000
Specificity: Nan
F1_Score: 1.0000
Monocytes All-true
Monocytes 73] 73]
All-predicted 73] 73
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Step33 10x+GEO+Broads2_1  Broads2_2e

Step34 10x+GEO+Broads2_1  Broads2_2f

Step35 10x+GEO+Broads2_1  Broads2_2g

Step36 10x+GEO+Broads2_1  Broads2_2h

Step37 10x+GEO+Broads2_1  Broadsl (test)

Cycles
Step38 10x+GEO+Broads2_1+2  10x+GEO+Broads2_1+2

Accuracy: 0.9874
Precision: 0.0000 0.0000 1.0000
Recall/Sensitivity: 0.0000 0.0000 0.9874
Specificity: 0.9979 0.9895 Nan
F1_Score: 0.0000 0.0000 0.9937
Monocytes NK_cells T cells A\I—mgl
T _cells 2 10| 942 954
All-predicted| 2| 10| 942 954
Accuracy: 07273
Precision: 1.0000 0.0000
Recall/Sensitivity: 07273 0.0000
Specificity: Nan 0.7273
F1_Score: 0.8421 0.0000
Dendritic_cells Monocytes! All-true]
Dendritic_cells 2 9 33|
All-predicted 24| 9 33|
Accuracy: 0.4297
Precision: 0.0000 1.0000 0.0000
Recall/Sensitivity: 0.0000 0.4297 0.0000
Specificity: 0.9962 Nan 04335
F1_Score: 0.0000 0.6011 0.0000
Dendritic_cells NK_cells T_cells A\I-m£|
NK_cells 1 113 149) 263
All-predicted 1] 113 149 263
Accuracy: 09167
Precision: 1.0000 0.0000
Recall/Sensitivity: 09167 0.0000
Specificity: Nan 0.9167
F1_Score: 0.9565 0.0000
Dendritic_cells T_cells All-true]
Denditic_cells 1 1 12|
All-predicted 1 1 12|
Accuracy: 09312
Precision: 09987 0.8257 09249 0.8678 09293
Recall/Sensitivity: 0.9042 0.6338 0.9856 06119 0.9843
Specificity: 0.9998 0.9985 0.9885 0.9890 0.8717
F1_Score: 0.9491 07171 09542 07177 0.9560
B_cells| _Dendritic_cells Monocytes NK_cells T_cells All-true]
B cells 1501 15 82) 0| 62 1660
Dendritic_cells 0| 90 49 0| 3 142)
Monocytes 0| 4 1637 0| 20) 1661
NK_cells 2 0 1 853 538 1394
T _cells o 0 1 15' 3@' 8326|
All-predicted 1503 109) 1770 983 8818 13183
Accuracy: 0.9956
Precision: 0.9992 0.9744 0.9852 09932 0.9960
Recall/Sensitivity: 0.9981 0.6230 0.9882 09751 0.9989
Specificity: 0.9999 1.0000 09993 0.9993 0.9883
F1_Score: 0.9987 0.7600 0.9867 0.9841 0.9974
8 cells| _Dendritic_cells Monocytes NK_cells T _cells All-true]
B cells 5318 0 1 1 8| 5328]
Dendritic_cells 0| 38| 22| 0| 1 61]
Monocytes 2 0 2257 1 2| 2284
NK_cells 1 1 0 4392 110) 4504
T _cells 1 0 11] 28] 35646 35686
All-predicted 5322 39| 2291] Aazﬂ 35789 47863
Accuracy: 09952
Precision: 0.9983 0.9697 0.9800 09914 0.9963
Recall/Sensitivity: 0.9987 0.4923 0.9882 09777 0.9984
Specificity: 0.9998 1.0000 0.9989 0.9991 0.9895
F1_Score: 0.9985 0.6531 0.9841 0.9845 0.9973
B_cells| _ Dendritic_cells’ Monocytes. NK_cells T_cells All-true|
B_cells 5426 0| 1] 0 6| 5433
Dendritic_cells 2 32 29| 0| 2 65|
Monocytes 3 1 2350) 0| 24| 2378
NK_cells 1 0 3 4516, 99| 4619)
T _cells 3 0 15 39 35311 35368
All-predicted 5435) 33| 2398] 4555) 35442 47863
Accuracy: 0.9954
Precision: 0.9988 0.9720 0.9826 09923 0.9962
Recall/Sensitivity: 09984 05576 0.9882 09764 09986
Specificity: 0.9998 1.0000 09991 0.9992 0.9889
F1_Score: 0.9986 0.7065 09854 0.9843 0.9974
B cells| Dendritic_cells Monocytes’ NK_cells T _cells All-true]
8 cells 10744 0 2 1 14] 10761
Dendritic_cells 2 70 51 0| 3 126)
Monocytes 5 1 4607 1 48 4662]
NK_cells 2 1 3 8908] 209 9123]
T cells 4 0 26| 67) 70957 71054
All-predicted 10757, 72 4689 8977 71231] 95726

New set classification

New set classification

New set classification

New set classification

Test Result (Broads1)

2-fold cross-validation
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Step39 10x+GEO+Broads2_1+2  Broads2_3a

Step40 10x+GEO+Broads2_1+2  Broads2_3b

Step41 10x+GEO+Broads2_1+2  BroadS2_3c

Step42 10x+GEO+Broads2_1+2  Broads2_3d

Step43 10x+GEO+BroadS2_1+2  Broads2_3e

Step44 10x+GEO+Broads2_1+#2  Broads2_3f

Step45 10x+GEO+Broads2_1+2  BroadS2_3g

Step46 10x+GEO+Broads2_1+2  Broadsl (test)

Cycle 6
Step 47 10x+GEO+Broads2_1+2+3 10x+GEO+Broads2_1+2+3

Accuracy: 0.9942 New set classification
Precision: 1.0000 0.0000
Recall/Sensitivity: 0.9942 0.0000
Specificity: Nan 0.9942
F1_Score: 0.9971 0.0000
B_cells T cells All-true]
8_cells 344 2 346
All-predicted 344 2 346
Accuracy: 0.9854 New set classification
Precision: 0.0000 1.0000
Recall/Sensitivity: 0.0000 0.9854
Specificity: 0.9854 Nan
F1_Score: 0.0000 0.9927
NK_cells T_cells All-true]
T _cells 14] 946 960
All-predicted 14 946 960
Accuracy: 0.9972 New set classification
Precision: 1.0000 0.0000
Recall/Sensitivity: 0.9972 0.0000
Specificity: Nan 0.9972
F1_Score: 0.9986 0.0000
Monocytes T _cells All-true]
Monocytes 353 1 354
All-predicted 353 1 354
Accuracy: 1.0000 New set classification
Precision: 1.0000
Recall/Sensitivity: 1.0000
Specificity: Nan
F1_Score: 1.0000
Monocytes All-true]
Monocytes 98 98
All-predicted 98] 98
Accuracy: 09751 New set classification
Precision: 0.0000 1.0000
Recall/Sensitivity: 0.0000 0.9751
Specificity: 09751 Nan
F1_Score: 0.0000 0.9874
NK_cells T_cells| All-true|
T cells 24| 9% 962]
All-predicted 24| 938 962
Accuracy: 0.7895 New set classification
Precision: 0.0000 1.0000 0.0000 0.0000
Recall/Sensitivity: 0.0000 0.7895 0.0000 0.0000
Specificity: 09737 Nan 09737 0.8421
F1_Score: 0.0000 0.8824 0.0000 0.0000
B cells] Dendritic_cells| Monocytes T _cells All-true]
Dendritic_cells 1 30) 1 6 38
All-predicted 1 30) 1 6 33
Accuracy: 07835 New set classification
Precision: 1.0000 0.0000
Recall/Sensitivity: 07835 0.0000
Specificity: Nan 0.7835
F1_Score: 0.8786 0.0000
NK_cells T_cells All-true]
NK_cells 152 42 194
All-predicted 152] 42) 194
Accuracy: 0.9354 Test Result (Broads1)
Precision: 0.9961 0.4000 09612 0.7542 09510
Recall/Sensitivity: 09193 0.0423 0.9693 0.7769 09737
Specificity: 0.9995 0.9993 0.9944 09701 09139
F1_Score: 0.9561 0.0764 09652 07654 0.9622
B_cells| Dendritic_cells Monocytes| NK_cells| T_cells| All-true]
8_cells 1526} 9 6| 80) 39) 1660
Dendritic_cells 0| 6| 58| 49 29 142
Monocytes 4 0 1610 5 42| 1661
NK_cells 2 0 1 1083 308 1394
T cells 0| 0 0 219 8107, 8326|
All-predicted 1532 15| 1675 1436] 8525) 131?'
Accuracy: 0.9954 2-fold cross-validation
Precision: 0.9991 0.9623 09882 0.9889 0.9962
Recall/Sensitivity: 0.9985 0.7846 0.9894 09754 0.9983
Specificity: 0.9999 1.0000 0.9994 0.9989 0.9890
F1_Score: 0.9988 0.8644 0.9888 0.9821 0.9972
B cells[ Dendritic_cells| Monocytes NK_cells T _cells All-true]
B cells 5492 0 1 0| 7 5500)
Dendritic_cells 0| 51] 12| 0| 2 65|
Monocytes 4 1 2510) 2 20 2537
NK_cells 0| 1 2 4472] 110) 4585)
T _cells 1 0 15| 48] 36588 36652
All-predicted 5497 53] 2540) 4527| 36727 49339
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Step48 10x+GEO+Broads2_1+2+3 Broads2_4a

Step49  10x+GEO+Broads2_1+2+3 Broads2_4b

Step50 10x+GEO+Broads2_1+2+3 Broads2_4c

Step51 10x+GEO+Broads2_1+2+3 Broads2_4d

Step52 10x+GEO+Broads2_1+2+3 Broads2_de

Step 53 10x+GEO+BroadS2_1+2+3 BroadS2_4f

Step54 10x+GEO+Broads2_1+2+3 BroadS2_4g

Step 55 10x+GEO+Broads2_1+2+3 Broads2_s4h

Accuracy: 09933
Precision: 09973 1.0000 0.9755 09841 09951
Recall/Sensitivity: 09984 01414 0.9895 09708 09980
Specificity: 09997 1.0000 0.9986 09983 09862
F1_Score: 09979 0.2478 0.9825 09774 09965
B_cells| _Dendritic cells] _ Monocytes NK_cells T _cells All-true
B cells 5598 0 1 0| 8| 5607
Dendritic_cells 5 14 52 13 15 %
Monocytes 5 0 2550 1 21 2577
NK_cells 2 0 1 4594] 135 4732
T _cells 3 0 10 60) 36251 36324
Allpredicted 5613 14 2614 4668| 36430) 49339)
Accuracy: 09943
Precision: 09982 09811 0.9819 09865 09957
Recall/Sensitivity: 09985 04630 0.9894 09731 09981
Specificity: 09998 1.0000 0.9990 09986 09876
F1_Score: 09983 05561 0.9856 09798 0.9969
B_cells| _Dendritic cells] _ Monocytes NK_cells T cells All-true
B cells 11090 0 2 0| 15 11107,
Dendritic_cells 5 65 64 13 17 164
Monocytes 9 1 5060 3 41 5114
NK_cells 2 1 3 9066) 25, 9317
T cells 4| 0 25 108| 72839 72976
Allpredicted 11110 67 5154 9190) 73157 98678
Accuracy: 09907
Precision: 1.0000 0.0000 0.0000 0.0000
Recall/Sensitivity: 0.9907 0.0000 0.0000 0.0000
Specificity: Nan 09988 0.9954 09965
F1_Score: 09953 0.0000 0.0000 0.0000
B_cells|  Dendritic_cells Monocytes T_cells Au-m£|
B cells 854 1 4 3 862,
All-predicted 854] 1] 4) 3| 862|
Accuracy: 09886
Precision: 0.0000 0.0000 0.0000 0.0000 1.0000
Recall/Sensitivity: 0.0000 0.0000 0.0000 0.0000 09886
Specificity: 09979 0.9969 0.9958 09979 Nan
F1_Score: 0.0000 0.0000 0.0000 0.0000 09942
B_cells| _Dendritic cells]  Monocytes NK_cells T _cells All-true
T cells 2 3 4 2 951, 962
All-predicted 2 3 4 2 951, 962
Accuracy: 09977
Precision: 0.0000 1.0000
Recall/Sensitivity: 0.0000 09977
Specificity: 09977 Nan
F1_Score: 0.0000 0.9989
Dendritic_cells Monocytes All-true|
Monocytes 1 435 436
All-predicted 1 435 436
Accuracy: 1.0000
Precision: 1.0000
Recall/Sensitivity: 1.0000
Specificity: Nan
F1_Score: 1.0000
Monocytes All-true
Monocytes 50) 50
All-predicted 50) 50|
Accuracy: 09424
Precision: 0.0000 0.0000 1.0000
Recall/Sensitivity: 0.0000 0.0000 09424
Specificity: 09986 09438 Nan
F1_Score: 0.0000 0.0000 0.9703
B_cells NK_cells T cells All-true]
T cells 1 39 654 694
Allpredicted 1 39 654 694
Accuracy: 08158
Precision: 1.0000 0.0000 0.0000
Recall/Sensitivity: 0.8158 0.0000 0.0000
Specificity: Nan 08289 0.9868
F1_Score: 08986 0.0000 0.0000
Denditic_cells Monocytes T _cells All-true
Dendritic_cells 62 13 1 76)
Allpredicted 62 13 1 76)
Accuracy: 09269
Precision: 0.0000 1.0000 0.0000
Recall/Sensitivity: 0.0000 0.9269 0.0000
Specificity: 09954 Nan 09315
F1_Score: 0.0000 09621 0.0000
Monocytes NK_cells T_cells Au-m£|
NK_cells 1 203 15 219
All-predicted 1] 203] 15| 219|
Accuracy: 08667
Precision: 1.0000 0.0000 0.0000
Recall/Sensitivity: 0.8667 0.0000 0.0000
Specificity: Nan 0.9000 0.9667
F1_Score: 09286 0.0000 0.0000
Dendritic_cells| Monocytes T_cells Au-m£|
Dendritic_cells 26| 3| 1 30
All-predicted 26 3] 1] 30|

New set classification

New set classification

New set classification

New set classification

New set classification

New set classification

New set classification

New set classification

Page | 199



Step56 10x+GEO+Broads2_1+2+3 Broadsl (test)

Cycle 7

Step 57 10x+GEO+BroadS2 10x+GEO+BroadS2

Step 58 10x+GEO+BroadS2 Broads1 (test)

Swapping

Step 59 10x+GEO+BroadS1 10x+GEO+BroadS1

Accuracy: 0.9380 Test Result (BroadS1)
Precision: 1.0000 0.8333 0.9467 07471 0.9617
Recall/Sensitivity: 0.9217 0.5634 0.9843 0.8307 0.9564
Specificity: 1.0000 0.9988 09920 0.9667 0.9347
F1_Score: 09592 06723 0.9652 0.7867 09591
B cells| Dendritic_cells Monocytes NK_cells T _cells All-true]
8_cells 1530) 13| 26| 30 61 1660
Dendritic_cells 0| 80 61 0 1 142
Monocytes 0| 3 1635 0| 23] 1661
NK_cells 0| 0| 4] 1158 232 1394
T_cells 0| 0| 1 362 7963 8326
All-predicted 1530) 96 1727 1550) 8280) 13183]
Accuracy: 0.9936 2-fold cross-validation
Precision: 0.9970 1.0000 0.9772 0.9832 0.9956
Recall/Sensitivity: 0.9981 0.4426 0.9921 0.9732 0.9974
Specificity: 0.9996 1.0000 0.9987 0.9983 0.9878
F1_Score: 0.9975 0.6136 0.9846 0.9782 0.9965
B cells[ Dendritic_cells| Monocytes NK_cells T _cells All-true
B_cells 5895 0| 3| 0| 8 5906
Dendritic_cells 10, 54 37 7 14, 122]
Monocytes 3 0| 2749 0| 19| 2771
NK_cells 1 0| 1 4571 124 4697
T _cells 4 0 23] 71 37410 37508
All-predicted| 5913 54 2813 4649 37575 51004
Accuracy: 0.9919
Precision: 0.9969 0.9750 0.9792 0.9821 0.9933
Recall/Sensitivity: 0.9985 02635 09841 0.9659 09977
Specificity: 0.9996 1.0000 0.9988 0.9982 0.9821
F1_Score: 0.9977 0.4149 0.9817 0.9740 0.9955
B_cells|  Dendritic_cells Monocytes NK_cells T_cells All-true]
B_cells 6054 0| 0| 0 9 6063
Dendritic_cells 6| 39 46 16 41 148
Monocytes 7 0| 2784 1 37 2829
NK_cells 2 0 2 4674 161, 4839
T_cells 4 1 11 68| 37040 37124
All-predicted| 6073 40| 2843 4759] 37288 51003
Accuracy: 0.9928
Precision: 0.9969 0.9875 09782 0.9827 09945
Recall/Sensitivity: 0.9983 0.3531 0.9881 0.9695 0.9976
Specificity: 0.9996 1.0000 0.9987 0.9982 0.9850
F1_Score: 0.9976 0.5143 0.9831 0.9761 0.9960
B_cells|  Dendritic_cells Monocytes NK_cells] T_cells All-true|
B_cells 11949 0 3 of 17 11969
Dendritic_cells 16, 93] 83 Zj 55 270
Monocytes 10| 0 5533] 1 56 5600)
NK_cells 3 0| 3] 9245 285 9536
T_cells 8 1 34 139 74450 74632
All-predicted 11986 94) 5656 9408] 74863 102007
Accuracy: 0.9461 Final Result - BroadS1
Precision: 0.9981 09932 0.7941 0.9544
Recall/Sensitivity: 0.9301 0.9723 0.7690 0.9736
Specificity: 0.9997 0.9990 0.9764 0.9203
F1_Score: 0.9629 09827 07813 0.9639
B_cells| Den cells. Monocytes NK_cells| T_cells| All-true]
8_cells 1544] s 60) 31 1660
Dendritic_cells 0| 5| 0| 1 142
Monocytes 1 1615 0 36 1661
NK_cells 2 1 1072 319, 1394
T_cells 0| 2] 0| 218 8106 8326
All-predicted 1547 167) 1626 13&# 8493] 131?'
Accuracy: 0.9918 2-fold cross-validation
Precision: 09967 1.0000 0.9885 0.9643 0.9949
Recall/Sensitivity: 0.9957 0.6133 0.9842 0.9693 0.9954
Specificity: 0.9996 1.0000 0.9994 0.9961 0.9855
F1_Score: 0.9962 0.7603 0.9864 0.9668 0.9952
B_cells| Dendritic_cells Monocytes| NK_cells T cells All-true]
B_cells 5764 0| 4| 10| 11 5789
Dendritic_cells 1] 26 18] 5| 5| 75|
Monocytes 1 0 2498] 0| 29) 2538
NK_cells 2 0| 2] 4831 149 4984
T_cells 5 0| 5| 164 37889 38063
All-predicted| 5783 46 2527 5010 38083 51449
Accuracy: 09916
Precision: 0.9948 1.0000 0.9872 0.9615 0.9955
Recall/Sensitivity: 0.9988 03731 09815 09737 0.9947
Specificity: 0.9993 1.0000 0.9993 0.9957 0.9878
F1_Score: 0.9968 0.5435 0.9843 0.9676 0.9951
B_cells Dendritic_cells NK_cells T_cells All-true
B_cells 5949 0| 0| 4 3 5956
Dendritic_cells 10| 2| 19 12 1 67,
Monocytes 13| 0| 2543 2 33 2591
NK_cells 2 0| 1 4970, 131 5104
T_cells 6| 0| 13 181 37531 37731
All-predicted| 5980 25 2576 5169 37699 51449
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Accuracy: 0.9917

Precision: 0.9958 1.0000 0.9879 0.9629 0.9952
Recall/Sensitivity: 09973 0.4932 0.9829 09715 09951
Specificity: 0.9995 1.0000 0.9994 0.9959 0.9866
F1_Score: 0.9965 0.6519 0.9854 09672 09951

8 cells| Dendritic_cells Monocytes! NK_cells T _cells All-true]

B cells 11713 0| 4 14 14 11745

Dendritic_cells 1 71 37| 17 6 142)

24 0 5041] 2| 62 5129)

NK_cells 4 0| 3 9801] 280 10088

T _cells 11 0 18| 345 754z_o| 75794

All-predicted 11763] 71 51@1 10179) 75782| 102898|

Step 60 10x+GEO+Broadsl Broads? (test) Accuracy: 09173 Final Result - Broads2

Precision: 09310 0.0000 0.9238 05556 0.9883
Recall/Sensitivity: 0.9952 0.0000 0.9958 0.9264 0.9070
Specificity: 0.9866 0.9999 0.9828 09455 0.9850
F1_Score: 09620 0.0000 0.9585 0.6946 0.9459

B_cells| _Denditic_cells NK_cells T_cells All-true

B cells 1875 0 6 o 3 1884

Dendritic_cells 103 0 152 0| 15 270

Monocytes 6 0| 2123] o 3 2132

NK_cells 6 0 0 780 56, 842

T cells 24| 1 17| 624 6498] 7164

All-predicted 2014] 1 2298] 1404 6575| 12292)
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7

+« Supplemental Table 5. The assessment of classification performance for specific
simulations EXP 1 through EXP 8.

EXP 4 Training Set|Testing Set Accuracy: 0.9461
1(Cycle 7) 10x v Precision: 0.9981 0.8144 0.9932 0.7941 0.9544
GEO v Recall/Sensitivity: 0.9301 0.9577 0.9723 0.7690 0.9736
BroadS1 v Specificity: 0.9997 0.9976 0.9990 0.9764 0.9203
BroadS2 v F1_Score: 0.9629 0.8803 0.9827 0.7813 0.9639
Predicted B_cells| Dendritic_cells’ Monocytes NK_cells T _cells All (true)
B_cells 1544 20| 5 60| 31 1660
Dendritic_cells 0| 136 5 0 1 142
Monocytes 1 9 1615 0| 36 1661
NK_cells 2 0| 1] 1072 319 1394
T_cells 0| 2 0| 218 8106 8326
All (predicted) 1547 167| 1626 1350 8493 13183!
EXP 4 Supersets Training Set|Testing Set Accuracy: 0.9173
2a (swapping) 10x 4 Precision: 0.9310 0.0000 0.9238 0.5556 0.9883
GEO v Recall/Sensitivity: 0.9952 0.0000 0.9958 0.9264 0.9070
BroadS1 v Specificity: 0.9866 0.9999 0.9828 0.9455 0.9850
BroadS2 v F1_Score: 0.9620 0.0000 0.9585 0.6946 0.9459
Predicted B_cells| Dendritic_cells’ Monocytes NK_cells T _cells All (true)
B_cells 1875 0| 6 0 3 1884
Dendritic_cells 103} 0| 152 0| 15 270
Monocytes 6| 0| 2123 0| 3| 2132
NK_cells 6) 0 0) 780) 56 842
T_cells 24 l 17| 624 6498 7164
All (predicted) 2014 1] 2298 1404 6575 12292
EXP 4 Supersets Training Set|Testing Set Accuracy: 0.9172
2b (swapping) with QC |10x v Precision: 0.9317 0.0000 0.9216 0.5560 0.9884
GEO v Recall/Sensitivity: 0.9957 0.0000 0.9965 0.9264 0.9079
BroadS1 v Specificity: 0.9867 1.0000 0.9832 0.9449 0.9848
BroadS2 (QC) v F1_Score: 0.9627 0.0000 0.9576 0.6949 0.9464
Predicted B_cells| Dendritic_cells’ Monocytes NK_cells T cells All (true)
B_cells 1869 0 5| 0 3 1877]
Dendritic_cells 103} 0| 152 0| 15| 270
Monocytes 5| 0| 1997 0| 2| 2004
NK_cells 6) 0 0) 780) 56 842
T_cells 23 0 13| 623 6493 7152
All (predicted) 2006 0| 2167 1403 6569 12145
EXP 4 Supersets Training Set|Testing Set Accuracy: 0.9829
3 10x v Precision: 0.9769 0.0000 0.8493 0.9851 0.9921
GEO v Recall/Sensitivity: 0.9616 0.0000 0.8978 0.9255 0.9972
BroadS1 v Specificity: 0.9970 0.9978 0.9950 0.9985 0.9759
BroadS2 v F1_Score: 0.9692 0.0000 0.8729 0.9544 0.9947
Predicted B_cells| Dendritic_cells! Monocytes NK_cells T _cells All (true)
B_cells 9698 28 356 | 2| 10085]
Dendritic_cells NA NA NA NA NA NA
Monocytes 202 19| 2345 3 43 2612
NK_cells 0| 135 27| 7760 463 8385,
T_cells 27| 7 33] 113 64161 64341
All (predicted) 9927, 189 2761 7877 64669 85423
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EXP 4 Supersets Training Set|Testing Set Accuracy: 0.9352
4 10x v Precision: 0.0000 0.0000 0.9976 0.5394 0.9965
GEO v Recall/Sensitivity: 0.0000 0.0000 0.9801 0.9968 0.9169
BroadS1 v Specificity: 0.9993 1.0000 0.9994 0.9340 0.9914
BroadS2 v F1_Score: 0.0000 0.0000 0.9888 0.7000 0.9550
Predicted B_cells Dendritic_cells! Monocytes NK_cells T cells All (true)
B_cells NA NA NA NA NA NA
Dendritic_cells NA NA NA NA NA NA|
Monocytes 3 0| 839 5| 9| 856
NK_cells 0 0 0 308 1] 309
T_cells 0 0 2 258 2867 3127,
All (predicted) 3 0 841 571 2877 4292]
EXP 2 Sets Training Set|Testing Set Accuracy: 0.9447
5 Broads1 v Precision: 1.0000 0.8609 0.9837 0.8150 0.9488
BroadS2 v Recall/Sensitivity: 0.9102 0.9155 0.9825 0.7712 0.9736
Specificity: 1.0000 0.9984 0.9977 0.9793 0.9100
F1_Score: 0.9530 0.8874 0.9831 0.7925 0.9611
Predicted B_cells| Dendritic_cells| Monocytes NK_cells T _cells All (true)
B_cells 15111 14| 15 25| 95 1660
Dendritic_cells 0| 130 9| 0| 3 142
Monocytes 0| 7| 1632 0| 22 1661
NK_cells 0 0 2 1075 3] 1394
T_cells 0 0 1] 219] 8106 8326
All (predicted) 1511 151] 1659 1319 8543 13183
EXP 2 Sets Training Set|Testing Set Accuracy: 0.8815
6 BroadS1 v Precision: 0.9230 0.0000 0.9482 0.4363 0.9681
BroadS2 v Recall/Sensitivity: 0.8339 0.0000 0.9953 0.9192 0.8889
Specificity: 0.9874 1.0000 0.9886 0.9127 0.9590
F1 Score: 0.8762 0.0000 0.9712 0.5917 0.9268
Predicted B_cells| Dendritic_cells; Monocytes NK_cells T cells All (true)
B_cells 1571} 0| 7 204 102 1884
Dendritic_cells 125 0| 100 15| 30 270
Monocytes 0| 0| 2122 0| 10| 2132
NK_cells 0 0 0 774] 68 842
T_cells 6) 0 9 781 6368 7164
All (predicted) 1702] 0 2238 1774] 6578 12292
EXP 4 Sets Training Set|Testing Set Accuracy: 0.9232
7 10x v Precision: 1.0000 NA 0.8315 0.8102 0.9502
GEO v Recall/Sensitivity: 0.8769 NA 1.0000 0.7553 0.9671
BroadS1 Specificity: 1.0000 NA 0.9575 0.9870 0.9292
BroadS2 v F1_Score: 0.9344 NA 0.9080 0.7818 0.9586
Predicted B_cells Dendritic_cells! Monocytes NK_cells T cells All (true)
B_cells 1652 NA 57| 1] 174 1884
Dendritic_cells 0| NA 265 0| 5 270
Monocytes 0 NA 2132, 0 0 2132
NK_cells 0 NA 22 636 184 842
T_cells 0 NA 88 148 6928 7164
All (predicted) 1652 NA 2564 785) 7291 12292
EXP 4 Sets Training Set|Testing Set Accuracy: 0.9295
8(Cycle 3) 10x v Precision: 1.0000 NA 0.9027 0.8027 0.9428
GEO v Recall/Sensitivity: 0.8699 NA 0.9946 0.7590 0.9729
BroadS1 v Specificity: 1.0000 NA 0.9846 0.9779 0.8989
BroadS2 F1_Score: 0.9304 NA 0.9464 0.7802 0.9576
B_cells Dendritic_cells! Monocytes NK_cells’ T _cells All (true)
B_cells 1444] NA 31 37 148 1660
Dendritic_cells 0| NA 142 0| 0| 142
Monocytes 0| NA 1652 0 9| 1661
NK_cells 0| NA 2 1058 334 1394
T_cells 0| NA 3 223 8100 8326
All (predicted) 1444 NA 1830, 1318 8591, 13183
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% Other Supplemental Materials in Study I11.

Raw data table of overall accuracy in incremental learning cycles.

OVERALL ACCURACY Cross Validation Added Data External Validation Total cells Added cells

Cycle 0 0.99865 0.82009 0.81863 85423 0
Cycle 1 0.99842 0.24263 0.78230 86279 856
Cycle 2 0.99808 0.99143 0.92217 88315 2036
Cycle 3 0.99819 0.91869 0.92953 89715 1400
Cycle 4 0.99612 0.93721 0.93120 92716 3001
Cycle 5 0.99540 0.96917 0.93545 95726 3010
Cycle 6 0.99435 0.972 0.93803 98678 2952
Cycle 7 0.993 0 0.946 102007 3329

Swapping 0.992 0 0.917 102898 0

Raw data tables of other assessment metrics values for each cell type of testing steps in

cycles.

B cell ACC F1 SE SP PR RE

Step 4 0.97861 0.9072 | 0.8301 1.0000 1.0000 0.8301
Step 13 0.96200 0.8223 0.6982 1.0000 1.0000 0.6982
Step 17 0.98263  0.92591 | 0.8621 1.0000 1.0000 0.8621
Step 27 0.98362 0.93041 0.8699 1.0000 1.0000 0.8699
Step 37 0.98779 0.9491 | 0.9042 09998 0.9987 0.9042
Step 46 0.98938 0.9561 | 0.9193 09995 0.9961 0.9193
Step 56 0.99014 0.9593 0.9217 1.0000 1.0000 0.9217
Step 58 0.99097 0.9629 | 0.9301 09997 0.9981 0.9301
Step 60* 0.98796 0.9620 0.9952 0.9866 0.9310 0.9952
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DC ACC F1 SE SP PR RE
Step 4 0.00000 0.0000 0.0000 NA NA 0.0000
Step 13 0.00000 0.0000 0.0000 NA NA 0.0000
Step 17 0.00000 0.0000 0.0000 NA NA 0.0000
Step 27 0.0000 0.0000 0.0000 NA NA 0.0000
Step 37 0.99461 0.7171 0.6338 0.9985 0.8257 0.6338
Step 46 0.98900 0.0764 0.0423 0.9993 0.4000 0.0423
Step 56 0.99408 0.6723 0.5634 0.9988 0.8333 0.5634
Step 58 0.99719 0.8803 0.9578 0.9976 0.8144 0.9578
Step 60* 0.97795 0.0000 0.0000 0.9999 0.0000 0.0000

Monocyte ACC F1 SE SP PR RE
Step 4 0.97747 0.9090 0.8928 0.9897 0.9257 0.8928
Step 13 0.95373 0.8449 1.0000 09471 0.7314 1.0000
Step 17 0.9850 0.9425 0.9777 09860 0.9098 0.9777
Step 27 0.98582 0.9464 0.9946 0.9846 0.9027 0.9946
Step 37 0.98809 0.9542 0.9856 0.9885 0.9249 0.9856
Step 46 0.99120 0.9652 0.9693 0.9944 0.9612 0.9693
Step 56 0.99105 0.9652 0.9844 0.9920 0.9467 0.9844
Step 58 0.99568 0.9827 0.9723 0.9991 0.9932 0.9723
Step 60* 0.98503 0.9585 0.9958 0.9828 0.9239  0.9958

NK cell ACC F1 SE SP PR RE
Step 4 0.82857 0.5493 0.9878 0.8097 0.3804 0.9878
Step 13 0.83008 0.5504 0.9835 0.8119 0.3821 0.9835
Step 17 0.95176 0.7454 0.6679 0.9853 0.8433 0.6679
Step 27 0.95479 0.7802 0.7590 0.9780 0.8027 0.7590
Step 37 0.94910 0.7177 0.6119 0.9890 0.8678 0.6119
Step 46 0.94963 0.7654 0.7769 09701 0.7542 0.7769
Step 56 0.95236 0.7867 0.8307 0.9668 0.7471  0.8307
Step 58 0.95449 0.7813 0.7690 09764 0.7941 0.7690
Step 60* 0.94419 0.6946 0.9264 0.9455 0.5556 0.9264
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T cell ACC F1 SE SP PR RE
Step 4 0.86338 0.8792 0.7872 0.9940 0.9956 0.7872
Step 13 0.82955 0.8449 0.7353 0.9912 0.9930 0.7353
Step 17 0.93575 0.9507 0.9814 0.8575 0.9219 0.9814
Step 27 0.94561 0.9576 0.9729 0.8989 0.9429 0.9729
Step 37 0.94281 0.9560 0.9843 0.8717 0.9294 0.9843
Step 46 0.95168 0.9622 0.9737 09139 0.9510 0.9737
Step 56 0.94842 0.9591 0.9564 0.9347 09617 0.9564
Step 58 0.95396 0.9639 0.9736 0.9203 0.9544 0.9736
Step 60* 0.93955 0.9459 0.9070 0.9850 0.9883 0.9070
ACC B cell Monocyte DC NK cell T cell
Step 4 0.97861 0.97747 0.00000 0.82857 0.86338
Step 13 0.96200 0.95373 0.00000 0.83008 0.82955
Step 17 0.98263 0.9850 0.00000 0.95176 0.93575
Step 27 0.98362 0.98582 0.0000 0.95479 0.94561
Step 37 0.98779 0.98809 0.99461 0.94910 0.94281
Step 46 0.98938 0.99120 0.98900 0.94963 0.95168
Step 56 0.99014 0.99105 0.99408 0.95236 0.94842
Step 58 0.99097 0.99568 0.99719 0.95449 0.95396
Step 60* 0.98796 0.98503 0.97795 0.94419 0.93955
F1 B cell Monocyte DC NK cell T cell
Step 4 0.9072 0.9090 0.0000 0.5493 0.8792
Step 13 0.8223 0.8449 0.0000 0.5504 0.8449
Step 17 0.92591 0.9425 0.0000 0.7454 0.9507
Step 27 0.93041 0.9464 0.0000 0.7802 0.9576
Step 37 0.9491 0.9542 0.7171 0.7177 0.9560
Step 46 0.9561 0.9652 0.0764 0.7654 0.9622
Step 56 0.9593 0.9652 0.6723 0.7867 0.9591
Step 58 0.9629 0.9827 0.8803 0.7813 0.9639
Step 60* 0.9620 0.9585 0.0000 0.6946 0.9459
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« The accuracy of each cell type of testing steps during incremental learning cycles.

Accuracy by Cell Type
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« The F1 score of each cell type of testing steps during incremental learning cycles.

F1-Score by Cell Type
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Raw data tables of confusion matrix values for each cell type of testing steps in

incremental learning cycles.

" Monocytes | Step 4
Step 13
Step 17
Step 27
Step 37
Step 46
Step 56
Step 58
swapping

Dendriticcells ~ Step 4
Step 13
Step 17
Step 27
Step 37
Step 46
Step 56
Step 58
swapping

TP

N

Total#
13183
13183
13183
13183
13183
13183
13183
13183
12292

Total#
13183
13183
13183
13183
13183
13183
13183
13183
12292

Total#

13183
13183
13183
13183
12292
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[NKells| stepa
Step 13
Step 17
Step 27
Step 37
Step 46
Step 56
Step 58
swapping

RTGEENN steps

Step 13
Step 17
Step 27
Step 37
Step 46
Step 56
Step 58
swapping

TP

TP

N

N

Total#
13183
13183
13183
13183
13183
13183
13183
13183
12292

Total#
13183
13183
13183
13183
13183
13183
13183
13183
12292
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» Raw data tables of confusion matrix values in each cell type of cross validation and
added prediction in cycles.

~ Beells Totali
(2-fold) Step 1 85423
(2-fold) Step 5 86279
(2-fold) Step 14 88315
(2-fold) Step 18 89715
(added-predict-BC) Step 19 288
(2-fold) Step 28 92716
(added-predict-BC) Step 29 388
(2-fold) Step 38 95726
(added-predict-BC) Step 39 346
(2-fold) Step 47 98678
(added-predict-BC) Step 48 862
(2-fold) Step 57 102007
Swapping Step 59 102898
 Monocytes Totali
(2-fold) Step 1 85423
(added-predict-MC)  Step 2 425
(added-predict-MC) Step 3 431
(2-fold) Step 5 86279
(2-fold) Step 14 88315
(2-fold) Step 18 89715
(added-predict-MC) Step 21 640
(added-predict-MC) Step 22 102
(2-fold) Step 28 92716
(added-predict-MC) Step 31 379
(added-predict-MC) Step 32 73
(2-fold) Step 38 95726
(added-predict-MC) Step 41 354
(added-predict-MC) Step 42 98
(2-fold) Step 47 98678
(added-predict-MC) Step 50 436
(added-predict-MC) Step 51 50
(2-fold) Step 57 102007
Swapping Step 59 102898
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(added-predict-DC)
(added-predict-DC)
(2-fold)
(added-predict-DC)
(added-predict-DC)
(2-fold)
(added-predict-DC)
(2-fold)
(added-predict-DC)
(added-predict-DC)
(2-fold)
Swapping

(2-fold)
(2-fold)
(added-predict-NK)
(2-fold)
(2-fold)
(added-predict-NK)
(2-fold)
(added-predict-NK)
(2-fold)
(added-predict-NK)
(2-fold)
(added-predict-NK)
(2-fold)
Swapping

Step 24
Step 26
Step 28
Step 34
Step 36
Step 38
Step 44
Step 47
Step 53
Step 55
Step 57
Step 59

Step 1
Step 5
Step 6
Step 14
Step 18
Step 25
Step 28
Step 35
Step 38
Step 45
Step 47
Step 54
Step 57
Step 59

Total#
55
26

92716
33
12

95726
38

98678
76
30

102007

102898

Total#
85423
86279
309
88315
89715
166
92716
263
95726
194
98678
219
102007
102898
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(2-fold)
(2-fold)
(added-predict-TC)
(added-predict-TC)
(added-predict-TC)
(added-predict-TC)
(added-predict-TC)
(added-predict-TC)
(2-fold)
(added-predict-TC)
(added-predict-TC)
(2-fold)
(added-predict-TC)
(added-predict-TC)
(2-fold)
(added-predict-TC)
(added-predict-TC)
(2-fold)
(added-predict-TC)
(added-predict-TC)
(2-fold)
(added-predict-TC)
(added-predict-TC)
(2-fold)
Swapping

Step 1
Step 5
Step 7
Step 8
Step 9
Step 10
Step 11
Step 12
Step 14
Step 15
Step 16
Step 18
Step 20
Step 23
Step 28
Step 30
Step 33
Step 38
Step 40
Step 43
Step 47
Step 49
Step 52
Step 57
Step 59

Total#
85423
86279
222
310
325
382
284
204
88315
965
435
89715
550
1174
92716
908
954
95726
960
962
98678
962
694
102007
102898
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» ANN predication performance (SE and SP) on each cell type (B cells, Monocytes, NK
cells, T cells, and Dendritic cells) in the incremental learning experiment.
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Appendix 8 Raw Results in Study 1V

* Raw results of confusion matrix during 17 rounds of four-supersets-swapping external
cross-validation experiments.

Round1-AllSets+10*5EC Round2-AliSets+5*5EC
TestWith-Source-BroadS: Accuracy: 0.933323 Accuracy: 0.940605
Precision:  0.99934 0.570776 0.97976 0.753272 0.955041 Precision: 0.996154 0.80597 0.95399 0.776259 0.956932
Recall/Ser 0.911446 0.880282 0.932571 0.825681 0.956762 Recall/Ser 0.936145 0.760563 0.986153 0.774032 0.963368
Specificity 0.999913 0.992792 0.997223 0.968021 0.922792 Specificity 0.999479 0.998006 0.993144 0.973619 0.925674
F1 Score: 0.953371 0.692521 0.955583 0.787817 0.955901 F1_Score: 0.965217 0.782609 0.969805 0.775144 0.960139
Predicted| B_cells]ritic_cellsflonocytes| NK_cells| T_cells All Predicted| B_cells]ritic_cellsflonocytes| NK_cells| T_cells All
B_cells 1513 25 16| 18 88 1660 B_cells 1554 17, 36 16 37 1660
Dendritic| 0| 125 14 0| 3 142| Dendritic| 0| 108 32 0| 2 142|
Monocyte| 0| 68| 1549 0| 44 1661 Monocyte| 4 8 1638 0| 11 1661
NK_cells 1 0 2 1151 240, 1394 NK_cells 2 0 2 1079 311 1394
T_cells 0| 1] 0| 359 7966 8326 T _cells 0| 1] 9| 295 8021/ 8326
All 1514 219 1581 1528 8341 13183 All 1560 134 1717 1390 8382 13183
TestWith-Source-BroadS: Accuracy: 0.897169 Accuracy: 0.934429
Precision: 0.976719 0.592593 0.92548 0.492395 0.963328 Precision: 0.963141 0.780612 0.943675 0.73057 0.950041
Recall/Ser 0.957537 0.059259 0.972796 0.922803 0.887353 Recall/Ser 0.957006 0.566667 0.958724 0.669834 0.96622
Specificity 0.995869 0.999085 0.983563 0.930044 0.952808 Specificity 0.99337 0.996423 0.987992 0.981834 0.929017
F1 Score: 0.967033 0.107744 0.948548 0.642149 0.923781 F1 Score: 0.960064 0.656652 0.95114 0.698885 0.958062
Predicted| B_cells|ritic_cellsflonocytes| NK_cells| T cells All Predicted| B_cells|ritic_cellsflonocytes| NK_cells T_cells| All
B_cells 1804 0] 32 0| 48 1884 B_cells 1803 1 22 0| 58| 1884
Dendritic 15 16 116 11 112 270 Dendritic 22 153 86| 1 8 270
Monocyte 17 10| 2074 11 20 2132 Monocyte 24 39 2044 0 25 2132
NK_cells 0 0 3 777 62, 842 NK_cells 4 0 1 564 273 842
T _cells 11 1 16| 779 6357 7164 T _cells 19 g 13 207, 6922 7164
All 1847 27 2241 1578 6599 12292 All 1872 196 2166 772 7286 12292
TestWith-Source-10x Accuracy: 0.059281 Accuracy:  0.14509
Precision: 0.686747 0.03145 1 0.96851 Precision: 0.300725 0 0.028666 0.997672 0.928715
Recall/Ser 0.005652 0.997703 0.000239 0.037286 Recall/Ser 0.01646 0 0.812021 0.102206 0.143765
Specificity 0.999655 0.030865 1 0.9963 Specificity 0.994876 0.999262 0.132144 0.999974 0.966322
F1 Score: 0.011212 0.060978 0.000477 0.071807 F1 Score: 0.031212 0 0.055378 0.185418 0.248987
Predicted| B_cellsflonocytes| NK_cells| T _cells All Predicted| B_cells]ritic_cellsflonocytes| NK_cells| T_cells All
B_cells 57| 10028 0| 0| 10085 B_cells 166 2 9914 0| 3 10085
Monocyte| 1 2606 0| 5 2612 Monocyte| 2 59 2121 0| 430 2612
NK_cells 20 8290 2 73 8385 NK_cells 13 1] 7237 857 277, 8385
T_cells 5 61937 0| 2399 64341 T_cells 371 1] 54717, 2 9250 64341
All 83 82861 2 2477 85423 All 552! 63 73989 859 9960 85423
TestWith-Source-GEODB Accuracy: 0.751758 Accuracy: 0.752156
Precision: 0.674718 0.196078 0.36102 0.099451 0.961145 Precision: 0.674718 0.192308 0.36102 0.099451 0.961145
Recall/Ser 0.699889 0.002293 0.731199 0.965517 0.886721 Recall/Ser 0.701843 0.001148 0.732305 0.980892 0.886899
Specificity 0.981583 0.998649 0.863487 0.91888 0.908766 Specificity 0.981572 0.999307  0.8634 0.918832 0.908579
F1 Score: 0.687073 0.004532 0.483378 0.180328 0.922434 F1 Score: 0.688013 0.002282 0.48362 0.180592 0.922531
Predicted| B_cells]ritic_cellsflonocytes| NK_cells| T_cells All Predicted| B_cells]ritic_cellsflonocytes| NK_cells| T_cells All
B_cells 1257, 11 204 79 245 179 B_cells 1257, 6 204 79 245 1791
Dendritic 132 10| 3748 176 296 4362 Dendritic 132 5 3748 176 296 4357
Monocyte| 64 10, 2421 465 351 3311 Monocyte| 64 5 2421 465 351 3306
NK_cells 0| 10, 0| 308| 1] 319 NK_cells 0| 5 0| 308 1] 314
T_cells 410 10, 333 2069 22090 24912 T_cells 410 5 333 2069 22090 24907
All 1863 51 6706 3097 22983 34700 All 1863 26 6706 3097 22983 34675
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Round3-AllSets+2*5EC Round4-AllSets+1*5EC

Accuracy: 0.931882 Accuracy: 0.936964

Precision: 0.99605 0.698324 0.985267 0.749307 0.946267 Precision: 0.991525 0.661202 0.980296 0.821718 0.94145
Recall/Ser 0.911446 0.880282 0.966285 0.776184 0.956041 Recall/Ser 0.916265 0.852113 0.958459 0.727403 0.973337
Specificity 0.999479 0.995859 0.997917 0.969293 0.906938 Specificity 0.998872 0.995246 0.997223 0.981339 0.896232

F1 Score: 0.951872 0.778816 0.975684 0.762509 0.951129 F1 Score: 0.952411 0.744615 0.969254 0.77169 0.957128
Predicted| B_cells|ritic_cellsflonocytes| NK_cells| T cells All Predicted| B_cells|ritic_cellsjflonocytes| NK_cells| T cells All
B_cells 1513 17 7 0 123 1660 B_cells 1521 37 6 0 96 1660
Dendritic 0 125 14 0 3 142 Dendritic 0 121 19 0 2 142
Monocyte 1 37 1605 0 18 1661 Monocyte 11 25 1592/ 0 33 1661
NK_cells 2 0 2 1082 308 1394 NK_cells 2 0 5 1014 373 1394
T_cells 3 0 1 362 7960 8326 T_cells 0 0 2] 220 8104 8326
All 1519 179 1629 1444 8412 13183 All 1534 183 1624 1234 8608 13183
Accuracy: 0.891555 Accuracy: 0.898226

Precision: 0.936056 0.860465 0.830196 0.558603 0.961133 Precision: 0.976164 0.90625 0.942492 0.463306 0.964746
Recall/Ser 0.924628 0.137037 0.951689 0.7981 0.904383 Recall/Ser 0.934713 0.214815 0.968574 0.862233 0.897683
Specificity 0.988566 0.999501 0.959154 0.953624 0.948908 Specificity 0.995869 0.999501 0.987598 0.92655 0.954173
F1_Score: 0.930307 0.236422 0.886801 0.657213 0.931895 F1_Score: 0.954989 0.347305 0.955355 0.60274 0.930007
Predicted| B_cells|ritic_cellsflonocytes| NK_cells| T_cells All Predicted| B_cellsjritic_cellsflonocytes| NK_cells| T_cells All
B_cells 1742 1 121 4 16 1884 B_cells 1761 0| 5 18 100 1884
Dendritic]| 19 37 80 1 133 270 Dendritic| 23 58 90 90 9 270
Monocyte 62 2 2029 0 39 2132 Monocyte 5 6 2065 35 21 2132
NK_cells 16 0 80 672 74 842 NK_cells 0 0 11 726 105 842
T _cells 22 3 134 526 6479 7164 T _cells 15 0 20 698 6431 7164
All 1861 43 2444 1203 6741 12292 All 1804 64 2191 1567 6666 12292
Accuracy: 0.053896 Accuracy: 0.081828

Precision: 0.433526 0 0.031056 1 0.56944 Precision: 0.404506 0 0.031378 1 0.794106
Recall/Ser 0.02231 0 0.970904 0.000239 0.028613 Recall/Ser 0.037382 0 0.952527 0.000239 0.06408
Specificity 0.996098 0.999895 0.044523 1 0.933972 Specificity 0.992633 0.999941 0.072539 1 0.949293
F1_Score: 0.042437 0 0.060186 0.000477 0.054488 F1_Score: 0.06844 0 0.060754 0.000477 0.118591
Predicted| B_cells|ritic_cellsjflonocytes| NK_cells| T _cells All Predicted| B_cells|ritic_cellsjflonocytes| NK_cells| T_cells All
B_cells 225 0| 9856 0 4 10085 B_cells 377 0| 9702 0 6 10085
Monocyte| 7 6 2536 0 63 2612 Monocyte| 8| 5 2488 0 111 2612
NK_cells 33 2 7023 2 1325 8385 NK_cells 3 0| 7428 2 952 8385
T cells 254 1 62245 0 1841 64341 T cells 544 0| 59674 0 4123 64341
All 519 9 81660 2 3233 85423 All 932 5 79292 2 5192 85423
Accuracy: 0.752395 Accuracy: 0.752474

Precision: 0.674718 0.181818 0.36102 0.099451 0.961145 Precision: 0.674718 0.166667 0.36102 0.099451 0.961145
Recall/Ser 0.70302 0.000459 0.73297 0.990354 0.887006 Recall/Ser 0.703414 0.00023 0.733192 0.993548 0.887042
Specificity 0.981565 0.999703 0.863348 0.918804 0.908467 Specificity 0.981563 0.999835 0.86333 0.918795 0.908429
F1_Score: 0.688578 0.000916 0.483765 0.180751 0.922589 F1_Score: 0.688767 0.000459 0.483813 0.180804 0.922608
Predicted| B_cells|ritic_cellsflonocytes| NK_cells| T _cells All Predicted| B_cells|ritic_cellsjflonocytes| NK_cells| T _cells All
B_cells 1257 3 204 79 245 1788 B_cells 1257 2 204 79 245 1787
Dendritic]| 132 2 3748 176 296 4354 Dendritic| 132 1 3748 176 296 4353
Monocyte 64 2 2421 465 351 3303 Monocyte 64 1 2421 465 351 3302
NK_cells 0 2 0 308 1 311 NK_cells 0| 1 0 308 1 310
T_cells 410 2 333 2069 22090 24904 T _cells 410 1 333 2069 22090 24903
All 1863 11 6706 3097 22983 34660 All 1863 6 6706 3097 22983 34655
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Round5-r'1*5EC Round6-r'tumor_DC

Accuracy: 0.936888 Accuracy: 0.911553

Precision: 0.996078 0.801527 0.947093 0.796467 0.947765 Precision: 0.945075 0 0.936738 0.675258 0.937819
Recall/Ser 0.918072 0.739437 0.980735 0.743902 0.967571 Recall/Ser 0.953614 0 0.971704 0.657819 0.949195
Specificity 0.999479 0.998006 0.992102 0.977521 0.908586 Specificity 0.992016 1 0.99054 0.962592 0.892114

F1 Score: 0.955486 0.769231 0.96362 0.769288 0.957566 F1_Score: 0.949325 0 0.953901 0.666424 0.943473
Predicted| B_cells|ritic_cellsflonocytes| NK_cells| T cells All Predicted| B_cells|ritic_cellsjflonocytes| NK_cells| T cells All
B_cells 1524 16 42 2] 76 1660 B_cells 1583 0 25 26 26 1660
Dendritic 0 105 35 0 2 142 Dendritic 65 0 76 0 1 142
Monocyte 4 9 1629 0 19 1661 Monocyte 14 0| 1614/ 0 33 1661
NK_cells 2 0 8 1037 347 1394 NK_cells 10 0 3 917 464, 1394
T_cells 0 1 6 263 8056 8326 T_cells 3 0 5 415 7903 8326
All 1530 131 1720 1302 8500 13183 All 1675 0 1723 1358 8427 13183
Accuracy: 0.910023 Accuracy: 0.932232

Precision: 0.94925 0.714286 0.898032 0.671218 0.938041 Precision: 0.946623 0.823077 0.940514 0.797637 0.940377
Recall/Ser 0.873673 0.240741 0.941839 0.758907 0.953099 Recall/Ser 0.922505 0.396296 0.978893 0.64133 0.975293
Specificity 0.991545 0.997837 0.977559 0.972664 0.912051 Specificity 0.990584 0.998087 0.987008 0.988035 0.913612
F1_Score: 0.909895 0.360111 0.919414 0.712375 0.94551 F1_Score: 0.934409 0.535 0.95932 0.710994 0.957517
Predicted| B_cells|ritic_cellsflonocytes| NK_cells| T_cells All Predicted| B_cellsjritic_cellsflonocytes| NK_cells| T_cells All
B_cells 1646/ 10 45 0 183 1884 B_cells 1738 9 31 1 105 1884
Dendritic| 17 65 166 4 18 270 Dendritic| 70 107 78 1 14 270
Monocyte 62 12 2008 0 50 2132 Monocyte 9 5 2087 0 31 2132
NK_cells 0 1 2 639 200 842 NK_cells 1 2 6 540 293 842
T _cells 9 3 15 309 6828 7164 T _cells 18 7 17 135 6987 7164
All 1734 91 2236 952 7279 12292 All 1836 130 2219 677 7430 12292
Accuracy: 0.128162 Accuracy: 0.072077

Precision: 0.499219 0 0.031808 1 0.945082 Precision: 0.325893 0 0.028899 1 0.903218
Recall/Ser 0.095092 0 0.918836 0.030769 0.11394 Recall/Ser 1.45E-02 0 0.892802 0.000239 5.71E-02
Specificity 0.987231 0.99959 0.117847 1 0.979793 Specificity 0.995991 0.997588 0.053701 1 0.981311
F1_Score: 0.159753 0 0.061488 0.059701 0.203362 F1_Score: 0.027722 0 0.055985 0.000477 0.107496
Predicted| B_cells|ritic_cellsjflonocytes| NK_cells| T _cells All Predicted| B_cells|ritic_cellsjflonocytes| NK_cells| T_cells All
B_cells 959 0| 9121 0 5 10085 B_cells 146 1 9936 0 2 10085
Monocyte| 3 34 2400 0 175 2612 Monocyte| 9 140 2332 0 131 2612
NK_cells 6 0| 7875 258 246 8385 NK_cells [0) 35 8087 2 261 8385
T cells 953 1 56056 0 7331 64341 T cells 293 30 60341 0 3677 64341
All 1921 35 75452 258 7757 85423 All 448 206 80696 2 4071 85423
Accuracy: 0.752554 Accuracy: 0.789297

Precision: 0.674718 0 0.36102 0.099451 0.961145 Precision: 0.711778 0 0.451006 0.104442 0.962401
Recall/Ser 0.703807 0 0.733414 0.996764 0.887077 Recall/Ser 0.703807 0 0.733414 0.996764 0.887077
Specificity 0.98156 0.999967 0.863313 0.918785 0.908391 Specificity 0.983713 0.999967 0.900895 0.919305 0.893915
F1_Score: 0.688956 0 0.483861 0.180857 0.922627 F1_Score: 0.70777 0 0.558542 0.189073 0.923206
Predicted| B_cells|ritic_cellsflonocytes| NK_cells| T _cells All Predicted| B_cells|ritic_cellsjflonocytes| NK_cells| T _cells All
B_cells 1257 1 204 79 245 1786 B_cells 1257 1 204 79 245 1786
Dendritic]| 132 0 3748 176 296 4352 Dendritic| 35 0 2410 28 266 2739
Monocyte 64 0| 2421 465 351 3301 Monocyte 64 0| 2421 465 351 3301
NK_cells 0 0| 0 308 1 309 NK_cells 0| 0| 0 308 1 309
T_cells 410 0| 333 2069 22090 24902 T _cells 410 0| 333 2069 22090 24902
All 1863 1 6706 3097 22983 34650 All 1766 1 5368 2949 22953 33037
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Round7-r'tonsil_DC Round8-r'methanol_T8

Accuracy: 0.941136 Accuracy: 0.936509

Precision: 0.99737 0.83871 0.970238 0.743742 0.962932 Precision: 0.996053 0.611111 0.973292 0.777385 0.953811
Recall/Ser 0.913855 0.915493 0.981337 0.8099 0.960966 Recall/Ser 0.912048 0.929577 0.943408 0.789096 0.964809
Specificity 0.999653 0.998083 0.99566 0.967003 0.936586 Specificity 0.999479 0.993559 0.996268 0.97328 0.919909
F1_Score: 0.953788 0.875421 0.975756 0.775412 0.961948 F1_Score: 0.952201 0.73743 0.958117 0.783197 0.959279
Predicted| B_cells|ritic_cellsflonocytes| NK_cells| T_cells All Predicted| B_cellsjritic_cellsflonocytes| NK_cells| T_cells All
B_cells 1517 14 37 67 25 1660 B_cells 1514 16 30 30| 70| 1660
Dendritic | 0 130 10 0 2 142 Dendritic | 0| 132 7 0 3 142
Monocyte 1 10 1630! 0 20 1661 Monocyte 1 67 1567 0 26 1661/
NK_cells 2 0| 2 1129] 261 1394 NK_cells 2 0| 2 1100 290 1394
T_cells 1 1 1 322 8001 8326 T_cells 3 1 4 285 8033 8326
All 1521 155 1680! 1518] 8309 13183 All 1520 216 1610 1415 8422 13183
Accuracy: 0.929873 Accuracy: 0.913358

Precision: 0.983778 0.96 0.947628 0.699264 0.941354 Precision: 0.964365 0.886792 0.870632 0.619782 0.961799
Recall/Ser 0.901274 0.355556 0.992964 0.789786 0.956728 Recall/Ser 0.919321 0.174074 0.981707 0.811164 0.931323
Specificity 0.99731 0.999667 0.988484 0.975022 0.916732 Specificity 0.993851 0.999501 0.96939 0.963406 0.948323
F1_Score: 0.94072 0.518919 0.969766 0.741774 0.948979 F1_Score: 0.941304 0.291022 0.92284 0.702675 0.946316
Predicted| B_cells|ritic_cellsflonocytes| NK_cells| T _cells All Predicted| B_cells|ritic_cellsjflonocytes| NK_cells| T _cells All
B_cells 1698 0 10 2] 174 1884 B_cells 1732 0 51 0 101 1884
Dendritic| 19 96| 89 1 65 270 Dendritic| 8 47 204 0 11 270
Monocyte 0 2 2117 0 13 2132 Monocyte 26 3 2093 0 10 2132
NK_cells 2 0 0 665 175 842 NK_cells 3 0 13 683 143 842
T_cells 7 2 18 283 6854 7164 T_cells 27 3 43 419 6672 7164
All 1726 100 2234 951 7281 12292 All 1796 53 2404 1102 6937 12292
Accuracy: 0.198401 Accuracy: 0.127589

Precision: 0.465875 0.028737 1 0.914184 Precision: 0.838028 0 0.031333 0.833333 0.949289
Recall/Ser 1.56E-02 0.75804 0.020751 0.227491 Recall/Ser 3.54E-02 0 0.916539 0.000596 1.27E-01
Specificity 0.997611 0.191883 1 0.934826 Specificity 0.999084 0.999895 0.106278 0.999987 0.979366
F1_Score: 0.030129 0.055375 0.040659 0.364322 F1_Score: 0.067929 0 0.060595 0.001192 0.223344

Predicted| B_cellsflonocytes| NK_cells| T _cells All Predicted| B_cellsjritic_cellsflonocytes| NK_cells| T_cells All
B_cells 157 9906 0 22 10085 B_cells 357 1 9720 0 7 10085
Monocyte 6 1980 0 626 2612 Monocyte 25 8 2394 1 184 2612
NK_cells 1 7484 174 726 8385 NK_cells 24 0| 8112 5 244 8385
T _cells 173 49531 0 14637 64341 T_cells 20, 0 56178 0 8143 64341
All 337 68901 174 16011 85423 All 426 9 76404 6 8578 85423
Accuracy: 0.860651 Accuracy: 0.890194

Precision: 0.72617 0 0.818458 0.105443 0.973685 Precision: 0.812016 0 0.846504 0.172549 0.969149
Recall/Ser 0.703807 0 0.733414 0.996764 0.887077 Recall/Ser 0.703807 0 0.733414 0.996764 0.930766
Specificity 0.983375 0.999967 0.980109 0.912868 0.889362 Specificity 0.987752 0.999961 0.980264 0.941473 0.889362
F1_Score: 0.714814 0 0.773606 0.190712 0.928366 F1_Score: 0.754049 0 0.785911 0.294174 0.94957
Predicted| B_cells|ritic_cellsflonocytes| NK_cells| T _cells All Predicted| B_cells|ritic_cellsjflonocytes| NK_cells| T _cells All
B_cells 1257 1 204 79 245 1786 B_cells 1257 1 204 79 245 1786
Monocyte 64 0| 2421 465 351 3301 Monocyte] 64 0| 2421 465 351 3301
NK_cells 0 0 0 308 1 309 NK_cells 0 0 0 308 1 309
T_cells 410 0 333 2069 22090 24902 T_cells 227 0 235 933 18754 20149
All 1731 1 2958 2921 22687 30298 All 1548 1 2860 1785 19351 25545
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Round9-r'iL_10_T4_d1 Round10-r'IL-10_T4_d2

Accuracy: 0.938785 Accuracy: 0.942047

Precision: 0.996667 0.702128 0.963702 0.772161 0.95749 Precision: 0.992935 0.685864 0.9895 0.792398 0.953598
Recall/Ser 0.900602 0.929577 0.959061 0.799857 0.96577 Recall/Ser 0.931325 0.922535 0.964479 0.777618 0.967571
Specificity 0.999566 0.995706 0.994793 0.972093 0.926498 Specificity 0.999045 0.995399 0.998525 0.97591 0.919292
F1_Score: 0.946203 0.8 0.961376 0.785765 0.961612 F1_Score: 0.961144 0.786787 0.976829 0.784938 0.960534
Predicted| B_cells|ritic_cellsflonocytes| NK_cells| T_cells All Predicted| B_cellsjritic_cellsflonocytes| NK_cells| T_cells All
B_cells 1495 14 51 46! 54 1660 B_cells 1546 43 5 17 49 1660
Dendritic | 0 132 7 0 3 142 Dendritic | 0| 131 9 0 2 142
Monocyte 1 40| 1593 0 27 1661 Monocyte 9 16 1602 0 34 1661/
NK_cells 3 1 2 1115 273 1394 NK_cells 2 0| 1 1084 307 1394
T cells 1 1 0 283 8041 8326 T_cells 0 1 2] 267 8056 8326
All 1500 188 1653 1444 8398 13183 All 1557 191 1619 1368 8448 13183
Accuracy: 0.907419 Accuracy: 0.866173

Precision: 0.972425 0.869565 0.862696 0.584769 0.95783 Precision: 0.989785 0 0.911803 0.372631 0.989087
Recall/Ser 0.917197 0.148148 0.978424 0.766033 0.92895 Recall/Ser 0.977176 0 0.989212 0.957245 0.822306
Specificity 0.995292 0.999501 0.967323 0.96 0.942863 Specificity 0.998174 1 0.979921 0.881485 0.987324
F1_Score: 0.944004 0.253165 0.916923 0.663239 0.943169 F1_Score: 0.98344 0 0.948931 0.536439 0.898018
Predicted| B_cells|ritic_cells 4onocytes| NK_cells| T _cells All Predicted| B_cellsflonocytes| NK_cells| T_cells All

B_cells 1728 4 108] 17 27 1884 B_cells 1841 3 11 29 1884

Dendritic| 17 40 150 3 60| 270 Dendritic| 4 159 103 4 270
Monocyte 23 0| 2086 2 21 2132 Monocyte 3 2109 14 6 2132

NK_cells 0 0 12 645 185 842 NK_cells 1 9 806 26 842

T_cells 9 2 62 436 6655 7164 T_cells 11 33 1229 5891 7164

All 1777 46 2418 1103 6948 12292 All 1860 2313 2163 5956 12292
Accuracy: 0.217389 Accuracy: 0.095677

Precision: 0.749655 0 0.034255 0.991892 0.95405 Precision: 0.828423 0 0.029671 1 0.916967
Recall/Ser 1.08E-01 0 0.893185 0.043769 2.30E-01 Recall/Ser 4.74E-02 0 0.896248 0.001073 8.31E-02
Specificity 0.995182 0.999988 0.205734 0.999961 0.966227 Specificity 0.998686 0.998724 0.075509 1 0.977042
F1_Score: 0.18847 0 0.065979 0.083838 0.370334 F1_Score: 0.089664 0 0.05744 0.002144 0.152344
Predicted| B_cells|ritic_cellsflonocytes| NK_cells| T_cells All Predicted| B_cellsjritic_cellsflonocytes| NK_cells| T_cells All
B_cells 1087 1 8982 0 15 10085 B_cells 478 0 9599 0 8| 10085
Monocyte 15 0| 2333 2 262 2612 Monocyte 9 96 2341 0 166 2612
NK_cells 0 0 7583 367 435 8385 NK_cells 12 3 8051 9 310 8385
T _cells 348 0 49209 1 14783 64341 T_cells 78 10 58908 0 5345 64341
All 1450 1 68107 370! 15495 85423 All 577 109 78899 9 5829 85423
Accuracy: 0.884805 Accuracy: 0.875603

Precision: 0.812016 0 0.846504 0.173131 0.967035 Precision:  0.81254 0 0.846504 0.174307 0.963196
Recall/Ser 0.703807 0 0.733414 0.996764 0.926516 Recall/Ser 0.703807 0 0.733414 0.996764 0.919059
Specificity 0.987074 0.999959 0.979092 0.93868 0.889362 Specificity 0.985929 0.999955 0.97701 0.933943 0.889362
F1_Score: 0.754049 0 0.785911 0.295019 0.946342 F1_Score: 0.754275 0 0.785911 0.296724 0.94061
Predicted| B_cells|ritic_cellsflonocytes| NK_cells| T _cells All Predicted| B_cells|ritic_cellsjflonocytes| NK_cells| T _cells All
B_cells 1257 1 204 79 245 1786 B_cells 1257 1 204 79 245 1786
Monocyte 64 0| 2421 465 351 3301 Monocyte] 64 0| 2421 465 351 3301
NK_cells 0 0 0 308 1 309 NK_cells 0 0 0 308 1 309
T_cells 227 0 235 927 17513 18902 T_cells 226 0 235 915 15624 17000
All 1548 1 2860 1779 18110 24298 All 1547 1 2860 1767 16221 22396
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Round11l-r'nonma_T4 Round12-r'nonma_T4_afth

Accuracy: 0.940605 Accuracy: 0.938254

Precision: 0.998689 0.785714 0.991985 0.809561 0.943407 Precision: 0.994167 0.795181 0.95283 0.787994 0.951312
Recall/Ser 0.918072 0.929577 0.968694 0.753228 0.971055 Recall/Ser 0.924096 0.929577 0.972908 0.743902 0.966851
Specificity 0.999826 0.997239 0.998872 0.979048 0.900144 Specificity 0.999219 0.997393 0.993057 0.976334 0.915174
F1_Score: 0.956686 0.851613 0.980201 0.780379 0.957031 F1_Score: 0.957852 0.857143 0.962764 0.765314 0.959018
Predicted| B_cells|ritic_cellsflonocytes| NK_cells| T_cells All Predicted| B_cellsjritic_cellsflonocytes| NK_cells| T_cells All
B_cells 1524 18 6 7 105 1660 B_cells 1534 24 53 16 33 1660
Dendritic | 0 132 5 0 5 142 Dendritic | 0| 132 9 0 1 142
Monocyte 1 17 1609 0 34 1661 Monocyte 7 9 1616 0 29 1661/
NK_cells 1 0 2 1050 341 1394 NK_cells 2 0 6 1037 349 1394
T _cells 0 1 0 240 8085 8326 T_cells 0 1 12 263 8050 8326
All 1526 168 1622 1297 8570 13183 All 1543 166 1696 1316 8462 13183
Accuracy: 0.924585 Accuracy: 0.898226

Precision: 0.955739 0.967742 0.88805 0.619592 0.984049 Precision: 0.968421 0.5 0.867555 0.549801 0.954872
Recall/Ser 0.985669 0.111111 0.993433 0.901425 0.921413 Recall/Ser 0.927813 0.011111 0.977017 0.819477 0.909687
Specificity 0.991737 0.999917 0.97372 0.959301 0.979134 Specificity 0.994523 0.99975 0.968701 0.950655 0.939938
F1_Score: 0.970473 0.199336 0.937791 0.734398 0.951701 F1_Score: 0.947682 0.021739 0.919038 0.658083 0.931732
Predicted| B_cells|ritic_cellsflonocytes| NK_cells| T _cells All Predicted| B_cells|ritic_cellsjflonocytes| NK_cells| T _cells All
B_cells 1857 0 9 0 18 1884 B_cells 1748 0 111 15 10 1884
Dendritic| 19 30, 213 4 4 270 Dendritic| 4 3 120 2 141 270
Monocyte 8 0| 2118 0 6 2132 Monocyte 31 0| 2083 0 18 2132
NK_cells 2 0 2| 759 79 842 NK_cells 4 0 9 690 139 842
T _cells 57| 1 43 462 6601 7164 T _cells 18 3 78 548 6517 7164
All 1943 31 2385 1225 6708 12292 All 1805 6 2401 1255 6825 12292
Accuracy: 0.143708 Accuracy:  0.10208

Precision: 0.695946 0.03151 1 0.945449 Precision: 0.642857 0 0.032306 0.992411 0.968488
Recall/Ser 2.04E-02 0.903139 0.017174 0.148692 Recall/Ser 7.23E-02 0 0.973201 0.14037 6.64E-02
Specificity 0.998805 0.124452 1 0.973817 Specificity 0.994624 0.999906 0.080533 0.999883 0.993407
F1_Score: 0.039688 0.060896 0.033767 0.25697 F1_Score: 0.129958 0 0.062537 0.245951 0.124273
Predicted| B_cellsflonocytes| NK_cells| T _cells All Predicted| B_cellsjritic_cellsflonocytes| NK_cells| T_cells All
B_cells 206 9871 0 8 10085 B_cells 729 0 9354 0 2 10085
Monocyte| 5 2359 0 248 2612 Monocyte| 6 6 2542 3 55 2612
NK_cells 0 7945 144 296 8385 NK_cells 1 0| 7125 1177 82 8385
T _cells 85 54689 0 9567 64341 T_cells 398 2] 59663 6 4272 64341
All 296 74864 144 10119 85423 All 1134 8 78684 1186 4411 85423
Accuracy: 0.846175 Accuracy: 0.806556

Precision: 0.813066 0 0.853066 0.175099 0.949261 Precision: 0.815704 0 0.853066 0.175699 0.925857
Recall/Ser 0.703807 0 0.733414 0.996764 0.89252 Recall/Ser 0.703807 0 0.733414 0.996764 0.848219
Specificity 0.982076 0.999944 0.971456 0.917562 0.889362 Specificity 0.977095 0.99993 0.961687 0.895863 0.889362
F1_Score: 0.754502 0 0.788728 0.297872 0.920016 F1_Score: 0.755636 0 0.788728 0.298739 0.885339
Predicted| B_cells|ritic_cellsflonocytes| NK_cells| T _cells All Predicted| B_cells|ritic_cellsjflonocytes| NK_cells| T _cells All
B_cells 1257 1 204 79 245 1786 B_cells 1257 1 204 79 245 1786
Monocyte 64 0| 2421 465 351 3301 Monocyte] 64 0| 2421 465 351 3301
NK_cells 0 0 0 308 1 309 NK_cells 0 0 0 308 1 309
T_cells 225 0 213 907 11169 12514 T_cells 220 0 213 901 7455 8789
All 1546 1 2838 1759 11766 17910 All 1541 1 2838 1753 8052 14185
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Round13-r'HLADR_48 Round14-r'HLADR_2397

Accuracy: 0.934916 Accuracy: 0.939923

Precision: 0.997374 0.5 0.915501 0.785359 0.952848 Precision: 0.996034 0.716578 0.970838 0.785509 0.954282
Recall/Ser 0.91506 0.014085 0.984949 0.792683 0.968412 Recall/Ser 0.907831 0.943662 0.962071 0.785509 0.967692
Specificity 0.999653 0.999847 0.986895 0.974383 0.917851 Specificity 0.999479 0.995936 0.995834 0.974637 0.920527
F1_Score: 0.954445 0.027397 0.948956 0.789004 0.960567 F1_Score: 0.94989 0.81459 0.966435 0.785509 0.96094

Predicted| B_cells|ritic_cellsflonocytes| NK_cells| T_cells All Predicted| B_cellsjritic_cellsflonocytes| NK_cells| T_cells All
B_cells 1519 2 31 41! 67| 1660 B_cells 1507 19 39 33 62 1660
Dendritic | 0 2 113 3 24 142 Dendritic | 0| 134 7 0 1 142
Monocyte 2 0| 1636 0 23 1661 Monocyte 2 33 1598 0 28 1661/
NK_cells 2 0 2| 1105 285 1394 NK_cells 2 0 2] 1095 295 1394
T _cells 0 0 5 258 8063 8326 T_cells 2 1 0 266 8057 8326
All 1523 4 1787 1407 8462 13183 All 1513 187 1646 1394 8443 13183
Accuracy: 0.934348 Accuracy: 0.941019

Precision: 0.967658 0.966667 0.912688 0.641187  0.9795 Precision: 0.962474 0.95122 0.969599 0.679918 0.962451
Recall/Ser 0.984607 0.214815 0.99531 0.846793 0.940396 Recall/Ser 0.966561 0.577778 0.987336 0.792162 0.951703
Specificity 0.994043 0.999834 0.98002 0.965153 0.972504 Specificity 0.993178 0.999335 0.993504 0.972576 0.948128
F1_Score: 0.976059 0.351515 0.95221 0.729785 0.95955 F1_Score: 0.964513 0.718894 0.978387 0.731761 0.957047
Predicted| B_cells|ritic_cellsflonocytes| NK_cells| T _cells All Predicted| B_cells|ritic_cellsjflonocytes| NK_cells| T _cells All
B_cells 1855 0 15 2] 12 1884 B_cells 1821 1 6 0 56| 1884
Dendritic| 43 58| 142 19 8 270 Dendritic| 48 156/ 43 0 23 270
Monocyte 4 0| 2122 2 4 2132 Monocyte 8| 6 2105 0 13 2132
NK_cells 2 0 10 713 117 842 NK_cells 1 0 0 667, 174 842
T _cells 13 2 36 376 6737 7164 T _cells 14 1 17 314 6818 7164
All 1917 60| 2325 1112 6878 12292 All 1892 164 2171 981 7084 12292
Accuracy: 0.195228 Accuracy: 0.749143

Precision: 0.516402 0 0.034598 1 0.957132 Precision: 0.36071 0 1 0.99863 0.956204
Recall/Ser 4.84E-02 0 0.928025 0.006679 2.13E-01 Recall/Ser 9.98E-01 0 0.154283 0.608587 7.53E-01
Specificity 0.993934 0.999567 0.183224 1 0.970876 Specificity 0.763293 0.98395 1 0.999909 0.894792
F1_Score: 0.088486 0 0.066709 0.013269 0.348546 F1_Score: 0.529858 0 0.26733 0.75628 0.842301
Predicted| B_cells|ritic_cellsflonocytes| NK_cells| T_cells All Predicted| B_cellsjritic_cellsflonocytes| NK_cells| T_cells All
B_cells 488 0| 9590 0 7 10085 B_cells 10062 1 0 0 22 10085
Monocyte 17 36 2424 0 135 2612 Monocyte 76 1179 403 1 953 2612
NK_cells 0 1 7856 56 472 8385 NK_cells 1866 173 0 5103 1243 8385
T _cells 440 0 50192 0 13709 64341 T_cells 15891 18 0 6 48426 64341
All 945 37 70062 56 14323 85423 All 27895 1371 403 5110 50644 85423
Accuracy:  0.80696 Accuracy: 0.839779

Precision: 0.818359 0 0.851337 0.176 0.926663 Precision: 0.849324 0 0.667994 0.238206 0.966926
Recall/Ser 0.703807 0 0.734092 0.996764 0.848219 Recall/Ser 0.703807 0 0.98014 0.996764 0.848219
Specificity 0.977411 0.999929 0.961687 0.895719 0.889678 Specificity 0.977597 0.999915 0.961687 0.913831 0.913589
F1_Score: 0.756773 0 0.788379 0.299174 0.885708 F1_Score: 0.769749 0 0.794508 0.384519 0.903691
Predicted| B_cells|ritic_cellsflonocytes| NK_cells| T _cells All Predicted| B_cells|ritic_cellsjflonocytes| NK_cells| T _cells All
B_cells 1257 1 204 79 245 1786 B_cells 1257 1 204 79 245 1786
Monocyte 59 0| 2388 462 344 3253 Monocyte] 3 0| 839 5 9 856
NK_cells 0 0 0 308 1 309 NK_cells 0 0 0 308 1 309
T_cells 220 0 213 901 7455 8789 T_cells 220 0 213 901 7455 8789
All 1536 1 2805 1750] 8045 14137 All 1480 1 1256 1293 7710 11740
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Round15-r'CD19_26 Round16-r'CD19_1760

Accuracy: 0.944626 Accuracy: 0.942426

Precision: 0.994325 0.832061 0.950839 0.768763 0.967062 Precision: 0.998692 0.794118 0.978274 0.783297 0.954373
Recall/Ser 0.95 0.767606 0.989765 0.815638 0.959164 Recall/Ser 0.91988 0.950704 0.975918 0.780488 0.967211
Specificity 0.999219 0.998313 0.992623 0.97099 0.943998 Specificity 0.999826 0.997316 0.996876 0.974468 0.920733
F1_Score: 0.971657 0.798535 0.969912 0.791507 0.963097 F1_Score: 0.957667 0.865385 0.977095 0.78189 0.960749
Predicted| B_cells|ritic_cellsflonocytes| NK_cells| T_cells All Predicted| B_cellsjritic_cellsflonocytes| NK_cells| T_cells All
B_cells 1577 15 50 8 10 1660 B_cells 1527 22 26 29 56 1660
Dendritic | 0 109 32 0 1 142 Dendritic | 0| 135 7 0 0| 142
Monocyte 4 5 1644 0 8| 1661 Monocyte 0| 13 1621/ 0 27 1661/
NK_cells 2 1 1 1137 253 1394 NK_cells 2 0| 2 1088 302 1394
T _cells 3 1 2] 334 7986 8326 T_cells 0 0 1 272 8053 8326
All 1586 131 1729 1479 8258 13183 All 1529 170 1657 1389 8438 13183
Accuracy: 0.9363 Accuracy: 0.904653

Precision: 0.966475 0.965753 0.960927 0.611529 0.976166 Precision: 0.927228 0 0.939019 0.492932 0.99044
Recall/Ser 0.979299 0.522222 0.992026 0.869359 0.931882 Recall/Ser 0.994161 0 0.996717 0.952494 0.882189
Specificity 0.993851 0.999584 0.991535 0.959389 0.968214 Specificity 0.985876 0.999917 0.986417 0.927948 0.988105
F1_Score: 0.972845 0.677885 0.976229 0.717999 0.95351 F1_Score: 0.959529 0 0.967008 0.649656 0.933186
Predicted| B_cells|ritic_cellsflonocytes| NK_cells| T _cells All Predicted| B_cells|ritic_cellsjflonocytes| NK_cells| T _cells All
B_cells 1845 0 5 0 34 1884 B_cells 1873 0 2] 1 8 1884
Dendritic| 58| 141 59 4 8 270 Dendritic| 125 0 122 12 11 270
Monocyte 2 3 2115 0 12 2132 Monocyte 2 0| 2125 0 5 2132
NK_cells 0 1 0 732, 109 842 NK_cells 2 0 1] 802 37 842
T_cells 4 1 22 461 6676 7164 T_cells 18 1 13 812 6320 7164
All 1909 146 2201 1197 6839 12292 All 2020 1 2263 1627 6381 12292
Accuracy: 0.879365 Accuracy: 0.877328

Precision: 0.609836 0 0.995839 0.999627 0.946481 Precision: 0.996643 0 1 0.998844 0.861523
Recall/Ser 9.82E-01 0 0.274885 0.638521 9.19E-01 Recall/Ser 5.00E-01 0 0.148545 0.618485 1.00E+00
Specificity 0.915859 0.992777 0.999964 0.999974 0.841381 Specificity 0.999774 0.99863 1 0.999922 0.509582
F1_Score: 0.752544 0 0.430843 0.779274 0.932607 F1_Score: 0.666315 0 0.258667 0.763939 0.925491
Predicted| B_cells|ritic_cellsflonocytes| NK_cells| T_cells All Predicted| B_cellsjritic_cellsflonocytes| NK_cells| T_cells All
B_cells 9908 3 0 0 174 10085 B_cells 5047 1 0 0 5037 10085
Monocyte 114 583 718 0 1197 2612 Monocyte 14 104 388 3 2103 2612
NK_cells 1046 10 2| 5354 1973 8385 NK_cells 0 0 0 5186 3199 8385
T cells 5179 21 1 2 59138 64341 T _cells 3 12 0 3 64323 64341
All 16247, 617 721 5356 62482 85423 All 5064 117 388 5192 74662 85423
Accuracy:  0.84096 Accuracy: 0.864175

Precision: 0.848505 0.671737 0.238206 0.968182 Precision: 0 0.797529 0.253707 0.99866

Recall/Ser 0.709659 0.98014 0.996764 0.848219 Recall/Set 0 0.98014 0.996764 0.848219

Specificity 0.977597 0.96224 0.913634 0.916239 Specificity 0.977597 0.976588 0.906065 0.991416

F1_Score: 0.772896 0.79715 0.384519 0.904239 F1_Score: 0 0.879455 0.404465 0.917313

Predicted| B_cellsflonocytes| NK_cells| T _cells All Predicted| B_cellsflonocytes| NK_cells| T_cells All

B_cells 1249 197 79 235 1760 Monocytel 3 839 5 9 856
Monocyte] 3 839 5 9 856 NK_cells 0 0 308! 1 309

NK_cells 0 0 308 1 309 T_cells 220 213 901 7455 8789

T_cells 220 213 901 7455 8789 All 223 1052 1214 7465 9954

All 1472 1249 1293 7700 11714
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Round17-r'CD8_5662

Accuracy: 0.94614276

Precision: 0.99806076 0.81437126 0.99323493 0.79407407 0.95443306
Recall/Sensitivity: 0.93012048 0.95774648 0.97230584 0.76901004 0.97357675
Specificity: 0.99973965 0.99762288  0.9990453  0.9764187 0.92032119

F1_Score: 0.96289367 0.8802589 0.98265896 0.78134111 0.96390986
Predicted B_cells| Dendritic_cells| Monocytes NK_cells T cells All
B_cells 1544 20| 5 60| 31 1660}
Dendritic_cells 0 136 5 0] 1] 142|
Monocytes 1 9| 1615 [ 36, 1661
NK_cells 2 0 1 1072 319 1394
T_cells 0 2| 0 218 8106 8326
All 1547 167, 1626 1350 8493 13183,
Accuracy: 0.917344614

Precision: 0.93098312 0 0.92384682 0.55555556 0.98828897
Recall/Sensitivity: 0.99522293 0 0.99577861 0.9263658 0.90703518
Specificity: 0.98664489 0.99991682 0.98277559 0.94550218  0.9849844

F1 Score: 0.96203181 0 0.95846501 0.69456812 0.94592037

Predicted B_cells| Dendritic_cells| Monocytes NK_cells T cells All
B_cells 1875 0 6 0| g 1834
Dendritic_cells 103| 0 152, 0 15 270
Monocytes 6 0 2123 0| 3 2132
NK_cells 6 0 0 780 56 842
T _cells 24 1 17| 624 6498 7164
All 2014 1) 2298 1404 6575 12292
Accuracy: 0.982920291

Precision: 0.9769316 0 0.84932995 0.98514663 0.99214461
Recall/Sensitivity: 9.62E-01 0 0.89777948 0.92546213 9.97E-01
Specificity: 0.99696037 0.99778748 0.99497651 0.99848127 0.97590361

F1 Score: 0.96921847 0 0.87288293 0.95437216 0.99466708

Predicted B_cells| Dendritic_cells| Monocytes NK_cells T_cells! All
B_cells 9698 28| 356 1] 2| 10085
Monocytes 202 19| 2345 3 43| 2612
NK_cells 0 135 27| 7760 463 8385
T_cells 27 7| 33 113 64161 64341
All 9927, 189 2761 7877, 64669 85423
Accuracy: 0.935228332

Precision: 0 0.99762188 0.53940455 0.99652416

Recall/Sensitivity: 0 0.98014019 0.99676375 0.91685321

Specificity: 0.99930103 0.99941793 0.93396937 0.99141631

F1_Score: 0 0.98880377 0.7 0.95502998

Predicted B_cells Monocytes: NK_cells T cells All
Monocytes 3 839 5 9 856

NK_cells 0 0 308 1] 309

T _cells 0 2| 258 2867, 3127|

All 3 841 571 2877 4292
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« Subtype classification performance (1-Sensitivity) during group comparison.

TestWithBroadS1 R17
Bn 0.082121] 0.079555[1 ] ] 0.071856| 0.063302
Bm 0.103870|0 0.087576|00 ] 0.095723[10 0.085540( 0.085540
DC 0.084507|M ] ] 0.042254
M14 0.015835 |1 ] 0.0245451 0.026920)
M16 0.0276381 0.067839[1 0.035176|1 0.030151
NK 0.210904 - 0.256098{ 1 0.230990)
aTreg 0.001086
nonT o 0420535
rTreg 0.003731 0.004664 0.002799 0.003731 0.003731 0.000000
Tdem 0.005128 0.007179 0.009231 0.009231 0.004103 0.000000
TAnaive 0.002646 0.001764 0.000882 0.002646 0.003527 0.000882
T8em 0.075655’i 0.039767| 0.068865 [l 0.053346 [l 0.0504361 0.028128
T8naive 0.000749 0.000000 0.000000 0.000000 0.000000 0.000000
0.023760]| 0.016073[] 0.023061 0.020266 0.020266] 0.006289

TestWithBroadS2 R1 RS R7 R8 R12 R17
BC 0.042463|M 0.126327|1 0.098726| 0.080679|ll 0.072187| 0.004777

DC _I:I
pDC [ 0985204]  0941176]  0.897058]  1.000000]  1.000000

M14 [ 0.027640[1 0.064124 0.004422| 0.018242]| 0.021559 0.003870
M16 [ 0.024768]l 0.024768] 0.021672] 0.018576| 0.030960] 0.006192
NK [ 0.077197[000  0.241003[0  0.210214{00 0.188836|10 0.180523 (1 0.073634
T4 ] 0.036982] 0.013314] 0.009763| 0.015680| 0.019527| 0.021006,
T8 [ ] 0.180233(1 0.076903 0.073203(1] 0.116015[00 0.153541[00 0.157241

TestWith10x R17
BC | 0994348]  00904908]  0984432|  0964601]  0.927714 0.038374
M14 0.102221
NK | 0999761] 0969231  0979249]  0.999404] 0.074538
CD45RA+CD25-T4naive 0.004199)
T4 0.002140
CD45RA+T8naive 0.000920
T8 0.007934
CD45RO+T4mem 0.000293
CD4+CD25+Treg 0.001656
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TestWithGEO R1-17
empty_cells
tumor_ascites_DC
tonsil_DC
T8_methanol_SSC I 0.298127
donorl_ IL-10-producing_Foxp3-_T4 0.004812
donor2_IL-10-producing_Foxp3-_T4 0.006835
nonmalignant_P5_CD3+CD5intSSCint_T4 0.006910
nonmalignant_P5_CD3+CD5intSSCint_T4_aftertherapy 0.002953
HLA-DR I 0312500
HLA-DR_control I 0.353776
CD19 0602308
CD19_control I 0.290341
cD8 [] 0.189686
R1-17
M14 d1 0.011765]
M1 d2 (8 0.027842
NK | 0.003236,
T4 0.000000]
T8 0.016129|
iNKT 0.113846

0.052356)

0.016580]
CCR5+CD69-T4 I 0.020690]
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» Fl-score of each cell type during 17 rounds of four-supersets-swapping external cross-
validation experiments.

TestWith-Source-BroadS1 Round1-A Round2-A Round3-A Round4-A Round5-r' Round6-r" Round7-r* Round8-r' Round9-r'

B_cells 0.953371 0.965217 0.951872 0.952411 0.955486 0.949325 0.953788 0.952201 0.946203
Dendritic_cells 0.692521 0.782609 0.778816 0.744615 0.769231 0 0.875421 0.73743 0.8
Monocytes 0.955583 0.969805 0.975684 0.969254 0.96362 0.953901 0.975756 0.958117 0.961376
NK_cells 0.787817 0.775144 0.762509 0.77169 0.769288 0.666424 0.775412 0.783197 0.785765
T_cells 0.955901 0.960139 0.951129 0.957128 0.957566 0.943473 0.961948 0.959279 0.961612

Round10-1Round11-1Round12-1Round13-i Round14-i Round15-i Round16-i Round17-t
0.961144 0.956686 0.957852 0.954445 0.94989 0.971657 0.957667 0.962894
0.786787 0.851613 0.857143 0.027397 0.81459 0.798535 0.865385 0.880259
0.976829 0.980201 0.962764 0.948956 0.966435 0.969912 0.977095 0.982659
0.784938 0.780379 0.765314 0.789004 0.785509 0.791507 0.78189 0.781341
0.960534 0.957031 0.959018 0.960567 0.96094 0.963097 0.960749 0.96391

TestWith-Source-BroadS2 Round1-A Round2-A Round3-A Round4-A Round5-r' Round6-r" Round7-r* Round8-r' Round9-r'

B_cells 0.967033 0.960064 0.930307 0.954989 0.909895 0.934409 0.94072 0.941304 0.944004
Dendritic_cells 0.107744 0.656652 0.236422 0.347305 0.360111 0.535 0.518919 0.291022 0.253165
Monocytes 0.948548 0.95114 0.886801 0.955355 0.919414 0.95932 0.969766 0.92284 0.916923
NK_cells 0.642149 0.698885 0.657213 0.60274 0.712375 0.710994 0.741774 0.702675 0.663239
T_cells 0.923781 0.958062 0.931895 0.930007 0.94551 0.957517 0.948979 0.946316 0.943169

Round10-1Round11-1Round12-i Round13-i Round14-i Round15-I Round16-I Round17-t
0.98344 0.970473 0.947682 0.976059 0.964513 0.972845 0.959529 0.962032
0 0.199336 0.021739 0.351515 0.718894 0.677885 0 0
0.948931 0.937791 0.919038 0.95221 0.978387 0.976229 0.967008 0.958465
0.536439 0.734398 0.658083 0.729785 0.731761 0.717999 0.649656 0.694568
0.898018 0.951701 0.931732 0.95955 0.957047 0.95351 0.933186 0.94592
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TestWith-Source-10x
B_cells
Dendritic_cells 0 0 0
Monocytes
NK_cells
T cells

Round1-A Round2-A Round3-A Round4-A Round5-r' Round6-r" Round7-r* Round8-r' Round9-r'
0.011212 0.031212 0.042437 0.06844 0.159753 0.027722 0.030129 0.067929 0.18847

0 0 0 0 0 0

0.060978 0.055378 0.060186 0.060754 0.061488 0.055985 0.055375 0.060595 0.065979
0.000477 0.185418 0.000477 0.000477 0.059701 0.000477 0.040659 0.001192 0.083838
0.071807 0.248987 0.054488 0.118591 0.203362 0.107496 0.364322 0.223344 0.370334

Round10-1Round11-1Round12-iRound13-i Round14-i Round15-i Round16-1 Round17-t

0.089664 0.039688 0.129958 0.088486

0 0 0 0
0.05744 0.060896 0.062537 0.066709
0.002144 0.033767 0.245951 0.013269
0.152344  0.25697 0.124273 0.348546

0.529858 0.752544 0.666315 0.969218
0 0 0 0
0.26733 0.430843 0.258667 0.872883
0.75628 0.779274 0.763939 0.954372
0.842301 0.932607 0.925491 0.994667

TestWith-Source-GEODB Round1-A Round2-A Round3-A Round4-A Round5-r' Round6-r" Round7-r* Round8-r' Round9-r'

B_cells 0.687073 0.688013 0.688578
Dendritic_cells 0.004532 0.002282 0.000916
Monocytes 0.483378 0.48362 0.483765
NK_cells 0.180328 0.180592 0.180751
T cells 0.922434 0.922531 0.922589

0.180804
0.922608

0.688767 0.688956 0.70777 0.714814 0.754049 0.754049
0.000459 0 0
0.483813 0.483861 0.558542 0.773606 0.785911 0.785911

0.180857 0.189073 0.190712 0.294174 0.295019
0.922627 0.923206 0.928366 0.94957 0.946342

Round10-1Round11-1Round12-i Round13-i Round14-i Round15-I Round16-I Round17-t
0.754275 0.754502 0.755636 0.756773 0.769749 0.772896

0.785911 0.788728 0.788728 0.788379 0.794508 0.79715 0.879455
0.296724 0.297872 0.298739 0.299174 0.384519 0.384519 0.404465
0.94061 0.920016 0.885339 0.885708 0.903691 0.904239 0.917313

0.988804
0.7
0.95503
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« Split confusion matrix results of group comparison.

SplitConfusionMatrix-R1(10EC*5)

(RLincluded ALL groups: all non-representative GEO datasets, and 10EC*5 in GEO 5-classes.)

Train: 10xall(Clean)+GEOall+BroadS2all(Clean)+++10EC-x-five
Test: BroadS1

[exe Datasets Subtype SubtypeN [TotalCellN Training [Testing Accuracy: 0933323219

1 8C Precision: 09993395 057077626  0.97975065 0.75327225 0.9550414

M14 Recall/Sensitivi 091144578  0.88028169  0.93257074 0.82568149 0.956762
Specificity: 099991322 09927919 09972227 0.96802104 0.9227919
F1_Score: 095337114 069252078 095558297 _0.78781656 _0.9559009
Predicted B_cells|Dendritic_cells]  Monocytes NK_cells] T cells| Al
B_cells 1513 25| 16|
Dendritic_cells o 125 14
Monocytes 0| 68| 1549) 661
NK_cells 1 ol 2 1151 240 1399
T _cells 0 1 o 359 7966] 8326
Al 1514 219 1581 1528| 8341 13183

[CD45RA+CD25-Tanaive
10x (Clean) T4

[CD45RA+T8naive

18

[CD45RO+T4mem
CD4+CD25+Treg
M14_d1

M14_d2

NK

T4

|8
[INKT
Ew
Va1

Va2

T4

[CCRS+CD69-T4

[tumor_ascites_DC

tonsil_bC

| T8_methanol_SSC
[donorl_IL-10-producing_Foxp3-_T:
[donor2_IL-10-producing_Foxp3- T
nonmalignant_P5_CD3+CDSintSSCit
nonmalignant_P5_CD3+CDSintSSCil
HLA-DR

HLA-DR_control

[CD19

CD19_control

CD8

10-empty-cells-in-BC
10-empty-cells-in-DC
10-empty-cells-in-MC
10-empty-cells-in-NK
10-empty-cells-in-TC

Bn

Bm

DC

M14

[m16
NK
aTreg
nonT
Treg
Tdem
T4naive
T8em 1031

[ T8naive 1336

BC 1884

DC 202

pDC 68|

Broads2 (Clean) [ Mia 1809 12202
M16 323

NK 842

74 3380]

|8 3784

GEO (ALL+10EC*S) 34700

TEREEREREFEEREEREFEEEEEREFERERFEREEFEEFER =R =212 1=

Broads1 13183

= EEEEEEEEEEE

BEEEEREE
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True/ Predicted BC [mc NK T SubtypeN __[SubtypeER___|All (true)
BT580 Bn_aTreg BT580__BC 4
Bn_aTreg BT860 Bn_aTreg_BT860__BC 6|
NY860 [Bn_aTreg NY8s0__BC 3
Bn_nonT_BTS80__BC 234)
Bn_nonT_BT580__DC 2
BTS580 Bn_nonT_BT580__MC 1
Bn_nonT BT580__NK 2
Bn_nonT_BTS80__TC g
Bn_nonT BI860__BC 511)
Bn_nonT_BT860__DC 3
BT860 Bn_nonT_BT860__MC 7
Bn_nonT_BT860__NK 3
Bn Bn_nonT Bn_nonT_BT860__TC 3 1o 0.0821
Bn_nonT_NY580__BC 148]
Bn_nonT_NY580__DC 2
NY580 Bn_nonT_NY580__MC 2
Bn_nonT_NY580__NK 1]
Bn_nonT_NY580__TC 11]
Bn_nonT_NY860__BC 165
e Bn_nonT_NY860__DC 3
Bn_nonT_NY860__NK 5
Bn_nonT_NY860__TC 13
B_cells Bn_Tdem B1860 Bn_Tdem_BT860__BC 1 1660
Bn_Tncl BT860 Bn_Tncl_BT860__BC 1
BT860 Bm_aTreg_BT860__BC o
Bm_aTreg NY580 Bm_aTreg_NYS80__BC 1
NY860 Bm_aTreg NY860__BC 2
Bm_nonT_BT580__BC 86|
BT580 Bm_nonT_BT580__MC 1
Bm_nonT_BT580___TC 1
[Bm_nonT_BT860__BC 206|
Bm_nonT_BT860__DC 2
BT860 Bm_nonT_BT860__MC 2
Bm_nonT_BT860__NK 1]
Bm Bm_nonT_BT860__TC 1) a1 01039
Bm_nonT Bm_nonT_NY580__BC 58|
Y580 Bm_nonT_NY580__DC 1]
Bm_nonT_NY580__NK 1]
Bm_nonT_NY580__TC 3
Bm_nonT_NY860__BC 81
r;n_nonT_NVSSO_DC 6
NY860 [Bm_nonT_Nv860__McC 3]
[Bm_nonT_NY8s0__NK 4]
Bm_nonT_NY860__TC 14
e BT860 DC_aTreg BT860__DC 1
NYS80 DC_aTreg_NY580__DC 1
DC_nonT_BTS80__DC 4|
BT580 DC_nonT_BT580__MC 7
DC_nonT_BTS80__TC 1
DC_nonT_BT860__DC 17
Dendritic_cells DC BT860 DC_nonT_BT860__MC 1 142 0.1197 142
DC_nonT DC_nonT_BT860__TC 1
— DC_nonT_NY580__DC a3
DC_nonT_NY580__MC 3
DC_nonT_NY860__DC 17
NY860 DC_nonT_NY860__MC 3
DC_nonT_NY860__TC 1
BT580 M14_aTreg_BT580__MC 1
T BT860 M14_aTreg_BT860__MC 4
NYS80 M14_aTreg_NY580__MC 2
NY860 M14_aTreg_NY860__MC 2
M14_nonT_BT580__DC 19)
BT580 M14_nonT BTS80__MC —I 215§
M14_nonT_BTS80__TC | 4
M14_nonT_BT860__DC 15]
BT860 M14_nonT_BT860__MC 315}
M4 M14_nonT_BT860__TC g 1 0.0633
Mlnent} M14_nonT_NY580__DC g
NY580 M14_nonT_NY580___MC 32|
M14_nonT_NY580__TC B
M14_nonT_NY860__DC g
NY860 M14_nonT_NY860__MC 314
M14_nonT_NY860__TC 13
M14_rTreg NY580 M14_rTreg_NY580__MC 1
Monocytes M14_Tncl BT580 M14_Tncl_BT580__MC 1 1661
BT580 M16_aTreg_BTS80__MC 4
. BT860 M16_aTreg_BT860__MC 5
NYS80 M16_aTreg_NY580__MC 7
NY860 M16_aTreg_NY860__MC 7
— M16_nonT BTS580__DC )
M16_nonT BT580__MC 57
M16_nonT_BT860__DC o
BT860 M16_nonT BT860__MC 2
M16 M16_nonT_BT860__TC 9 398 0.0804
M16_nonT M16_nonT_NY580__DC 3
NY580 M16_nonT_NY580__MC 75)
M16_nonT_NY580__TC 3
M16_nonT_NY860__DC 7
NY860 M16_nonT_NY860__MC 117
M16_nonT_NY860__TC )
M16_T8em BT580 M16_T8em_BT580__MC 1
M16_T8em NY860 M16_T8em_NY860__MC 1
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BT580 NK_aTreg _BT580__TC )
NK_aTreg NY580 NK_aTreg_NY580__TC 3
NY860 NK_aTreg_NY860__TC 1
NK_nonT_BT580__MC 1
BT580 NK_nonT_BT580__NK 247
NK_nonT_BT580__TC 11]
NK_nonT_BT860___BC 1
BT860 NK_nonT_BT860__NK 374
NK_nonT NK_nonT_BT860__TC
NK_nonT_NY580__MC 1
NY580 NK_nonT_NY580__NK 180
NK_nonT_NY580__TC 7
NK_nonT_NY860__NK 240
[PEED NK_nonT_NY860__TC 2
NK_T4em NY860 NK_T4em_NY860__NK 1
NK_cells Nk NK_Ténaive NY860 NK_Ténaive_NY860__TC | R, T 1300
— NK_T8em_BTS80__NK 2
NK_T8em_BT580__TC zgl
preeo A e ’ 3|
NK_Téem NKiTSemiNVSSI.)iNK 13
NY580 oem N8
NK_T8em_NY580__TC B
NK_T8em_NY860__NK 33
=D NK_T8em_NY860__TC 39
[— NK_Tncl_BTS80__NK B
NK_Tncl_BT580__TC g
. [inea e —
nd
NK_Tncl = et
— NK_Tncl_NY580__NK 2
NK_Tncl_NY580__TC 9
NK_Tncl_NY860__NK 4
=D NK_Tncl_NY860__TC g
BT580 T aTreg BTS80__TC 241
BT860 T_aTreg BT860__TC 243
aTreg T_aTreg [— T aTreg NY580__NK 1] 521 0.0011
T alreg NY580__TC 221
NY860 T aTreg NY860__TC 215
[— [T_nonT_BT580__NK 56
T_nonT_BT580__TC 4
i T nont e Tc z
nonT T_nonT T_no"T_NVSKO_NK 42
NYS80 nonT_Nr>=_T
T_nonT_NY580__TC 2
T_nonT _NY: NK
—— _nonT_NY860__| 58|
T_nonT_NY860__TC 53
[— T_rTreg BTS80__NK B
T rTreg BT580__TC 311
a1860 T_rTreg BI860__NK i
rTreg T_rTreg T rTreg BT860__TC 233 1072 0.0037
NY580 T_rTreg NY580__TC 337
T _rTreg NY860__NK i
Y860 T_rTreg_NY860__TC 187
— T T4em BT580__ NK. 7
T_T4em BTS80__TC 328
[— T T4em BT860__NK P
Tdem T_Tdem T_T4em _BT860__TC %71 o5 0.0051
— T T4em NY580__NK 1]
T_T4em_NY580__TC 253
NY860 T_T4em_NY860__TC 13
T_cells T Tanaive BT580__DC 1 8326
BTS80 [T_Tanaive_BT580__NK 1
T Tanaive BT580__TC 480)
Tanaive T_T4naive BT860 T _Tanaive B1860__TC 265 1134 0.0026
- T Tanaive NY580_NK 1
T _Tanaive_NY580__TC 290
NY860 T_Tanaive_NY860__TC 9%
— T_T8em BTS80__ NK 20
[T T8em BT580__TC 246
- e  m—
T8em T_T8em = A — 1031 0.0757
— T_T8em_NY580__NK 19)
[T_T8em_NY580__TC 247,
[— T_T8em_NY860__NK 18]
T_T8em_NY860__TC 177]
BT580 T _Tnaive BT580__TC 318
BT860 T_Ténaive B1860__TC 486|
Ténaive T_T8naive — T T8naive_NY580__NK 1] 1336 0.0007
[T_T8naive_NY580__TC 255
NY860 T _T8naive_NY860__TC 276
— [T Tncl_BTS80__NK g
T Tncl_BT580__TC 193
- [  m—
Tl T_Tndl 1431 0.0238
— [T_Tncl_NYS80__NK g
[T Tncl_NYS80__TC 371
[T_Tncl_NY860__NK 13
NY860 —
[T_Tncl_NY860__TC 47
Al 1514 219 1581 1528 8341 13183 13183
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EXP DataSets Subtype TotalCellNTraining Testing Accuracy: 0.897169
2 BC 10085 v Precision: 0.976719 0.592593 0.9254797 0.49239544 0.963328
M14 2612 \ Recall/Ser 0.957537 0.059259 0.9727955 0.92280285 0.887353
NK 8385 \ Specificity 0.995869 0.999085 0.98356299 0.93004367 0.952808
CD45RA+CD2| 10479 \ F1 Score: 0.967033 0.107744 0.94854791 0.64214876 0.923781
10x (Clean) T4 11213| 85423 |V Predicted| B_cells]ritic_cells Monocytes: NK_cells| T _cells All
CD45RA+T8n: 11953 \ B_cells 1804 0 32] 0 48| 1884
8 10209 \ Dendritic 15 16 116 11 112] 270
CD45R0+T4n| 10224 v Monocyte] 17] 10| 2074 11] 20 2132
CD4+CD25+Ti 10263 \ NK_cells 0 0 3| 777, 62| 842
M14_d1 425 v T_cells 11§ 1 16| 779] 6357 7164
M14_d2 431 \ All 1847 27| 2241 1578 6599 12292
NK 309 \
T4 222 \
T8 310 v
iNKT 325 \
MAIT 382 \
vd1l 284 \
Vvd2 204 v
T4 965, \
CCR5+CD69-1 435 \
tumor_ascite 1613 \
tonsil_DC 2739 vV
T8_methanol 4753 \
GEO (ALL+10EC*5) Gonorl L1 1247] 34700 5
donor2_ IL-1( 1902 v
r ignar 4486 \
r lignar 3725 \
HLA-DR 48| \
HLA-DR_con 2397 v
CD19 26 \
CD19_contro 1760 i
CD8 5662 \
10-empty-ce 10| v
10-empty-ce 10| v
10-empty-ce 10| \
10-empty-ce| 10 \
10-empty-ce 10| v
Bn 1169 v
Bm 491 \
DC 142] \
Mi4 1263 \
M16 398 v
NK 1394 \
aTreg 921 i
BroadS1 onT 226 13183 v
rTreg 1072 \
T4dem 975 \
T4naive 1134] \
T8em 1031 v
[ T8naive 1336 \
Tncl 1431 \
BC 1884 \
DC 202 \
pDC 68 v
BroadS2 (Clean) L) 1809 12292 i
M16 323 \
NK 842 \
T4 3380 v
T8 3784 \
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True/ Predicted BC DC L NK TC All (true)
pbmcl_v2_A_BC__BC 271]
A [pbmel vz A BC__MC B
pbmcl_v2 A BC__TC |
v2
356
pbmcl B 8
B_cells BC pbmel v2 B BC__TC 2 ige 0.0425 1884
pbmcl v3 BC__BC 324
V3 pbmcl_v3 BC 15|
pbmcl_v3_BC__TC 7]
pbmc2 V2 BC__BC 853
pbmc2 v2 pbmc2 V2 BC__MC 4
pbmc2 V2 BC__TC 5
pbmcl v2 A DC__BC 4
o [PbmelvzADC_DC 9
" pbmcl_v2_A DC__MC 29
pbmcl v2 A DC__TC 20
pbmcl 5 |pomelv2 B pC_wmc 18]
pbmcl_v2_B DC__TC 15
oc pbmcl_v3 DC__MC 10 202
V3 pbmcl_v3_DC__NK 4
pbmcl_v3_DC__TC 24|
pbmc2 V2 DC__BC 4
i v pbmc2 V2 DC__DC 13)
Dendritic_cells pbme2 V2 DC__MC & 270
= pbmc2 V2 DC__TC 2
'pb_mcl_vZ_A _pDC__BC 1]
A [pbmcl_v2_A_pDC__MC 21
i “ pbmcl v2_A pDC__NK 4
pbmcl v2_B pDC__MC 7]
B [pbmciv2 B pbC__NK B
pDC pbmcl v2 B pbC__TC 3| 68
pbmc2 V2 pDC__BC o
[pbme2_v2 pbc__bC fl
pbmc2 v2 pbmc2_V2_pDC__MC 16]
pbmc2_V2_pDC__NK 1]
pbmc2 V2 pdC__TC o
pbmcl_v2_A_M14__BC o
pbmcl_v2_A_M14__DC o
A [pbmelvz A M14__MC 609)
[pbmel_v2 A M14__NK o
v2 pbmcl v2 A M14__TC 10
pbmcl_v2_B_ M14__BC 3|
— 5 [Pbmclv2BwmiawC 373)
pbmcl_v2_B_M14__NK P
M14 phmcLiv22BRN1A ST 4 1809 0.0276
pbmcl_v3 M14__BC 1]
pbmcl_v3_ M14__DC 1|
v pbmcl_v3_M14__MC 350)
Monocytes pbmcl_v3_M14__NK 1 132
[pbmet_v3 w1a__Tc 1
pbmc2_V2_M14__BC 4
pbmc2_V2_M14__DC 2|
pbme2 a3 pbmc2_V2_M14__MC 227]
[pbme2_v2 M14__TC 3|
pbmcl_v2_A_M16__DC ]
A |pbmeivaAmis_wc 9|
v2 pbmcl_v2_A_M16__NK P
pbmcl
M16 [pbmel_v2 A M16__TC 5| s 0.0248
B |pbmcl v2 B M16__MC 7
3 pbmcl v3 M16__MC o
pbmc2 V2 pbmc2 V2_M16__MC 50
A |Pbmelvz ANK_NK 157
Ecl,vz,&wkirc 9
v2 pbmcl_v2_B_NK__MC 3|
pbmcl B [pbmcl v2 B NK__NK 2
NK_cells NK pbmcl v2 B NK__TC 30 s 00772 842
- pbmcl v3 NK__NK 177]
pbmcl_v3_NK__TC 17|
pbmc2 V2 NK__NK 213
pbme2 V2 pbmc2_V2_NK__TC o
pbmcl_v2_A_T4__BC )
A [pbmciva AT NK 23]
pbmcl v2 A T4__TC 523
v2 pbmcl v2 B T4__BC 1
pbmcl s |pomeiv2BTa_wc 1]
pbmcl v2 B T4__NK 3]
- pbmcl v2_B_T4__TC 875 330 .
- pbmcl v3 T4__NK
pbmcl_v3 T4__TC 912
pbmc2 V2 T4__BC 5
pbmc2 V2 T4__DC 1]
pbmc2 v2 pbmc2 V2 T4__MC 4
pbmc2 V2 T4__NK 7]
T_cells pbmc2 V2 T4__TC 9s| 7164
pbmcl v2 A T8__BC 1
o |pomeivaATE we 5|
bmcl v2 A T8 NK [ 259
v2 pbmcl v2 A T8__TC 918
pbmcl pbmcl v2 B T8__MC B
B |pbmciv2 BT8_NK 183]
8 pbmcl v2 B T8__TC 767 3784 0.1802
- pbmcl v3T8__NK 1
pbmcl v3 T8__TC 814
pbmc2 V2 18__BC B
p— v pbmc2_V2_T8__MC 4
bmc2 V2 T8__NK &)
k:b_mcz_vz_rs_Tc 603
All (predicted) | 1847] 27| 2m| 1578 6599 12297 12292|

Page | 233



EXP DataSets Subtype TotalCellNTraining |Testing Accuracy:  0.059281458
3 BC 10085, v Precision:  0.68674699 0.03145026 1 0.96851
M14 2612 v Recall/Sens 0.005651958 0.99770291 0.000239 0.037286
NK 8385 v Specificity: 0.99965489 0.03086546 1 0.9963
CD45RA+CD25-T4naive 10479 Vv F1 Score:  0.01121164 0.06097832 0.000477 0.071807
10x (Clean) T4 11213| 85423 Vv Predicted B_cells| Monocytes| NK cells| T cells: All
ICD45RA+T8naive 11953, v B_cells 57| 10028, 0 0 10085
T8 10209 v Monocyte: 1] 2606 0 5 2612
CD45RO+T4mem 10224 v NK_cells 20| 8290 2 73 8385
CD4+CD25+Treg 10263 Vv T_cells 5| 61937, 0 2399 64341
Mi14_d1 425 v All 83 82861 2 2477, 85423
M14_d2 431 v
NK 309] v
T4 222 v
T8 310 v
325 v
382 v
284 v
204 v
T4 965 v
CCR5+CD69-T4 435 v
tumor_ascites_DC 1613 \
tonsil_DC 2739 v
[ T8_methanol_SSC 4753 \
GEO (ALL+10EC"S) donorl_IL-10-producing_Foxp3-_T4 1247 34700 v
donor2_ IL-10-producing_Foxp3-_T4 1902| v
nonmalignant_P5_CD3+CD5intSSCint_T4 4486 \
_P5_CD3+CD5intSSCint_T4_aftertheq 3725 v
HLA-DR 48] v
HLA-DR_control 2397| v
CD19 26 v
(CD19_control 1760 v
CD8 5662 v
10-empty-cells-in-BC 10 Vv
10-empty-cells-in-DC 10 v
10-empty-cells-in-MC 10 v
10-empty-cells-in-NK 10 v
10-empty-cells-in-TC 10 v
Bn 1169 v
Bm 491 v
DC 142 v
M14 1263 v
M16 398 v
NK 1394 v
aTre, 921 A
Broads1 eE el 13183
rTreg 1072 \
Tdem 975, A
[ T4naive 1134 A
[T8em 1031 v
T8naive 1336 A
1431 v
BC 1884 \
DC 202 v
pDC 68 v
BroadsS2 (Clean) pe 1809 12292 v
M16 323 v
NK 842 v
T4 3380 v
T8 3784 v
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True/ Predicted

BC

DC

MmC

NK

TC

SubtypeER |All (true)

B_cells

BC

021-CD19+B___BC

57|

021-CD19+B__MC

10028|

10085

10085

Monocytes

M14

003-M14__ BC

003-M14__MC

2606

003-M14___TC

2612

0.0023 2612

NK_cells

NK

018-CDS6+NK__BC

20

018-CD56+NK___MC

8290

018-CD56+NK__NK

018-CDS6+NK___TC

73

8385

8385

T_cells

CD45RA+CD25-T4naive

025-CD4+CD45RA+CD25-NaiveT___BC

025-CD4+CD45RA+CD25-NaiveT__ MC

10449

025-CD4+CD45RA+CD25-NaiveT___TC

29

10479

T4

026-T4_BC

026-T4__MC

026-T4__TC

250]

11213

CD45RA+T8naive

027-CD8+CD45RA+NaiveCytotoxicT___MC

027-CD8+CD45RA+NaiveCytotoxicT___TC

22

11953

T8

022-T8__MC

022-18__TC

369

10209

CD45RO+T4mem

023-CD4+CDA5RO+MemoryT__MC

9634

023-CD4+CDA5RO+MemoryT__TC

590]

10224

CD4+CD25+Treg

024-CD4+CD25+RegulatoryT___ BC

024-CD4+CD25+RegulatoryT___MC

9121

024-CD4+CD25+RegulatoryT___TC

1139

10263

64341

All (predicted)

82861

2477

85423

85423
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[exe DataSets | Subtype SubtypeN _[TotalCellfTraining Testing Accuracy: 0751757925

a4 BC 10085 Precision: 0.6747182 0.19607843 0.36102 0.099451 0.961145
M14 Recall/Sensi 0.69988864 0.00229253 0.731199 0.965517 0.886721

10x (Clean)

=

Specificity: 0.98158279 0.99864856 0.863487 0.91888 0.908766
F1_Score: 0.68707297 0.00453206 0.483378 0.180328 0.922434
Predicted B_cells|ndritic NK_cells| T_cells] All
B_cells 1257 11] |

Dendritic_ 132 10|
Monocytes 64] 10|
NK_cells of 10|
T_cells. 410] 10|
Al 1863 51

[cD45RA+Tnaive
T8

[CDasRO+Tamem
[CDa+CD25+Treg
M14_d1

M14_d2

NK

i3

18

QCacIcacacacaca

T4
|ccRs+cDo-T4
tumor_ascites DC
tonsil_bc
[T8_methanol_ssc:
[donort._IL-10-producing Foxp3- T4
[donor2_1L-10-producing Foxp3- T4
i P5_CD3+CDSIntsSCint_T4.

nonmalignant_P5_CD3+CDSintSSCint T4

LA-Df

HLA-DR _control
cp19
[cD19_control

GEO (ALL+10EC*5)

10-empty-cells-in-BC
10-empty-cells-in-DC
10-empty-cells-in-MC
10-empty-cells-in-NK
10-empty-cells-in-TC

3 3 8 0 N ) e

Broads1

Broads? (Clean)

TREEEREEEEEEREEEREREEEREEEEE
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True/ Predicted

BC|

DC

NK|

TC|

SubtypeN [SubtypeER

B_cells

€D19_control

(GEO_GSM3258348_CD19_control__BC

1249

GEO_GSM3258348_CD19_control__MC

197|

GEO_GSM3258348_CD19_control _NK

79)

GEO_GSM3258348 CD19_control___TC

235

1760

D19

(GEO_GSM3258346_CD19__BC

GEO_GSM3258346_CD19__DC

GEO_GSM3258346_CD19__MC

GEO_GSM3258346_CD19__TC

10-empty-cells-in-BC

10EC-in-BC___DC

179%

Dendritic_cells

tonsil_DC

GEO_GSM3162630_tonsil_DC_BC

GEO_GSM3162630_tonsil_DC_MC

1420

GEO_GSM3162630_tonsil_DC_NK

17|

GEO_GSM3162630_tonsil_DC_TC

158|

tumor_ascites_DC

GEO _tumor_ascites_DC_BC

114

GEO_GSM3162632_tumor_ascites_DC_MC

GEO_GSM3162632_tumor_ascites_DC_NK

159

GEO_GSM3162632_tumor_ascites_DC_TC

10-empty-cells-in-DC

138

2739

10EC-in-DC__DC

4362

Monocytes

M14_d1

GEO_GSM2773408_M14_d1__MC

420|

GEO_GSM2773408_M14_d1__NK

GEO_GSM2773408_M14_d1__TC

Mi4_d2

GEO_GSM2773409_M14_d2__BC

GEO_GSM2773409_M14_d2__MC

419|

GEO_GSM2773409_M14_d2__NK

GEO_GSM2773409_M14_d2__TC

HLA-DR

GEO_GSM3258345_HLA-DR_BC

GEO_GSM3258345_HLA-DR_MC

33|

GEO_GSM3258345_HLA-DR_NK

GEO_GSM3258345_HLA-DR_TC

s

3311

HLA-DR_control

GEO_GSM3258347_HLA-DR_control_BC

GEO_GSM3258347_HLA-DR_control_MC

1549)

GEO_GSM3258347_HLA-DR_control_NK

GEO_GSM3258347_HLA-DR_control_TC

339

10-empty-cells-in-MC

10EC-in-MC__DC

NK_cells

NK

GEO_GSM3544603_NK__NK

308|

GEO_GSM3544603_NK__TC

10-empty-cells-in-NK

10EC-in-NK__DC

319

T_cells

T4

GEO_20190108_GSM3544603_T4__TC

22|

T8

[GEO_20190108_GSM3544603 T8__MC

[GEO_20190108_GSM3544603 T8__NK

|GEO_20190108_GSM3544603 T8__TC

iNKT

EE|

37|

[GEO_20190108_GSM3544603_INKT__NK
|GEO_20190108_GSM3544603_INKT__TC

288|

MAIT

20|

[GEO_20190108_GSM3544603 MAIT__NK
[GEO_20190108_GSM3544603 MAIT__TC

362]

128

155|

[GEO_20190108_GSM3544603_Vd2__ NK
[GEO_20190108 GSM3544603_Vd2__TC

T4

(GEO_20190620_GSM3209407_T4__NK

GEO_20190620_GSM3209407_T4__TC

CCR5+CD69-T4

949

GEO_20190620_GSM3209408_CCR5+CD69-T4__NK

(GEO_20190620_GSM3209408_CCR5+CD69-T4__TC

a2e|

T8_methanol _SSC

GEO_GSM3087629_T8_methanol_SSC_BC

GEO_GSM3087629_T8_methanol_SSC_MC

98|

GEO )_T8_methanol_SSC_NK

GEO_GSM3087629_T8_methanol_SSC_TC

3336)

4753

0.2981

24912

donorl_IL-10-producing_Foxp3-_T4

GEO_GSM3430548_donorl_IL-10-producing_Foxp3-_T4_NK

GEO_GSM3430548_donorl_IL-10-producing_Foxp3-_T4_TC

1241

1247

donor2_IL-10-producing_Foxp3-_T4

GEO_GSM3430549_donor2_IL-10-producing_Foxp3-_T4_BC

(GEO_GSM3430549_donor2_IL-10-producing_Foxp3-_T4_NK

12|

GEO_GSM3430549_donor2_IL-10-producing_Foxp3-_T4_TC

nonmalignant_P5_CD3+CDSintSSCint_T4

1889

1902

0.0068

GEO_GSM3478792._ _P5_CD3+CDSintSSCint_T4_BC

GEO_GSM3478792_ _P5_CD3+CDSINtSSCint_T4_MC

(GEO_GSM3478792_nonmalignant_P5_CD3+CDSIntSSCint_T4_NK

GEO_GSM3478792_nonmalignant_P5_CD3+CDSintSSCint_T4_TC

nonmalignant_P5_CD3+CDSintSSCint_T4_: py

aass)

0.0069

GEO_( i _P5_CD3+CDSintSSCint_T4_aftert! _BC

GEO _( i _P5_CD3+CD5intSSCint_T4_aftertl I_NK

GEO_GSM3558027_nonmalignant_P5_CD3+CDSIntSSCint_T4_aftertherapy_TC

3714

3725

0.0030

GEO_GSM3087628_CD8__BC

20

GEO_GSM3087628_CD8__MC

211

GEO_GSM3087628_CD8__NK

GEO_GSM3087628_CD8__TC

10-empty-cells-in-TC

10EC-in-TC__DC

All (predicted)

1863]

51§

6706
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SplitConfusionMatrix-R5

(Compared to R1 (RIincluded AL groups - as the first round), RS removed the 'EC’ group.)

Train: 10x(Clean)+GEO(of R5)+BroadS2(Clean)

Test: BroadS1

[exp DataSets Subtype SubtypeN TotalCelIN [Training [Testing Accuracy: 0.936888417

1 BC Precision: 099607843  0.80152672 094709302  0.79646697 0.9477647
M14 Recall/Sensitivi 091807229 073043662 0.9807345  0.74390244 0.9675715
NK ifici 09994793 099800629  0.99210207 0.97752142 0.9085856
CDA5RA+CD25-Tanaive F1_Score: 095548580 076023077 0.96362023 _0.76928783 0.9575657
Predicted
B cells
Dendritic_cells of 105] 35| of 2 142]
Monocytes 4 9| 1629 0| 19| 1661
'ﬁKﬁce\ls 2| 0| 8| 1037| 347| 1394
[T_cells 0| 1 6| 263 8056|8326
[ann 1530 131 1720] 1302 8500[ 13183

10x (Clean)

=

CDa5RA+T8Naive
T8
[CD45RO+T4mem
CD4+CD25+Treg
M14_d1

M14_d2

NK

i

8

i

|ccrs+cpe9-T4
GEO(ofRS) [tumor_ascites DC

tonsil_DC
[T8_methanol_ssC
donorl_IL-10-producing_Foxp3- T4
donor2_IL-10-producing_Foxp3-_T4
CD3+CD5intSSCi
nonmalignant_P5_CD3+CD5intSSCi
HLA-DR
HLA-DR_control
cD19
CD19_control
cDs

SRR EEEREREEEREEEEEEREREREREEEIE === ===

NK
aTreg
nonT
rTreg
[Taem
[Tanaive
[T8em
[T8naive

Broads1 13183

T EEEEEEEEEEEE

BC
[oc

Broads2 (Clean)

BEEEEERERR
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True/ Predicted BC [ MC NK Tc Al (true)
BT580 Bn_aTreg BI580__ BC 4
Bn_aTreg BT860 Bn_aTreg BI860__BC o
NY860 Bn_aTreg NY860__BC 3
Bn_nonT_BT580__BC 233
— Bn_nonT_BT580__DC 1]
Bn_nonT_BTS80__MC 3
Bn_nonT_BT580__TC 5
Bn_nonT_BT860__BC 512
— Bn_nonT_BT860__DC 4
Bn_nonT_BT860__MC 17
Bn_nonT_BT860__TC 20
Bn Bn_nonT Bn_nonT_NY580__BC 150 1169
- Bn_nonT_NY580__DC B
Bn_nonT_NY580__MC 1
Bn_nonT_NY580__TC 1]
Bn_nonT_NY860__BC 166
Bn_nonT_NY860__DC 3
NY860 Bn_nonT_NY860__MC 5
Bn_nonT_NY860__NK 1
B_cells Bn_nonT_NY860__TC 15| 1660
Bn_Tdem BT860 Bn_T4em_BT860__ BC 1
Bn_Tndl BT860 Bn_Tncl_BT860__BC 1]
BT860 Bm_aTreg BT860__BC o
Bm_aTreg NY580 Bm_aTreg NY580__BC il
NY860 Bm_aTreg_NY860__BC )
Bm_nonT_BT580__BC 85
BT580 Bm_nonT_BT580___MC 3|
Bm_nonT BT860__BC 208
Bm_nonT_BT860__DC B
U= Bm_nonT_BT860__MC 4
Bm Bm_nonT_BT860__TC o a0
Bm_nonT_NY580__BC 59
Bm_nonT fompon Lt
NY580 Bm_nonT_NY580__DC 1]
Bm_nonT_NY580__TC 3
Bm_nonT_NY860__ BC 87|
[Bm_nonT_nv8s0__DC 3
NY860 Bm_nonT_NY860__MC 4
Bm_nonT_NY860__NK i
Bm_nonT_NY860__TC 13
BT860 DC_aTreg BT860__DC i
DC_aTreg NY580 DC_aTreg_NY580__DC 1
f— DC_nonT BT580__DC 34
DC_nonT BT580__MC 13
DC_nonT_BT860__DC 14
Dendritic_cells C AR DC_nonT,BTB60__MC 4 122 122
DC_nonT_BT860__TC 1]
BC_nonT [o— DC_nonT_NY580__DC 33
DC_nonT_NY580__MC 3
DC_nonT_NY860__DC 19
NY860 DC_nonT_NY860__MC 5
DC_nonT_NY860__TC 1
BTS80 M14_aTreg BT580__MC 1
BT860 M14_aTreg_BT860__MC 4
M14_aTreg NY580 M14_aTreg_NYS80__MC b
NY860 M14_aTreg_NY860__MC b
M14_nonT_BT580__BC 1
— M14_nonT_BT580__DC 1]
M14_nonT_BT580__MC 234
M14_nonT_BT580__TC B
M14_nonT BT860__BC B
M4 M14_nonT BT860__DC 4 1263 00182
M14_nonT FLEZD M14_nonT_BT860__MC 328
M14_nonT_BT860__TC 4
— M14_nonT_NY580__MC 339
M14_nonT_NY580__TC B
[o— M14_nonT_NY860__MC 328
M14_nonT_NY860__TC 7]
Monocytes M14_rTreg NY580 M14_rTreg NY580__NIC 1 1661
M14_Tncl BT580 M14_Tncl_BT580__MC 1]
BT580 M16_aTreg_BT580__MC 4
N BT860 M16_aTreg_BT860__MC 5
NYS80 M16_aTreg NY580__MC 7
NY860 M16_aTreg_NY860__MC 7
— M16_nonT_BT580__DC B
M16_nonT_BT580__MC 57
M16_nonT_BT860__BC 1
M16 — M16_nonT BT860__DC 1] 398 0.0226
M16_nonT M16_nonT_BT860__MC 101]
M16_nonT_BT860__TC 4
NY580 M16_nonT_NY580__MC 8
M16_nonT_NY860__DC i
e M16_nonT_NY860__MC 129
M16_T8em BT580 M16_T8em_BT580__MC -1|
M16_T8em NY860 M16_T8em_NY860__MC 1]
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BT580 NK_aTreg BT580__TC 7
NK_aTreg NY580 NK_aTreg NY580__TC 3
NY860 NK_aTreg_NY860__TC 1
NK_nonT_BT580__MC 3
BT580 NK_nonT_BT580__NK 225|
NK_nonT_BT580__TC 2
NK_nonT _BT860__BC 2
b NK_nonT_BT860__MC 1
NK_nonT_BT860__NK 340)
NK_nonT
NK_nonT_BT860__TC
NK_nonT_NY580__MC 9
NY580 NK_nonT_NY580__NK 157|
NK_nonT_NY580___TC 29|
NK_nonT_NY860__NK 219|
- _nonT_NY860__|!
PEEY NK_nonT_NY860__TC 45
NK_T4em NY860 NK_T4em_NY860__TC 1]
NK_T4naive NY860 NK_T4naive_NY860__TC 1]
NK_cells NK NK_T8em_BT580___MC 1] 1394 1 1394
BT580 NK_T8em_BTS80__NK 13
NK_T8em_BT580__TC 2
NK_T8em_BT860__MC 1]
BT
X 860 NK_T8em_BT860__NK 2|
NK_T8em_BT860__TC 57
— NK_T8em_NY580__NK 1]
NK_T8em_NY580__TC 7
NK_T8em_NY860__NK 33
- _T8em_NY860_|
PEED NK_T8em_NY860__TC 35
— NK_Tncl_BT580__NK 3
NK_Tncl_BTS80__TC 7
T o —
NK_Tncl =
— NK_Tncl_NY580__NK 1
NK_Tncl_NY580__TC 10
f— NK_Tncl_NY860__NK 3
NK_Tncl_NY860__TC 9
— T aTreg BTS80__NK 1
T aTreg BTS580__TC 240)
aTreg T_aTreg BT860 T_aTreg BT860__ TC 243] 921 0.0011
NY580 [T aTreg NY580__TC 22
NY860 [T_aTreg_NY860__TC 215|
[T_nonT BT580__MC 1]
BT580 [T_nonT BT580__NK 5]
T_nonT BT580__TC 50
T_nonT_BT860__MC 1]
BT860 T_nonT BT860__NK 51|
T T_nonT O 42
non et T_nonT BT860__TC &)
— T_nonT_NY580__NK 48]
[T_nonT_NY580__TC 37
[T_nonT_NY860__NK 45|
e [T_nonT_NY860__TC 66
[T_rTreg BT580__MC 1]
BT580 T_rireg BTS80__NK 1
T Treg BTS80__TC 311
T Treg BT860__MC fl
rreg T_rTreg BT860 T rTreg BT860__NK 1] 1072 0.0047
[T _rTreg BT860__TC 23)
NY580 [T rTreg NY580__TC 337}
[T rTreg NY860__NK 1]
NY860 e
T_rTreg NY860__TC 187,
[T Tdem _BT580__MC 1]
BT580 T T4em BT580__NK 4
T T4em BTS580__TC 325)
T_Tdem BT860__NK 1
BT860 e .
Tdem T_Tdem T ETETEoMATG w9 00072
T_cells — [T_Tem_NY580__NK 1 8326
[T Tem_NY580__TC 253
NY860 [T_Tem_NY860__TC 132
[T_Tanaive BT580__DC 1]
BT580 [T_Tanaive BT580__NK 1
— S T_Tanaive BT580__TC aof 00018
naive IRITIe BT860 T Tanaive_BT860__TC 26| -
NY580 T _Tanaive_NYS80__TC 291
NY860 [T_Tanaive_NY860__TC 9%,
— [T_T8em_BTS80_NK 1)
[T T8em BTS80__TC 254
sy - Toem- o1 N —
T8em T_T8em = 1031 00398
— [T_T8em_NY580__NK 9
[T_T8em_NY580__TC 257}
[T_T8em_NY860__NK 7
LY [T_T8em_NY860__TC 188
BT580 [T_T8naive_BTS80__TC 318}
BT860 [T_T8naive_BT860__TC 486)
i i = — 1 .
Ténaive T_Tenaive NY580 [T_T8naive_NY580__TC 256 336 0.0000
NY860 T_T8naive_NY860__TC 276
[T_Tncl_BTS80__MC 1]
BT580 [T_Tncl_BT580__NK E
[T_Tnd_BT580__TC 195
— [T_Tncl_BT860__NK 3
Tndl T_Tnd [T_Tncl_BT860__TC 363 143 00161
— [T_Tncl_NY580__NK 7
T_Tncl_NY580__TC 372)
[T_Tncl_NY860__NK 7
ey [T_Tncl_NY860__TC 478
Al (predi 1530) 131] 1720) 1302 8500 13183 13183)
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EXP DataSets Subtype TotalCellNTraining Testing Accuracy: 0.910023
2 BC 10085 v Precision: 0.94925 0.714286 0.8980322 0.67121849 0.938041
M14 2612 W Recall/Ser 0.873673 0.240741 0.94183865 0.75890736 0.953099
NK 8385 \ Specificity 0.991545 0.997837 0.97755906 0.97266376 0.912051
CD45RA+CD2| 10479 W F1 Score: 0.909895 0.360111 0.91941392 0.71237458  0.94551
10x (Clean) T4 11213| 85423 |V Predicted| B_cells]ritic_cells Monocytes: NK_cells| T _cells All
CD45RA+T8n: 11953 W B_cells 1646 10 45| 0] 183 1884
8 10209 W Dendritic 17 65| 166 4 18 270
CDA5RO+T4 10224 v Monocyte| 62 12| 2008, (o] 50 2132
CD4+CD25+Ti 10263 \ NK_cells 0 1 2| 639 200 842
M14_d1 425 v T_cells 9| 3 15| 309] 6828 7164
M14_d2 431 W All 1734 91 2236 952 7279 12292
NK 309 \
T4 222 v
T8 310 v
iNKT 325 W
MAIT 382 W
vd1l 284 v
Vd2 204 W
T4 965 W
CCR5+CD69-1] 435 v
GEO (of R5) tumor_ascitg 1613| 34650 |V
tonsil_DC 2739 \
T8 _methanol 4753 \
donorl_IL-1( 1247, v
donor2_ IL-1 1902 v
T lignar 4486 W
T lignar 3725 W
HLA-DR 48 v
HLA-DR_con 2397 v
CD19 26 W
CD19_contro] 1760 \
CD8 5662 v
Bn 1169 W
Bm 491 v
DC 142] W
M14 1263 W
M16 398 v
NK 1394 v
aTreg 921 Vv
BroadS1 onT 226 13183 5
rTreg 1072 \
T4dem 975 W
T4naive 1134] \
T8em 1031 v
T8naive 1336 \
Tncl 1431 W
BC 1884 v
DC 202 v
pDC 68 v
BroadS2 (Clean) MY 1809 12292 i
M16 323 W
NK 842 W
T4 3380 v
8 3784 v

Page | 241



True/ Predicted | BC DC [ NK i Al (true)
pbmcl v2_ A_BC__BC 227}
pbmcl v2 A BC__DC 4
pbmcl_v2_A_BC__MC 11
v2 pbmcl v2_ A BC__TC 46|
pbmcl v2 B BC__BC 287
pbmel [pbmet v2 B BC__mcC 15
" pbmcl_v2 B BC__TC 86|
B_cells BC LT = 1884 01263 1884
v3 pbmcl v3 BC__MC 14
[pbme1 v3 BC__TC 29
pbmc2_V2 BC__BC 829)
N “ pbmc2_V2 BC__DC 6
pbmc2 V2 BC__MC 5
pbmc2_ V2 BC__TC 2
pbmcl v2 A DC__BC 1]
pbmcl v2 A_DC__DC 11
[pbmc1_v2_A_DC__MC 4]
v2 [pbmc1 v2 A DC__TC 2|
pbmcl v2 B DC__DC 1
pbmcl v2_ B DC__MC 31]
pbmcl
pbmcl v2 B DC__TC 1
- pbmcl v3 DC__BC 1 202
pbmcl_v3 DC__DC 1
v3 [pbmec1 v3 pc__mc 32
pbmcl v3 DC__NK 1
pbmcl v3 DC__TC 3
pbmc2_v2_DC__BC 9
Dendritic_cells pbmc2_V2_DC__DC 48] 270
pbmc2 v2
'pb_ch_VZ_DC_MC 23|
}pb_mczfvzincirc 3]
pbmcl_v2_A_pDC__BC 7
pbmcl v2_ A_pDC__MC 13
- - pbmcl v2_A_pDC__NK 1
[pbmc1_v2_A_pDC__TC 5|
9
pDC 3 68
. o
}pb_mcz,vz ) pDC___DC 4
pbmc2 V2 pbmc2_V2_pDC___MC 17
[pbme2_v2_ppc__ NK 2|
pbmc2 V2 pDC__TC 1
pbmcl v2 A_M14__ BC 2
pbmcl v2 A_M14__DC o
pbmcl v2_A_M14__MC 601}
v2 pbmcl v2 A M14__TC 1]
pbmcl v2 B M14__BC 2
CEmED pbmcl v2_B_M14__MC 372)
pbmcl v2_B_M14__TC 5
ma [pbme1 v3 m14__BC 5 1809 00641
v3 pbmcl v3 M14__MC
pbmcl v3_M14__TC 9
pbmc2_V2_M14__BC 31]
Monocytes pbmc2_V2_M14__DC g 2132
e vz pbmc2_V2_M14__MC 3
pbmc2_V2_M14__TC 20
pbmcl v2_A_M16__BC 1]
pbmcl v2 A_M16__DC 1
v2 pbmcl v2 A M16__MC 9
pbmcl v2_ A_M16__TC 4
pbmcl —
M16 pbmcl v2_B_M16__MC 73] 323 0.0248
pbmcl v3 M16__BC 1]
v3 pbmcl v3 M16__MC 9
[pbmc1 v3 m16__TC 1|
pbmc2 v2 pbmc2_V2_M16__MC
pbmcl_v2_A_NK___MC 1
pbmcl v2_A_NK__NK 131
pbmcl_v2_A_NK__TC 34
v2 pbmcl_v2_B_NK__MC 1
pbmcl
pbmcl_v2_B_NK__NK 169
NK_cells NK pbmcl v2 B NK__TC 93| 842 02411 842
3 pbmcl v3 NK__NK 130
v pbmcl v3 NK__TC 64
pbmc2_V2_NK__DC 1]
pbmc2 v2 pbmc2 V2 NK__NK 209)
'pb_ch_VZ_NK_TC 9|
[pbme1 v2 A T4__BC 2)
}pb_mcl_vZ_A_TA_DC 1
pbmcl v2 A T4__NK g
v2 [pbmc1 v2 A T4__TC 539)
pbmcl pbmcl v2 B T4___MC 4
pbmcl v2 B T4__NK g
pbmcl_v2 B T4__TC 89|
™ 3 pbmcl_v3 T4__NK 14 3380 o2
pbmcl v3 T4__TC 946}
pbmc2 V2 T4__BC 1
[pbmc2 v2 T4__DC 2
pbmc2 V2 pbmc2_V2_T4__MC 6|
T cells pbmc2 V2 T4__NK 1 160
- pbmc2_V2_T4__TC 952|
¥ BC 3
pbmcl v2_ A T8 __MC 3]
 ATENK [ ud
v2 pbmcl v2 A T8__TC 1054f
pbmcl pbmcl v2 B T8__MC 2
. NK 57
= pbmcl_v2_B_T8__TC s 7% 007E)
- NK 2
TC 934§
s BC 3
pbmc2 v2  V2.T8__NK 8]
'pb_mcz,vz;rai'rc 610)
Al (predicted) 1734) o1 223 952] 7279 12292) 12292
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[exe

DataSets

Subtype:

10x (Clean)

BC

[SubtypeN[TotalCellf Training
10085|

[Testing

M14

2612

NK

8385

| CD45RA+CD25-T4naive

10479

Accuracy:
Precision:
Recall/Sens
Specificity:
F1 Score:

0.128162205
0.49921916
0.09509172
0.98723088
0.15975346

0 0.031808 1 0.945082

0 0918836 0.030769 0.11394
1 0.979793

0.99959027 0.117847

iz

Predicted

B cells

CD45RA+T8naive

B_cells

959

Dend

10085

3

2612

T8
[CD45RO+T4mem

CD4+CD25+Treg

£33 8 E8 BN BN Y S

NK_cells

6)

5
34 2421 of 175

0] 7875 258 246

Tcells

953

1| 56056] o 7331

8385
13411

GEO (of R5)

M14_d1

All

1921

35| 75452 258 7757

85423

M14_d2

NK

T4

T8

iz

[CCRS+CD69-T4

tumor_ascites DC

tonsil_DC
[18_methanol_SsC
[donorl_IL-10-producing Foxp3- T4

[donor2_IL-10-producing_Foxp3-_T4

nonmalignant_P5_CD3+CDSintSSCint_T4

nonmalignant_P5_CD3+CDSintSSCint_T4_afterthe:

HLA-DR

HLA-DR_control

[CD19

D19 _control

Broads1

BroadsS2 (Clean)

398

13183

M16

12292

R REREREREEREREREREEEEEREEREEREEEEEREREEEEEE RS SRS
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True/ Predicted

BC

DC

MmcC

NK

TC

SubtypeN |SubtypeER

All (true)

B_cells

BC

021-CD19+B__BC

959

021-CD19+B__MC

9121

021-CD19+B___TC

10085

10085

Monocytes

M14

003-M14__BC

003-M14__DC

344

003-M14__MC

2400

003-M14__TC

175

2612

2612

NK_cells

NK

018-CDS6+NK__BC

018-CD56+NK___MC

7875

018-CD56+NK__NK

258

018-CDS6+NK___TC

246

8385

8385

T_cells

CD45RA+CD25-T4naive

025-CD4+CD45RA+CD25-NaiveT__ BC

270

025-CD4+CD45RA+CD25-NaiveT___ MC

9773

025-CD4+CD45RA+CD25-NaiveT___TC

436)

10479

T4

026-T4__BC

241

026-T4__MC

026-T4__TC

614]

11213

CD45RA+T8naive

027-CD8+CD45RA+NaiveCytotoxicT___BC

027-CD8+CD45RA+NaiveCytotoxicT___MC

i

027-CD8+CD45RA+NaiveCytotoxicT___TC

618

11953

T8

022-18__BC

022-T8__MC

8187

022-18__TC

2014

10209

CD45RO+T4mem

023-CD4+CD45RO+MemoryT__BC

18

023-CD4+CDA45RO+MemoryT__DC

023-CD4+CD45RO+MemoryT___MC

8521

023-CD4+CDA45RO+MemoryT__TC

1684

10224

CD4+CD25+Treg

024-CD4+CD25+RegulatoryT___BC

407,

024-CD4+CD25+RegulatoryT___MC

7891

024-CD4+CD25+RegulatoryT___ TC

1965

64341

All (predicted)

1921

35

75452

258

7757

85423
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DataSets

Subtype

SubtypeN _|[TotalCell

[Training

[Testing

10x (Clean)

BC
M14

[Nk

|CDA5RA+CD25-T4naive

Accuracy:  0.75255411
Precision:  0.6747182
Recall/Sensi 070380739

0 036102 0.099451 0.961145
0 0733414 0.996764 0.887077

Specificity: 0.98156037 0.999967 0.863313 0.918785 0.908391

F1 Score: 0.68895588

0 0483861 0.180857 0.922627

Predicted 8_cellsritic

NK_cells| _T_cells] All

CD45RA+T8naive

B_cells 1257|

T8

Dendritic_ce 132|

CD45RO+T4mem

CD4+CD25+Treg

== 2= 2= ]=]=

NK_cells. of

GEO (of RS)

M14_d1

T cells 410|

M14_d2

Al 1863|

rlolololole

333 2089] 22000] 24902
o706 307 22983 34650)

NK

T4

T8

T4

[CCRS+CD69-T4.

tumor_ascites DC

tonsil_DC

T8_methanol_SSC

[donorl_IL-10-producing_Foxp3- T4

donor2_IL-10-producing_Foxp3-_T4

nonmalignant_P5_CD3+CDSIntSSCint_T4

nonmalignant_P5_CD3+CDSintSSCint_T4.:

HLA-DR
e

cp19

CD19_control

TR EEEEEEEEEEEEEEEEEEEEE

BroadS1

Broads2 (Clean)

[NK

aTreg

nonT

rTreg

Tdem

T4naive

[T8em

[T8naive’

BC

DC

pDC

M14

M16

NK

T4

T8

TEEEREEEEEEFREEEEREEEEEEE=
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True/ Predicted [ D( M(] NK| C [All (true)
GEO_GSM3258348_CD19_control___BC 1249
GEO_GSM3258348 CD19_control__MC 197
€D29_control GEO_GSM3258348_CD19_control__NK 79 1760
GEO_GSM3258348_CD19_control__TC 235)
B_cells (GEO_GSM3258346_CD19__BC g
GEO_GSM3258346_CD19__DC 1
019 GEO_GSM3258346_CD19__MC 7| »
GEO_GSM3258346_CD19__TC 10)
GEO_GSM3162630_tonsil_DC_BC 18]
G GEO_GSM3162630_tonsil_DC_MC 1420 1613
- GEO_GSM3162630_tonsil_DC_NK 17
Dendritic_cells GEO_GSM3162630_tonsil_DC_TC 158]
GEO_GSM3162632_tumor_ascites_DC_BC 114
TR I GEO_GSM3162632 tumor_ascites DC_MC | 232 30
GEO_GSM3162632_tumor_ascites_DC_NK 159)
GEO_GSM3162632_tumor _ascites DC_TC 138
GEO_GSM2773408_M14_d1__MC 420
M14_d1 GEO_GSM2773408_M14_d1__NK 1 425
GEO_GSM2773408 M14_d1__TC 4
GEO_GSM2773409_M14_d2__BC 3
GEO_GSM2773409_M14_d2__MC 419|
M14_d2 = = 431
GEO_GSM2773409_M14_d2__NK 4
GEO_GSM2773409_M14_d2__TC 5
Monocytes GEO_GSM3258345_HLA-DR_BC 5 3301
HLADR GEO_GSM3258345_HLA-DR_MC EE! "
GEO_GSM3258345_HLA-DR_NK 3
GEO_GSM3258345_HLA-DR_TC 7|
GEO_GSM3258347_HLA-DR_control_BC 56
IR GEO_GSM3258347_HLA-DR_control_MC 1549 2307
- GEO_GSM3258347_HLA-DR_control_NK 457,
GEO_GSM3258347_HLA-DR_control_TC 335)
GEO_GSM3544603_NK__NK 30g]
NK_cells alis (GEO_GSM3544603_NK___TC ] 3 309
T4 (GEO_20190108_GSM3544603_T4__TC 22 222
(GEO_20190108_GSM3544603 T8___MC 1
8 GEO_20190108_GSM3544603 T8 NK 4 310 0.0161
GEO_20190108_GSM3544603_T8__TC 305)
— GEO_20190108_GSM3544603_iNKT__NK 37 25
GEO_20190108_GSM3544603_iNKT__TC 288|
— GEO_20190108_GSM3544603 MAIT__NK 20] .
(GEO_20190108_GSM3544603_MAIT__TC 362)
GEO_20190108_GSM3544603 Vd1__MC 1
vd1 GEO_20190108_GSM3544603 Vd1__NK 129 284
GEO_20190108_GSM3544603 Vd1__TC 155|
— GEO_20190108_GSM3544603_Vd2__NK 44 o4
GEO_20190108_GSM3544603_Vd2__TC 160)
a GEO_20190620_GSM3209407_T4__NK 16} 95
GEO_20190620_GSM3209407_T4__TC 949
R GEO_20190620_GSM3209408 CCR5+CD69-T4__NK 9 s | 0.0207
(GEO_20190620_GSM3209408_CCR5+CD69-T4__TC 426
GEO_GSM3087629_T8_methanol_SSC_BC 183)

T_cells T8 methanol_S5C. GEO_GSM3087629_T8 methanol_SSC_MC 98] 753 2031 | 24902
GEO_GSM3087629_T8 methanol_SSC_NK 1136
GEO_GSM3087629_T8_methanol_SSC_TC 3336

onorl_IL-10-producing_Foxp3-_1] GEO_GSM3430548_donorl_ |L-1(}produc!n&FoxpS-jA?NK 6) 1247 0.0048
GEO_GSM3430548_donorl_IL-10-producing_Foxp3-_T4 TC 1241]
GEO_GSM3430549_donor2_IL-10-producing_Foxp3-_T4_BC 1]

lonor2_IL-10-producing_Foxp3-_T|GEO_GSM3430549_donor2_IL-10-producing_Foxp3-_T4_NK 12| 1902 0.0068
GEO_GSM3430549_donor2_IL-10-producing_Foxp3-_T4 TC 1889
GEO_GSM3478792 _P5_CD3+CDSintSSCint_T4_BC 1

’ o |GEO_GSM3478792 T _P5_CD3+CDSintSSCint_T4_MC 2

[malignant_PS_CD3+CDSINtSSCINY 20 o™ oy 1178787 ¢ _P5_CD3+CDS5intSSCint_T4_NK g 4486 0002
GEO_GSM3478792_nonmalignant_P5_CD3+CDSintSSCint_T4_TC 4455
GEO_GSM3558027_nonmalignant_P5_CD3+CD5intSSCint_T4_aftertherapy_BC B

ant_P5_CD3+CDSintSSCint_T4_af{GEO_ 27 ¢ _P5_CD3+CDSintSSCint_T4_aftertherapy NK 6 3725 0.0030
GEO_GSM3558027_nonmalignant_P5_CD3+CDSintSSCint_T4_aftertherapy_TC 3714
GEO_GSM3087628_T8__BC 220

- GEO_GSM3087628_T8__MC 211] se62 T
GEO_GSM3087628_T8__NK 643
GEO_GSM3087628_T8__TC 4588}
Al (predicted) 1863 1| 6704 3097]  22983] 34650) 5.0006] 34650
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SplitConfusionMatrix-R7

(Compared to R1 (RIincluded AL groups), R7 removed the 'EC’ group and the 'Other Tissue’ group.)

Train: 10x(Clean)+GEO(of R7)+BroadS2(Clean)

Test: BroadS1

[exe DataSets [ Subtype. SubtypeN TotalCellN [Training [Testing Accuracy: 0.941136312
1 \EC 10085 v Precision: 0.99737015 0.83870968 0.9702381  0.74374177 0.9629318
M4 v Recall/Sensitivi 091385542 091549296  0.98133654  0.80989957 0.9609657
NK v Specificity: 099965287 099808207  0.99566048 0.96700314 0.9365864
CDASRA+CD25-Tanaive v F1_Score: 095378812 087542088 0.97575576 0.77541209 0.9619477
10x (Clean) i 85423 v Predicted 8_cells|Dendritic_cells| _ Monocytes|  NK_cells] T cells| Al
CDA5RA+T8Naive v B cells 1517 14 37] 67| 25[ 1660)
8 v Dendritic_cells 0| 130 10 ol 2 142)
CD45RO+T4mem [V Monocytes 1] 10| 1630 0| 20| 1661
CD4+CD25+Treg [V mﬁce\ls 2| 0| 2| 1129| 261 1394
M14_d1 v [T_cells 1] 1 1 322 8001] 832
M14_d2 v [ 1521 155] 1680 1518)| 8309] 13183
NK 309) v
i 222 v
8 310) v
325| v
382 v
284| [V
204| [V
T4 965 [V
[CCR5+CD69-T4 435 [V
GEO (of R7) 30208 v
v
T8_methanol_SSC v
donor1_IL-10-producing_Foxp3- T4 v
donor2_IL-10-producing_Foxp3- T4 v
nonmalignant_PS_CD3+CDSIntSSCi v
nonmalignant_PS_CD3+CDSIntSSCi v
HLA-DR [V
[HLA-DR _control [V
CD19 [V
[cD19_control v
cog v
8n v
Bm. v
DC v
M14 u
M16 ul
NK ul
aTreg v
Broads1 = 13183 M
rTreg 1072 v
[T4em 975| v
[Tanaive 1134 v
[T8em 1031 v
[T8naive 1336 v
1431 v
BC 1884| [V
DC 202] [V
pDC 68] [V
Broads2 (Clean) [P 1809 12292 "
M16 323 v
NK 842 v
i 3380) v
T8 3784 v
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True/ Predicted BC oc [ NK [1c SubtypeER___[All (true)
57580 Bn_aTreg BT580__BC 4
87860 Bn_aTreg BT860__BC o
Bn_aTreg
— Bn_aTreg NY860__BC )
[Bn_aTreg NY860__Mc 1]
Bn_nonT BTS80__BC 237
Bn_nonT_BTS80__DC 1]
BTS80 Bn_nonT_BT580__MC 3
Bn_nonT_BTS80__NK 5
Bn_nonT BTS80__TC B
Bn_nonT_BT860__BC 509)
Bn_nonT_BT860__DC 4
87860 Bn_nonT BT860__MC 17|
Bn_nonT_BT860__NK 19
£ Bn_nonT_BT860__TC 4 169 (=
Bn_nonT Bn_nonT_NY580__BC 147
Bn_nonT_NY580__DC )
NY580 Bn_nonT NY580__MC 4
Bn_nonT_NYS580__NK o
Bn_nonT_NY580__TC 5
Bn_nonT NY860__BC 164
Bn_nonT_NY860__DC 3
NY860 Bn_nonT_NY860__MC 3
B_cells Bn_nonT_NY860__NK 16 1660
Bn_nonT_NY860__TC 5
Bn_Tdem 57860 Bn_Tdem BT860__BC 1]
Bn_Tncl 87860 Bn_Tndl_BT860__BC 1]
57860 Bm_aTreg_BT860__BC o
Bm_aTreg NY580 Bm_aTreg_NY580__ BC 1
NY860 Bm_aTreg_NY860__BC B
Bm_nonT_BT580__BC 7]
[FEEd Bm_nonT_BT580__MC 1]
[Bm_nonT BT860__BC 205
Bm_nonT BT860__DC )
BT860 Bm_nonT_BT860__MC o
Bm_nonT_BT860__NK 5
Bm Bm_nonT_BT860__TC 5| a0 0.0916
Er o —
NY580 o —
Bm_nonT_NY580__NK 1]
Bm_nonT_NY580__TC B
Bm_nonT_NY860__ BC 86
Bm_nonT_NY860__DC )
NY860 Bm_nonT_NY860__MC 3
Bm_nonT_NY860__NK 15
Bm_nonT_NY860__TC B
—— 57860 DC_aTreg_BT860__DC 1
NY580 DC_aTreg_NY580__DC 1
— DC_nonT_BT580__DC 51
DC_nonT_BT580__MC 3
DC_nonT_BT860__DC 15
Dendritic_cells bc EIEeD DCTNONTRETEC0R MG 2 142 0.0845 142
DC_nonT_BT860__TC 1]
DC_nonT nONT_BTES0_]
f— DC_nonT_NY580__DC a)
DC_nonT NY580__MC B
DC_nonT_NY860__DC 17
NY860 DC_nonT_NY860__MC 3
DC_nonT_NY860_TC 1]
BT580 M14_aTreg_BT580__MC 1]
e 57860 M14_aTreg BT860__MC 4
NY580 M14_aTreg NY580__MC )
NY860 M14_aTreg_NY860__MC )
M14_nonT_BTS80__DC ]
BT580 M14_nonT_BT580__MC 233)
M14_nonT BT580__TC B
M14_nonT_BT860__BC 1]
m14 - M14_nonT_BT860__DC 4 1263 0.0158
M14_nonT M14_nonT_BT860__MC 328)
M14_nonT_BT860__TC 5
f— M14_nonT_NY580__MC 339)
M14_nonT NY580__TC B
M14_nonT_NY860__MC 330)
iy M14_nonT_NY860__TC 5
Monocytes M14_rTreg NY580 M14_rTreg_NY580__MC 1] 1661
M14_Tnc| 87580 M14_Tncl_BT580__MC 1]
BT580 M16_aTreg_BT580__MC 4
D 87860 M16_aTreg BT860__MC 5
NY580 M16_aTreg NY580__MC 7
NY860 M16_aTreg_NY860__MC 7
— M16_nonT_BTS80__DC 3
M16_nonT_BT580__MC 56)
M16_nonT_BT860__DC B
mie 8T860 M16_nonT_BT860__MC 100) 3% 00276
M16_nonT
H M16_nonT BT860__TC B
— M16_nonT_NY580__MC 80|
M16_nonT_NY580__TC ]
NY860 M16_nonT_NY860__MC 126
M16 T8em 57580 M16_T8em BT580__MC 1]
M16 T8em NY860 M16_T8em NY860__MC 1]
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P NC-shep-BresbTC ] g
NK_aTreg NY580 NK_aTreg_NY580__TC 3
NY860 NK_aTreg_NY860__TC 1
NK_nonT_BT580__MC 1}
BT580 NK_nonT_BT580__NK 236|
NK_nonT_BT580__TC 17}
NK_nonT_BT860__ BC 2)
BT860 NK_nonT_BT860__NK 358
NK_nonT NK_nonT_BT860__TC
NK_nonT_NY580__MC 1]
NY580 NK_nonT_NYS80__NK 177} |
NK_nonT_NY580___TC 10|
— NK_nonT_NY860__NK 238
NK_nonT_NY860__TC 26
NK_T4em NY860 NK_T4em_NY860__NK 1]
NK_cells NK NK_T4naive NY860 NK_T4naive_NY860__TC 1| 13%4 1901 1394
— NK_T8em_BT580__ NK 19|
NK_T8em_BT580__TC 25
m e —
NK_T8em = = —
— NK_T8em_NY580__NK 13
NK_T8em_NY580__TC g
NK_T8em_NY860__NK 41
Y860 NK_T8em_NY860___TC 27
— NK_Tncl_BT580__NK 2|
NK_Tncl_BT580__TC g
f— NK_Tncl_BT860__NK 3|
. NK_Tncl_BT860__TC 7
- — NK_Tncl_NY580__NK 1
NK_Tncl_NY580__TC 10|
— NK_Tncl_NY860__ NK 4
NK_Tncl_NY860___TC g}
— T aTreg_BTS80__DC 1]
T_aTreg BT580__TC 240
aTreg T_aTreg BT860 T_aTreg BT860__ TC 243] 921 0.0011
NY580 T aTreg NY580__TC 222}
NY860 T_aTreg NY860__TC 215)
— T_nonT_BT580__ NK 50)
T_nonT BT580__TC 26|
e S
nonT T_nonT — = = 426
— T_nonT_NY580__ NK 52|
T_nonT_NY580__TC 33
— [T_nonT_NY860__NK 50|
T _nonT_NY860__TC 61
BT580 T _rTreg_BT580__TC 313
T_rTreg_BT860__BC 1]
BT860 T_rTreg BT860__NK 1|
rreg T_rTreg T rTreg BT860__TC 32 1072 0.0028
NY580 T_rTreg NY580__TC 337}
T_rTreg_NY860___NK 1
Y860 T rTreg NY860___TC 187}
T_T4em_BT580__MC 1]
BTS580 T_T4em_BT580__NK 2|
T _T4em_BT580__TC 327
I T_T4em_BT860__NK 1]
Tdem T_Tdem T_Tdem_BT860__TC 258} 975 0.0092
o e  E—
T_cells Tfmemfnvssuiw 1 8326
NY860 _taem /S0
T Taem_NY860__TC 131}
BT580 T Tanaive_BT580__TC 482}
— T Tdnaive BT860__NK 1
Tanaive T_Tanaive T_Tanaive_BT860__TC 264 1134 00009
NY580 [T_T4naive_NY580__TC 201
NY860 [T_Tanaive_NY860__TC 9}
— T_T8em_BT580__NK 13|
[ T_T8em_BT580__TC 253
e z —
T8em T_T8em = = — 1031 0.0689
— [T_T8em_NY580__ NK 18
T_T8em_NY580__TC 24}
. [T_T8em_NY860__NK 19|
[T_T8em_NY860___TC 176
BT580 [T_T8naive_BT580__TC 318}
. : BT860 [T_T8naive_BT860__TC 486
T8naive T_T8naive N0 T Tanaive NY580_TC = 1336 0.0000
NY860 T_T8naive_NY860__TC 276}
[T_Tncl_BTS80__NK 9
Y [T_Tncl_BT580__ TC 192
= i s o CR—
Tncl T_Tncl T Tncl NYS80_NK 7 1431 0.0231
NY580
T Tncl_NYs80__TC 37)
[T_Tncl_NY860__NK 11
DY [T_Tncl_NY860__TC 474)
All i 1521 155) 1680 1518 8309 13183 13183
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EXP DataSets Subtype TotalCellNTraining Testing Accuracy: 0.929873
2 BC 10085 Precision: 0.983778 0.96 0.94762757 0.69926393 0.941354
M14 2612 Recall/Ser 0.901274 0.355556 0.99296435 0.78978622 0.956728
NK 8385 Specificity 0.99731 0.999667 0.98848425 0.97502183 0.916732
CD45RA+CD2| 10479 F1 Score: 0.94072 0.518919 0.96976638 0.74177356 0.948979
10x (Clean) T4 11213| 85423 Predicted| B_cells]ritic_cells Monocytes: NK_cells| T _cells All
CD45RA+T8n: 11953 B_cells 1698 0 10| 2 174 1884
8 10209 Dendritic 19 96 89 1] 65 270
CDA5RO+T4 10224 Monocyte| 0| 2 2117, (o] 13| 2132
CD4+CD25+Ti 10263 NK_cells 2| 0 0 665 175 842
M14_d1 425 T_cells 7| 2 18] 283 6854 7164
M14_d2 431 All 1726 100 2234 951 7281 12292
NK 309
T4 222
T8 310
iNKT 325
MAIT 382
vd1l 284
Vd2 204
T4 965
CCR5+CD69-1 435
GEO (of R7) 30298

T8 _methanol 4753

BEEEEE R A A A A N A A A A A A s A s EEEeE

donorl_IL-1( 1247,
donor2_ IL-1 1902
T lignar 4486
T lignar 3725
HLA-DR 48
HLA-DR_con 2397
CD19 26
CD19_contro] 1760
CD8 5662
Bn 1169
Bm 491
DC 142]
M14 1263
M16 398,
NK 1394
aTreg 921
BroadS1 onT 226 13183
rTreg 1072
T4dem 975
T4naive 1134]
T8em 1031
T8naive 1336
Tncl 1431
BC 1884 v
DC 202 v
pDC 68 v
BroadS2 (Clean) M1 1809 12292 1
M16 323 W
NK 842 W
T4 3380 v
8 3784 v
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True/ Predicted BC DC MC NK TC SubtypeN SubtypeER All (true)
pbmcl v2_ A BC__BC 233
pbmcl_v2_A_BC___MC 3|
pbmcl v2_ A BC___NK 1]
pbmcl v2_A_BC__TC 51
pbmcl k2 pbmcl v2_B BC___BC 305
pbmcl_v2_B_BC__MC 2|
B_cells BC pbmcl v2_B BC___NK 1] 1884
pbmcl v2_ B BC___TC -
v3 pbmcl v3_BC___BC 316}
pbmcl v3 BC__TC 30|
pbmc2_V2_BC__BC 844
pbmc2 v2 pbmc2 V2 BC___MC 5|
pbmc2 V2 BC__TC 13|
pbmcl v2_ A_DC__ BC 1]
pbmcl v2_ A DC__DC 10|
pbmcl_v2_/ MC 34
v2 pbmcl v2 A DC__TC 10}
pbmcl pbmcl v2_B DC__ DC 10}
pbmcl v2 B DC___MC 11
pbmcl v2 B_DC__TC 12
LS pbmcl_v3 DC___DC 13] 202
v3 pbmcl_v3_DC___MC 9|
pbmcl_v3_DC___TC 16
pbmc2_V2_DC__BC 1
bmc2_V2_DC__DC 56
Dendritic_cells Ebme2 v2 2bmc2:\/2:DC:MC 10]
pbmc2 V2 DC__TC 9
pbmcl_v2_A_pDC__ BC 8
pbmcl v2_A_pDC__ DC 3]
pbmcl_v2_A_pDC___MC 10
L v2 pbmcl v2_A_pDC___TC 5]
pbmcl_v2_B pDC___MC 7|
pDC pbmcl v2 B pDC___TC 5] 68
pbmc2_V2_pDC__ BC 9|
pbmc2 V2 pDC__ DC 4
pbmc2 V2 pbmc2_V2_pDC___MC 8
pbmc2 V2 pDC___NK 1]
pbmc2 V2 pDC___TC 38|
pbmcl v2_A_M14__MC 637
pbmcl v2_A_M14__TC 3]
pbmcl 2 pbmcl v2 B_M14___MC 378
M4 pbmcl v2_B_M14__ TC 1] 1800 0.0044
v3 pbmcl v3 M14___MC 354
pbmc2_V2_M14__ DC 2|
Monocytes pbmc2 V2 pbmc2_V2_M14___MC 432 2132
pbmc2 V2 M14__TC 2|
pbmcl v2_A_M16___MC 95
Sl v2 pbmcl_v2_A_M16__TC 7|
M16 pbmcl_v2 B_M16__MC 73 323 0.0217
v3 pbmcl v3_M16__MC 98]
pbmc2 V2 pbmc2_V2_M16___MC 50
pbmcl v2_A_NK__BC 1]
pbmcl_v2_A_NK___NK 123
v2 pbmcl v2_ A_NK___TC 42]
pbmcl pbmcl v2 B_NK___NK 175
NK_cells NK pbmel,_v2 BNK__TC s 842 02102 842
- v pbmcl_v3_NK___NK 157
pbmcl_v3_NK__TC 37|
pbmc2 V2 NK__BC 1]
pbmc2 V2 pbmc2_V2_NK__NK 210|
pbmc2 V2 NK__TC 8|
pbmcl v2_A_T4__BC 1]
pbmcl v2_A_T4__ NK 4
pbmcl v2 A T4 TC 545
v2 pbmcl v2_B_T4__DC 1
pbmcl pbmcl v2 B_T4___MC 2|
pbmcl v2_ B T4___NK 4
pbmcl v2 B T4 __TC 901
L va pbmcl v3 T4 NK 10| 3380 =
pbmcl v3 T4 TC 950
pbmc2 V2 T4 BC 3|
pbmc2_V2 T4__DC 1]
pbmc2 V2 pbmc2_V2_T4___MC 5|
T cells pbmc2_V2_T4___NK 2 7164
pbmc2 V2 T4__TC 951]
pbmcl v2 A T8 __MC 7|
bmcl v2 A T8__NK |
» H:b_md_vz_A_Ts_Tc 1083
- |pbmc1_v2 B T8 MC 2|
[pbme1 v2 B T8 NK 51]
pbmcl v2 B T8__TC 901
LS va pbmcl v3_T8 _ NK 51 3784 (erer)
pbmcl v3_T8 _TC 911
pbmc2_ V2 T8__ BC 3
bmc2 V2 T8___MC 2]
pbmcz V2 pbmc2_V2_T8__NK
pbmc2 V2 T8__TC 612]
All (predicted) 1726 100} 2234 951 7281 12292] 12292]
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Accuracy:  0.198400899

Precision:  0.46587537 0.02873688 1 0914184
Recall/Sens 1.56E-02 0.75803982 0.020751 0.227491
Specificity: 0.99761077 0.19188272 1 0.934826

F1 Score: _ 0.03012857 0.05537455 0.040659 0.364322

Predicted B_cells: Monocytes| NK_cells| T _cells All
B_cells 157 9906 0 22 10085
Monocyte: 6) 1980 0 626 2612
NK_cells 1] 7484 174] 726 8385
T_cells 173 49531 0 14637| 64341
All 337] 68901 174 16011 85423

EXP DataSets Subtype TotalCellNTraining |Testing
3 BC 10085, \
M14 2612 v
NK 8385 v
CD45RA+CD25-T4naive 10479 \
10x (Clean) T4 11213| 85423 \
ICD45RA+T8naive 11953 v
T8 10209 v
CD45RO+T4mem 10224, W
CD4+CD25+Treg 10263 \
M14_d1 425 v
M14_d2 431 v
NK 309 v
T4 222 Vv
T8 310] W
325 v
382 v
284 v
204 W
T4 965 v
CCR5+CD69-T4 435 W
GEO (of R7) 30208 |V
W
T8_methanol_SSC 4753 v
donorl_IL-10-producing_Foxp3-_T4 1247 v
donor2_IL-10-producing_Foxp3-_T4 1902 v
nonmalignant_P5_CD3+CD5intSSCint_T4 4486 v
nonmalignant_P5_CD3+CD5intSSCint_T4_aftertheq 3725 v
HLA-DR 48] v
HLA-DR_control 2397 W
cD19 26| v
CD19_control 1760 A
CD8 5662 W
Bn 1169 v
Bm 491 Vv
DC 142 W
M14 1263 v
M16 398 v
NK 1394 Vv
aTre; 921 W
Broads1 e el 13183 [
rTreg 1072 v
T4em 975 Vv
| T4naive 1134] W
[T8em 1031 v
T8naive 1336 \J
1431 Vv
BC 1884 W
DC 202 \
pDC 68 W
Broads2 (Clean) MI 1809 12292 M
M16 323 W
NK 842 v
T4 3380, W
T8 3784 Vv
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True/ Predicted

BC

DC

mc

NK

TC

SubtypeN |SubtypeER

All (true)

B_cells

BC

021-CD19+B__BC

157|

021-CD19+B__MC

021-CD19+B___TC

22]

10085

10085

Monocytes

M14

003-M14__BC

003-M14__MC

1980

003-M14___TC

626

2612

2612

NK_cells

NK

018-CDS6+NK__BC

018-CD56+NK___MC

7484]

018-CD56+NK__NK

174]

018-CD56+NK___TC

726

8385

8385

T_cells

CD45RA+CD25-T4naive

025-CD4+CD45RA+CD25-NaiveT___BC

25

025-CD4+CD45RA+CD25-NaiveT__ MC

9253

025-CD4+CD45RA+CD25-NaiveT___TC

1201

10479

T4

026-T4__BC

59|

026-T4__MC

9306

026-T4__TC

1848

11213

CD45RA+T8naive

027-CD8+CD45RA+NaiveCytotoxicT___MC

027-CD8+CD45RA+NaiveCytotoxicT__ TC

880)

11953

T8

022-T8__BC

022-T8__MC

7016

022-18__TC

3192

10209

CD45RO+T4mem

023-CD4+CD45R0+MemoryT___MC

6889

023-CD4+CDA45RO+MemoryT__TC

3335

CD4+CD25+Treg

024-CD4+CD25+RegulatoryT___ BC

024-CD4+CD25+RegulatoryT___MC

5994

024-CD4+CD25+RegulatoryT___TC

4181

64341

All (predicted)

337

68901

174

16011

85423
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DataSets

Subtype

*[g]

10x (Clean)

TotalCell

BC
M14

[CD4SRA+CD25-T4naive

Accuracy: 086065087

Precision:  0.72616984 0 0818458 0.105443 0.973685
Recall/Sensi 0.70380739 0 0733414 0.996764 0.887077
Specificity: 0.98337542 0.999967 0.980109 0.912868 0.889362
F1 Score: 071481376 0 0773606 0.190712 0.928366

i

[Predicted B_cells]ritic [ NK_cells] T _cells|

CD45RA+T8naive

[B_cells 1257 204]

T8

Monocytes 64 2421

[CD45RO+T4mem

0|

CD4+CD25+Treg

£ £3 3 B3 B S = 2

ol 1
[T_cells 410) 333 22090]

GEO (of R7)

M14_d1

lololofw

[an 1731 2958 2021] 22687 30298

M14_d2

NK

T4

78

CCRS+CD69-T4

[T8_methanol_ssC

donorl_IL-10-producing Foxp3- T4

donor2_IL-10-producing_Foxp3- T4

nonmalignant_P5_CD3+CDSintSSCint_T4

[nonmalignant_P5_CD3+CDSintSSCint_T4_¢

HLA-DR

HLA-DR_control

CD19

CD19_control

[

= EEEEEEEEEEEEEEEEEEEEE

BroadS1

Broads2 (Clean)

[Tanaive

T8naive

B3 3 S N 3 N N = o
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True/ Predicted

BC

DC|

MC|

NK]

TC|

All (true)

B_cells

GEO_GSM3258348_CD19_control__BC

1249

CD19_control

GEO_GSM3258348 CD19_control___MC

197]

GEO_GSM3258348_CD19_control __NK

79

GEO_GSM3258348_CD19_control__TC

235

1760

GEO_GSM3258346_CD19__BC

GEO_GSM3258346_CD19_DC

CD19

GEO_GSM3258346_CD19__MC

GEO_GSM3258346_CD19___TC

10}

26

1786

Monocytes

GEO_GSM2773408 M14 d1__MC

420

M14_d1

GEO_GSM2773408_M14_d1__NK

GEO_GSM2773408_M14 d1__TC

425

GEO_GSM2773409_M14 d2__BC

M14_d2

GEO_GSM2773409_M14_d2__MC

419

GEO_GSM2773409_M14 d2__NK

GEO_GSM2773409_M14 d2__TC

431

GEO_GSM3258345_HLA-DR_BC

GEO_GSM3258345_HLA-DR_MC

33

HLA-DR

GEO_GSM3258345_HLA-DR_NK

GEO_GSM3258345_HLA-DR_TC

GEO_GSM3258347_HLA-DR_control_BC

HLA-DR_control

GEO_GSM3258347_HLA-DR_control_MC

1549

GEO_GSM3258347_HLA-DR_control_NK

457|

GEO_GSM3258347_HLA-DR_control_TC

335

2397

0.0278

3301

NK_cells

NK

GEO_GSM3544603_NK__NK

GEO_GSM3544603_ NK__TC

309

0.0032

309

T_cells

T4

GEO_20190108_GSM3544603 T4__TC

222

222

0.0000

GEO_20190108_GSM3544603 T8___MC

T8

GEO_20190108 GSM3544603 T8 NK

GEO_20190108_GSM3544603 T8__ TC

305§

310

0.0161

GEO_20190108 GSM3544603_iNKT___NK

37)

GEO_20190108_GSM3544603_iNKT__ TC

288

325

MAIT

GEO_20190108_GSM3544603_MAIT___NK

20}

GEO_20190108_GSM3544603_MAIT___TC

362

382

vdi

GEO_20190108_GSM3544603 Vd1__MC

GEO_20190108 GSM3544603 Vd1__ NK

128

GEO_20190108 GSM3544603 Vd1__TC

155

284

vd2

GEO_20190108 GSM3544603 Vd2__ NK

GEO_20190108 GSM3544603 Vd2__ TC

160

204

GEO_20190620_GSM3209407_T4___NK

T4

GEO_20190620_GSM3209407_T4__TC

949

965

GEO_20190620_GSM3209408_CCR5+CD69-T4__NK

CCR5+CD69-T4

GEO_20190620_GSM3209408_CCR5+CD69-T4__TC

426

435

GEO_GSM3087629_T8_methanol_SSC_BC

183

GEO_GSM3087629_T8_methanol_SSC_MC

98|

T8 ESSE

GEO_GSM3087629_T8_methanol_SSC_NK

GEO_GSM3087629_T8_methanol_SSC_TC

3336

4753

GEO_GSM3430548_donorl_ IL-10-producing_Foxp3-_T4_NK

r1_IL-10-producing_Foxp:

GEO_GSM3430548_donorl_IL-10-producing_Foxp3-_T4_TC

1241

1247

0.0048

GEO_GSM3430549_donor2_IL-10-producing_Foxp3-_T4_BC

r2_IL-10-producing_Foxp:

GEO_GSM3430549_donor2_ IL-10-producing_Foxp3-_T4_NK

GEO_GSM3430549_donor2_ IL-10-producing_Foxp3-_T4_TC

1889

1902

0.0068

GEO_GSM3478792_r t_P5_CD3+CD5intSSCint_T4 BC

GEO_GSM3478792_ _P5_CD3+CD5intSSCint_T4_MC

22

lignant_P5_CD3+CDSint:

GEO_GSM3478792_1 _P5_CD3+CDSintSSCint_T4_NK

GEO_GSM3478792_nonmalignant_P5_CD3+CD5intSSCint_T4_TC

4455

0.0069

GEO. 027 t_P5_CD3+CD5intSSCint_T4_aftertherapy_BC

| PS_CD3+CDSintssCint_T4

GEO_GSM3558027_nonmalignant_P5_CD3+CD5intSSCint_T4_aftertherapy_NK

GEO. 027 t_P5_CD3+CD5intSSCint_T4_aftertherapy_TC

3714

3725

0.0030

GEO_GSM3087628 T8__BC

220

GEO_GSM3087628 T8 MC

211

GEO_GSM3087628 T8 NK

643]

GEO_GSM3087628 T8 TC

4588

5662

.1897

24902

All (predicted)

1731

2958

2921

22687

30298}

3.0906)

30298
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SplitConfusionMatrix-R8

(Compared to R1 (RIincluded ALL groups), R8 removed the 'EC’, 'Other Tissue’, and 'Dead Cells' groups.)

Train: 10x(Clean)+GEO(of R8)+BroadS2(Clean)

Test: BroadS1

[exe DataSets [ Subtype. SubtypeN TotalCellN [Training [Testing Accuracy: 0.936509141
1 [8c 10085| v Precision: 099605263  0.61111111 097329193 0.77738516 0.9538115
M4 v Recall/Sensitivi 091204819 092957746  0.94340750 0.78909613 0.964809
NK v Specificity: 09994793 099355878  0.99626801 0.97328018 0.9199094
CDASRA+CD25-Tanaive v F1_Score: 095220126 073743017 095811678 0.78319687 0.9592787
10x (Clean) i 85423 v Predicted 8_cells|Dendritic_cells| Al
CDA5RA+T8Naive v B cells 1514 6| 30] 1660]
8 v Dendritic_cells 142)
CD45RO+T4mem v Monocytes 1 67 1567] 0| 26] 1661
CD4+CD25+Treg v rﬁ,ceus 2| 0| 2 1100| 200 1394
M14_d1 v [T_cells 3| 1 4 285| 8033 8326
M14_d2 v [all 1520| 216] 1610) 1415 8422 13183
NK 309) v
i 222 v
8 310) v
325| v
382 v
284 v
204 v
i 95| v
(CCR5+CD69-T4 435| v
GEO (of R8) 25545 v
v
v
donor1_IL-10-producing_Foxp3- T4 v
donor2_IL-10-producing_Foxp3- T4 v
nonmalignant_PS_CD3+CDSIntSSCi v
nonmalignant_PS_CD3+CDSIntSSCi v
HLA DR v
|HLA-DR control v
D19 v
CD19_control v
cog v
8n v
Bm. v
DC v
M14 v
M16 v
NK v
aTreg v
Broads1 = 13183 M
rTreg 1072| v
[T4em 975| v
[Tanaive 1134 v
[T8em 1031 v
[T8naive 1336 v
1431 v
BC 1884 v
DC 202] v
pDC 68| v
Broads2 (Clean) [P 1809 12292 ‘/
M16 323] v
NK 842 v
i 3380) v
T8 3784 v
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True/ Predicted

BC

MC

NK

TC

SubtypeER

All (true)

B_cells

Bn_aTreg

BT580

Bn_aTreg_BT580__ BC

BT860

Bn_aTreg_BT860__ BC

NY860

Bn_aTreg NY860_ _BC

[P

Bn_nonT

BT580

Bn_nonT_BT580__BC

235

Bn_nonT_BT580__DC

Bn_nonT_BT580__MC

Bn_nonT_BT580__NK

Bn_nonT_BT580__TC

BT860

Bn_nonT_BT860__BC

514

Bn_nonT_BT860__DC

Bn_nonT_BT860__MC

Bn_nonT_BT860__NK

Bn_nonT_BT860__TC

17)

NY580

Bn_nonT_NY580__BC

143

Bn_nonT_NY580__DC

Bn_nonT_NY580__MC

Bn_nonT_NY580__NK

Bn_nonT_NY580__TC

NY860

Bn_nonT_NY860__BC

163

Bn_nonT_NY860__DC

Bn_nonT_NY860__MC

Bn_nonT_NY860__NK

Bn_nonT_NY860__TC

Bn_T4em

BT860

Bn_T4em_BT860__BC

Bn_Tncl

BT860

Bn_Tncl_BT860__BC

1169

0.0847

Bm_aTreg

BT860

Bm_aTreg_BT860__BC

NY580

Bm_aTreg_NY580__BC

NY860

Bm_aTreg_NY860__BC

p o o e e

Bm_nonT

BT580

Bm_nonT_BT580__ BC

Bm_nonT_BT580__MC

BT860

Bm_nonT_BT860__BC

206}

Bm_nonT_BT860__ DC

Bm_nonT_BT860__MC

Bm_nonT_BT860__TC

NY580

Bm_nonT_NY580__BC

59

Bm_nonT_NY580__DC

Bm_nonT_NY580__ TC

NY860

Bm_nonT_NY860__BC

85|

Bm_nonT_NY860__DC

Bm_nonT_NY860__MC

Bm_nonT_NY860___NK

Bm_nonT_NY860__TC

491

0.0957

1660

Dendritic_cells

bCc

DC_aTreg

BT860

DC_aTreg BT860__DC

NY580

DC_aTreg NY580__DC

DC_nonT

BT580

DC_nonT_BT580__DC

DC_nonT_BT580__MC

DC_nonT_BT580__TC

BT860

DC_nonT_BT860__DC

DC_nonT_BT860__TC

NY580

DC_nonT_NY580__DC

DC_nonT_NY580__MC

NY860

DC_nonT_NY860__DC

DC_nonT_NY860__MC

DC_nonT_NY860__TC

0.0704

142

Monocytes

Mm14

M14_aTreg

BT580

M14_aTreg_BT580___MC

BT860

M14_aTreg_BT860__DC

M14_aTreg BT860__MC

NY580

M14_aTreg_NY580__MC

NY860

M14_aTreg_NY860__MC

M14_nonT

BT580

M14_nonT_BTS80__DC

M14_nonT_BT580__MC

226

M14_nonT_BT580__TC

BT860

M14_nonT_BT860__DC

M14_nonT_BT860__MC

319

M14_nonT_BT860__TC

NY580

M14_nonT_NY580__DC

M14_nonT_NY580__MC

327,

M14_nonT_NYS80__TC

NY860

M14_nonT_NY860__DC

M14_nonT_NY860__MC

314

M14_nonT_NY860__TC

M14_rTreg

NY580

M14_rTreg_NY580__MC

M14_Tncl

BT580

M14_Tncl_BT580__MC

1263

0.0530

Mi16

M16_aTreg

BT580

M16_aTreg_BTS580__MC

BT860

M16_aTreg_BT860__DC

M16_aTreg_BT860__MC

NY580

M16_aTreg_NY580__DC

M16_aTreg_NY580__MC

NY860

M16_aTreg_NY860__MC

M16_nonT

BT580

M16_nonT_BT580__DC

M16_nonT_BT580__MC

BT860

M16_nonT_BT860__BC

M16_nonT_BT860__DC

M16_nonT_BT860__MC

M16_nonT_BT860__TC

NYS80

M16_nonT_NY580__DC

M16_nonT_NY580__MC

M16_nonT_NY580__TC

NY860

M16_nonT_NY860__DC

M16_nonT_NY860__MC

M16_nonT_NY860__TC

M16_T8em

BT580

M16_T8em_BT580__MC

M16_T8em

NY860

M16_T8em_NY860__MC

398

0.0678

1661
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BT580 NK_aTreg BTS80__TC p
NK_aTreg NY580 NK_aTreg NY580__TC 3
NY860 NK_aTreg_NY860__TC 1
NK_nonT_BTS80__MC 1
BT580 NK_nonT_BT580__NK 23]
NK_nonT_BT580__TC 21}
NK_nonT_BT860__BC 2
BT860 NK_nonT_BT860__NK 359)
NK_nonT NK_nonT_BT860__TC
NK_nonT_NY580__MC 1
NY580 NK_nonT_NY580__ NK 162| |
NK_nonT_NY580__TC 25}
NK_nonT_NY860__NK 23]
NY860 =
NK_nonT_NY860__TC 33
NK_T4em NY860 NK_T4em_NY860__NK 1
NK cells e NK_T4naive NY860 NK_T4naive_NY860__TC 1398 - 1398
— NK_T8em_BT580__NK 1
NK_T8em_BT580__TC 22}
e o0  —
em
NK_T8em — e ——.
— NK_T8em_NY580__NK 13
NK_T8em_NY580__TC 5
NK_T8em_NY860__NK 36|
LD NK_T8em_NY860__TC 32}
— NK_Tncl_BT580__NK 3
NK_Tncl_BTS80__TC 7
sy e ] 7
nd
NK_Tncl — =
— NK_Tncl_NY580__NK 1
NK_Tncl_NY580__TC 10
NK_Tncl_NY860__NK 4
NY860 ==
NK_Tncl_NY860__TC g
— T_aTreg_BT580__DC 1]
T_aTreg BTS80__TC 240)
T aTreg_BT860__NK 1
BT860 = — 21 .0022
alreg TaTreg T_aTreg_BT860__TC 242} 9 0.0
NY580 T aTreg NYS80__TC 222}
NY860 T_aTreg NY860__TC 215)
— T_nonT_BT580_NK 47]
T nonT_BTS80__TC 49|
o oty g
non'
nonT T_nonT S 426
— [T_nonT_NYS80__ NK as|
T_nonT_NY580__TC 40)
T_nonT_NY860__NK 43|
PED T_nonT_NY860__TC 68}
T_rTreg_BT580___MC 1]
BT580 T rTreg BTS80__NK B
[T_rTreg BTS80__TC 310)
rreg T_rTreg f— [T rreg BT860__BC 1] 1072 0.0037
[T_rfreg_BT860__TC 233)
NY580 [T_rTreg_NY580__TC 337]
NY860 T_rTreg NY860__TC 188}
T_Tdem_BTS580__MC 2
BT580 T_Tdem_BTS80__NK B
[T_T4em_BTS80__TC 323}
Tdem T_Tdem 1860 1’&’“’2@32*1& 1 259 975 0.0092
NY580 _Taem | |
T T4em_NY580__TC 253)
T_T4em_NY860__NK 1
T_cells NY860 NG =l 8326
T_Tdnaive BTS80__BC 2
BT580 T_Tanaive_BT580_ NK 1
. : [T_T4naive_BT580__TC 479)
Tanaive T_Tanaive T30 AT T50MTG | 134 0.0026
NY580 [T_T4naive_NY580__TC 201
NY860 [T_Tanaive_NY860__TC 9%}
b [T_T8em_BT580__NK 1)
[T T8em BTS80__TC 254§
o femme  —
T8em T_T8em . 1031 0.0533
— [T_T8em_NY580__NK 11
T_T8em_NY580__TC 255)
[T_T8em_NY860__NK 13
ey T_T8em_NY860__TC 182)
BT580 T_T8naive BTS80__TC 31
. ; BT860 T_T8naive_BT860__TC 484
T8naive T_T8naive TR AT 0MG e 1% 0.0000
NY860 [T_T8naive_NY860__TC 276}
[T_Tncl_BT580__MC 1]
BT580 [T Tncl_BT580__NK 5
[T_Tnd_BT580__TC 195)
. [T Tncl_BT860__NK o
Tndl T_Tndl [T_Tncl_BT860__TC 30| 1431 0.0203
— [T Tncl_NYS80__NK g
T_Tncl_NYS80__TC 371)
[T_Tncl_NY860__NK 9
e [T_Tncl_NY860__TC 476
[Ail (predicted) 1520) 216 1610) 1415| 8422 13183 13183]
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EXP DataSets Subtype TotalCellNTraining Testing Accuracy: 0.913358
2 BC 10085 v Precision: 0.964365 0.886792 0.87063228 0.61978221 0.961799
M14 2612 W Recall/Ser 0.919321 0.174074 0.98170732 0.8111639 0.931323
NK 8385 \ Specificity 0.993851 0.999501 0.96938976 0.96340611 0.948323
CD45RA+CD2| 10479 W F1 Score: 0.941304 0.291022 0.92283951 0.7026749 0.946316
10x (Clean) T4 11213| 85423 |V Predicted| B_cells]ritic_cells Monocytes: NK_cells| T _cells All
CD45RA+T8n: 11953 W B_cells 1732 0 51| 0] 101] 1884
8 10209 W Dendritic 8 47, 204 0] 11 270
CDA5RO+T4 10224 W Monocyte| 26 3 2093, (o] 10 2132
CD4+CD25+Ti 10263 \ NK_cells 3 0 13 683 143| 842
M14_d1 425 v T_cells 27, 3 43 419] 6672 7164
M14_d2 431 W All 1796 53] 2404 1102 6937 12292
NK 309 \
T4 222 v
T8 310 v
iNKT 325 W
MAIT 382 W
vd1l 284 v
Vd2 204 W
T4 965 W
CCR5+CD69-1 435 v
GEO (of R8) 25545 |v
v
W
donorl_IL-1( 1247, v
donor2_ IL-1 1902 v
T lignar 4486 W
T lignar 3725 W
HLA-DR 48 v
HLA-DR_con 2397 v
CD19 26 W
CD19_contro] 1760 \
CD8 5662 v
Bn 1169 W
Bm 491 v
DC 142] W
M14 1263 W
M16 398 v
NK 1394 v
aTreg 921 Vv
BroadS1 onT 226 13183 5
rTreg 1072 \
T4dem 975 W
T4naive 1134] \
T8em 1031 v
T8naive 1336 \
Tncl 1431 W
BC 1884 v
DC 202 v
pDC 68 v
BroadS2 (Clean) MY 1809 12292 i
M16 323 W
NK 842 W
T4 3380 v
8 3784 v
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True/ Predicted BC DC MC NK TC SubtypeN SubtypeER All (true)
pbmcl v2 A BC___BC 239
A [pbmcl v2 A_BC__MC 10|
pbmcl v2_A_BC__TC 39|
pbmcl_v2_B_BC__BC 350|
pbmcl B |pbmcl v2 B BC__MC 13
pbmcl v2_ B BC___TC 25|
B_cells EC pbmcl_v3 BC__BC 307] 1884
v3 pbmcl_v3_BC__MC 15
pbmcl_v3_BC__TC 24
pbmc2_V2 BC__ BC 836|
pbmc2 v2 pbmc2 V2 BC___MC 13|
pbmc2 V2 BC__TC 13]

pbmcl_v2_A_DC__DC o]
A pbmcl v2 A DC__MC 48
pbmcl v2_A_DC__TC 1
pbmcl B pbmcl_v2_B_DC___MC 33
pbmcl v3 DC___DC 2|
v3 pbmcl_v3_DC___MC 32]
pbmcl_v3_DC__TC 4]
pbmc2 V2 DC__DC 39|
Dendritic_cells pbmc2 v2 pbmc2_V2_DC__MC 34
pbmc2 V2 DC__TC 3]
pbmcl_v2_A_pDC__BC 3]
A pbmcl_v2_A_pDC___MC 21
pbmcl_v2_A_pDC__TC 2|
pDC B |pbmcl v2_B_pDC__MC 12 68
pbmc2 V2 pDC___BC 5]
pbmc2 V2 pbmc2 V2 pDC___MC 24
pbmc2_V2 pDC___TC 1
pbmcl_v2_A_M14__ BC 16
pbmcl_v2_A_M14__DC 2]
pbmcl v2_A_M14__MC 619|
v2 pbmcl v2_A_M14__TC E
pbmcl v2_ B_M14__ BC 1]
B [pbmcl v2 B M14__MC 376|

pbmcl v2 B_M14___TC 2|
v3 pbmcl v3 M14___MC 354]
pbmc2 V2_M14__BC 6
pbmc2_V2_M14__DC 1
pbmc2_V2_M14__MC 427|
pbmc2_V2_M14__TC 2|
pbmcl_v2_A_M16__ BC 3
- A [pbmcl v2 A M16__MC 96|
pbmcl pbmcl_v2_A_M16__TC 3] 3 .
B [pbmcl v2_B M16__MC 73
v3 pbmcl v3 M16___MC 98|
pbmc2 V2 pbmc2_V2_M16___MC 50|
pbmcl v2 A NK___MC 5]
A [pbmcl v2 A NK__NK 122

pbmcl v2_ A _NK__TC 39
v2 pbmcl_v2_B_NK__BC 1]
pbmcl v2 B NK___MC 5]
pbmcl v2_B_NK___NK 180
NK_cells NK pbmcl v2_B_NK__TC 77] 842 0.1888 842
pbmcl v3 NK___MC 3]
v3 pbmcl_v3_NK__NK 169)
pbmcl _v3_NK__TC 22|
pbmc2_V2_NK__ BC 2
pbmc2 V2 pbmc2 V2 _NK___NK 212]
pbmc2 V2 NK__TC 5|
pbmcl v2_ A_T4__ BC 2)
pbmcl v2_ A T4__MC 3|
pbmcl v2 A T4 NK 5]
pbmcl v2 A T4 TC 540)
pbmcl v2 B T4___BC 1]
pbmcl v2 B T4 __MC 4
pbmcl v2_B_T4___NK 6}
pbmcl v2 B T4 TC 897
T4 bmel VA T4 MG : 3380 0.0157
v3 pbmcl v3 T4__NK 9
pbmcl v3 T4___TC 948]
pbmc2_V2_T4__BC 8|
pbmc2_V2_T4___DC 3
pbmc2 V2 pbmc2 V2 T4___MC E)
pbmc2_V2_T4__NK 4
T_cells pbmc2 V2 T4__TC 942 7164
pbmcl v2 A T8 BC 9)
pbmcl v2 A T8 MC 18
pbmcl_v2_A_T8__ NK 100
v2 pbmcl v2 A T8__TC 1047
pbmcl v2 B T8 MC 5)
pbmcl B |pbmcl v2 B T8 NK 77|
pbmcl v2 B T8 _TC 872
T8 pbmcl v3_T8__ BC 1 3784 0.1160
pbmcl v3 T8 __MC 1]
pbmcl v3 T8 NK 96
pbmcl v3 T8 TC 864]
pbmc2 V2 T8__BC 6
pbmc2 V2 T8__MC 4
pbmc2 V2 T8 NK
pbmc2 V2 T8 TC 562
All (predicted) 1796| 53] 2404 1102 6937 12292) 12292

v2

v2

DC 202

pbmcl v2

pbmcl

M14

1809 0.0182

Monocytes

2132

pbmc2 V2

M16

pbmcl B

v2

pbmcl

v3

pbmc2 V2
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|£XP DataSets Subtype SubtypeN TotalCeII!'Tr ning |Testing Accuracy:  0.127588589
3 BC 10085 v Precision:  0.83802817 0 0.031333 0.833333 0.949289
M14 2612 v Recall/Sens 3.54E-02 0 0.916539 0.000596 1.27E-01
NK 8385 v Specificity: 0.99908413 0.99989464 0.106278 0.999987 0.979366
CD45RA+CD25-T4naive 10479 u F1 Score: 0.06792884 0 0.060595 0.001192 0.223344
10x (Clean) T4 11213| 85423 v Predicted B_cells| Dend J:ellshonocytes NK_cells| T cells All
CD45RA+T8naive 11953 v B_cells 357] 1] 9720 0] 7| 10085
T8 10209 v 25| 8| 239 1 184 2612
CD45RO+T4mem 10224 v NK_cells 24 0| 8112 5| 244 8385
CD4+CD25+Treg 10263 V. T_cells 20 0| 56178 0| 8143 64341
M14_d1 425 v All 426 9 76404 6) 8578] 85423
M14_d2 431 v
NK 309 v
T4 222 v
T8 310 Vv
325 v
382 v
284 Vv
204 v
T4 965 Vv
CCR5+CD69-T4 435 v
GEO (of R8) 25545 |V
v
v
donorl_IL-10-producing_Foxp3-_T4 1247 v
donor2_IL-10-producing_Foxp3-_T4 1902 v
nonmalignant_P5_CD3+CD5intSSCint_T4 4486 v
i _P5_CD3+CD5intSSCint_T4_afterthel 3725) v
HLA-DR 48] Vv
HLA-DR_control 2397 v
CD19 26 v
CD19_control 1760 v
CD8 5662 V.
Bn 1169 v
Bm 491 v
DC 142 v
M14 1263 v
M16 398 v
NK 1394 v
aTreg 921 v
BroadS1 onT 226 13183 M
rreg 1072 v
Tdem 975 v
T4naive 1134 \J
T8em 1031 V.
T8naive 1336 v
1431 V.
BC 1884 v
DC 202 v
pDC 68 A
Broads2 (Clean) [ERe 1809 12292 =
M16 323 Vv
NK 842 Vv
T4 3380 v
T8 3784 v
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True/ Predicted

BC

DC

MmcC

NK

TC

All (true)

B_cells

BC

021-CD19+B__BC

357

021-CD19+B__DC

021-CD19+B___MC

9720

021-CD19+B___TC

10085

10085

Monocytes

M14

003-M14__BC

25

003-M14__DC

003-M14__MC

2394

003-M14__NK

003-M14__TC

184}

2612

2612

NK_cells

NK

018-CDS6+NK__BC

24|

018-CD56+NK___MC

8112

018-CD56+NK__NK

018-CD56+NK___TC

244]

8385

8385

T_cells

CD45RA+CD25-T4naive

025-CD4+CD45RA+CD25-NaiveT___BC

10

025-CD4+CD45RA+CD25-NaiveT___MC

9730

025-CD4+CD45RA+CD25-NaiveT___TC

739

10479

T4

026-T4__BC

026-T4__MC

026-T4__TC

1000]

11213

CD45RA+T8naive

027-CD8+CD45RA+NaiveCytotoxicT___MC

027-CD8+CD45RA+NaiveCytotoxicT___TC

501

11953

T8

022-18__BC

022-T8__MC

8632

022-18___TC

1576

10209

CD45RO+T4mem

023-CD4+CD45R0+MemoryT___MC

8309

023-CD4+CD45RO+MemoryT___ TC

1915

10224

CD4+CD25+Treg

024-CD4+CD25+RegulatoryT___BC

024-CD4+CD25+RegulatoryT___ MC

7845

024-CD4+CD25+RegulatoryT___TC

2412

64341

All (predicted)

426

76404

8578

85423
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DataSets

Subtype

SubtypeN

[TotalCell] Training

10x (Clean)

[sc

v

Testing

M14

NK

[CD4SRA+CD25-T4naive

Accuracy:  0.89019378

Precision:  0.8120155 0 0.846504 0.172549 0.969149
Recall/Sensi 0.70380739 0 0.733414 0.996764 0.930766
Specificity: 0.98775201 0.999961 0.980264 0.941473 0.889362
F1_Score: 075404919 0 0785911 0.294174 _0.94957

i

Predicted B_cells]ritic NK_cells] T _cells| Alll

| CD45RA+T8naive

B_cells 1257] 204 79| 245 1786]

T8
|CD45RO+T4mem

£ B3 B 8 o e e e

Monocytes 64| 2421 465 351 3301
of

|CD4+CD25+Treg

NK_cells o 308| 1 309|
T_cells 227

GEO (of R8)

M14_d1

=lololo|m

235| 933 18754] 20149
[l 1548] 2860) 1785]  19351] 25545

M14_d2

NK

T4

T8

[CCR5+CD69-T4

[donorl_IL-10-producing_Foxp3-_T4

donor2_IL-10-producing Foxp3-_T4

nonmalignant_P5_CD3+CDS5intSSCint_T4.

nonmalignant_PS_CD3+CDSintSSCint_T4.
R

R_control

CD19

CD19_control

T EEEEEFEFEFEEFEEEEEEEEEEEERE

Broads1

Broads2 (Clean)

M14
M16
NK

aTreg

nonT

rTreg

T4em

T4naive

T8em

[T8naive

BC

DC

B £ N N o o o o N o N e o e

Page | 263



True/ Predicted BC D] M| NK| | SubtypeER [All (true)
GEO_GSM3258348_CD19_control__BC 1249
GEO_GSM3258348 CD19 _control__MC 197
Colcentel GEO_GSM3258348_CD19_control__NK 79 1760 903
GEO_GSM3258348_CD19_control__TC 235
Bcells GEO_GSM3258346 CD19__BC 3 1786

. GEO_GSM3258346_CD19__DC 1 2%
GEO_GSM3258346_CD19__MC 7
GEO_GSM3258346_CD19__TC 10)
GEO_GSM2773408_M14_d1__MC 420}

M14_d1 GEO_GSM2773408 M14_d1__NK 1 425 0.0118
GEO_GSM2773408 M14_d1__TC 4
GEO_GSM2773409_M14_d2__BC 3

o~ GEO_GSM2773409_M14_d2__MC 419 31 AT

- GEO_GSM2773409_M14_d2__NK 4
GEO_GSM2773409_M14_d2__TC 5
Monocytes GEO_GSM3258345_HLA-DR_BC 5 3301

AT GEO_GSM3258345_HLA-DR_MC 33| s 5
GEO_GSM3258345_HLA-DR_NK 3
GEO_GSM3258345_HLA-DR_TC 7
GEO_GSM3258347_HLA-DR_control_BC 56)

HLA-DR control | GEQGSM3258347_HLA-DR control_MC 1549 2307 8
- GEO_GSM3258347_HLA-DR_control_NK 457|
GEO_GSM3258347_HLA-DR_control_TC 335
NK_cells NK GEO_GSM3544603 NK__NK =0 309 0.0032 309
GEO_GSM3544603_ NK__TC 1

T4 GEO_20190108_GSM3544603 T4__TC 22| 222 0.0000
GEO_20190108_GSM3544603 T8___MC 1

8 GEO_20190108_GSM3544603_T8___NK 4 310 0.0161
GEO_20190108 GSM3544603 T8__TC 305

— GEO_20190108_GSM3544603_iNKT___NK 37] s
GEO_20190108_ GSM3544603_iNKT__TC 288

- GEO_20190108 GSM3544603_MAIT__NK 20| .
GEO_20190108_GSM3544603_MAIT__TC 362)
GEO_20190108_GSM3544603_Vd1__MC 1

vd1 (GEO_20190108 GSM3544603 Vd1__NK | T 284
GEO_20190108_GSM3544603_Vd1__TC 155,

- GEO_20190108_GSM3544603_Vd2__ NK 44) 0
GEO_20190108_GSM3544603_Vd2__TC 160)
GEO_20190620_GSM3209407_T4__ NK

” GEO_20190620_GSM3209407_T4__TC ag| 00166

N —— GEO_20190620_GSM3209408_CCR5+CD69-T4___NK 9 35 —
T_cells GEO_20190620_GSM3209408 CCR5+CD69-T4___TC 426 20149

1104 i o GEO_GSM3430548_donor1_IL-10-produc?ng_Foxp3- T4 _NK 6) 1247 0.0048
GEO_GSM3430548_donorl_IL-10-producing_Foxp3-_T4 _TC 1241
GEO_GSM3430549_donor2_ IL-10-producing_Foxp3-_T4_BC 1

r2_IL-10-producing_Foxp{GEO_GSM3430549_donor2_IL-10-producing_Foxp3-_T4_NK 12} 1902 0.0068
GEO_GSM3430549_donor2_IL-10-producing_Foxp3-_T4_TC 1889
GEO_GSM3478792_ _P5_CD3+CDSintSSCint_T4_BC 1

: |GE0_GsMm3478792 _P5_CD3+CDSintSSCint_T4_MC 2|

ignant_P5_CD3+CSINtSSY -0 0= ovmazaran _P5_CD3+CD5intsSCint_T4_NK g 4486 0002
GEO_GSM3478792_nonmalignant_P5_CD3+CDS5intSSCint_T4_TC 4455)
GEO_( 027 _P5_CD3+CDSintSSCint_T4_aftertherapy BC 5|

| PS_CD3+CDSintSSCint_T4GEO_ 027_ _P5_CD3+CDSintSSCint_T4_aftertherapy_NK 6 3725 0.0030
GEO_ 027 _P5_CD3+CDSintSSCint_T4_aftertherapy_TC 3714
GEO_GSM3087628 T8 _BC 220
GEO_GSM3087628 T8__MC 211

cos GEO_GSM3087628 T8__NK 5662 1897
GEO_GSM3087628 T8__TC 4588

Al (predicted) 1548} 1| 2860] 1785 19351 25545, 2.7925] _ 25545|
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SplitConfusionMatrix-R12

(Compared to R1 (R1included ALL groups), R12 removed the 'EC’, 'Other Tissue', 'Dead Cells', and 'Activated Cells' groups.)

Train: 10x(Clean)+GEO(of R12)+BroadS2(Clean)

Test: BroadS1

[exe
1

DataSets [ Subtype [TotalCellN [Training [Testing Accuracy: 0.938253812
[8c v Precision: 099416721 079518072 095283019 0.78799392 0.9513118
[m14 v Recall/Sensitivi ~ 0.92400639  0.92957746 097290789 0.74390244 09668508
NK v Specificity: 099921895 099739284 099305676 0.97633387 0.915174
|CD4SRA+CD25-Tanaive v F1_Score: 095785201  0.85714286 096276437 _0.76531365 0.9590184
10x (Clean) T4 85423 v Predicted B i
|CD45RA+TBnaive v B cells
18 v Dendritic_cells
CD45RO+T4mem v Monocytes
|CD4+CD25+Treg v NK_cells
M14_d1 v T cells
M14_d2 v Al 1696
K v
v
v
v
v
v
v
i v
[CCRS+CD69-T4 v
GEO (of R12) 14185 v
v
v
v
v
v
v
HLA-DR 48] v
HLA-DR_control 2397] v
19 26| v
CD19_control 1760] v
cog 5662| v
Bn 1169 v
'?m 491 v
|oc 142| v
M14 1263 v
M16 308] v
NK 1394 v
aTreg 921 v
Broads1 ot 42% 13183 n
rTreg 1072 v
T4em o75| v
Tanaive 1134) v
T8em 1031 v
T8naive 1336] v
1431 v
BC 1884] v
DC 202 v
pDC 68| v
Broads2 (Clean) [P 1509 12202 ‘/
M16 323 v
NK 842) v
T4 3380 v
|8 3784 v
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True/ Predicted | MC NK [Tc SubtypeN Al (true)
BT580 Bn_aTreg BT580_BC 4
R A
NY860 L aTres v
Bn_aTreg NY860__MC 1
Bn_nonT_BT580__BC 235
Bn_nonT BT580__DC 3
BTS80 Bn_nonT_BT580__MC 6
Bn_nonT_BT580__NK
Bn_nonT BT580__TC 7
Bn_nonT _BT860__BC 51
Bn_nonT_BT860__DC 7
BT860 Bn_nonT_BT860__MC 21]
Bn Bn_nonT_BT860__NK 1169 0.0719
B Bn_nonT BT860__TC 4
Bn_nonT_NY580__BC t
Bn_nonT_NY580__DC 3
NY580 Bn_nonT_NY580__MC 3
Bn_nonT_NYS80__NK
Bn_nonT_NY580__TC 7
Bn_nonT_NY860__BC 1
Bn_nonT_NY860__DC 5
NY860 Bn_nonT_NY860__MC 4
B_cells Bn_nonT_NY860__NK 1660
Bn_nonT_NY860__TC 7
Bn_T4em BT860 Bn_Tdem_BT860__BC 1
Bn_Tndl BT860 Bn_Tncl_BT860__BC 1
BT860 Bm_aTreg_BT860__BC o
Bm_aTreg NY580 Bm_aTreg_NY580__ BC 1]
NY860 Bm_aTreg_NY860__BC )
Bm_nonT_BT580__BC 86
81580 Bm_nonT_BT580__MC 2
Bm_nonT_BT860__BC 209
BT860 Bm_nonT_BT860___DC 2|
Bm_nonT_BT860__MC 8
o Bm_nonT_BT860__TC [ - 00855
Bm_nonT_NY580__BC
Bm_nonT AYs80 Bm_nonT_NY580__DC 1]
Bm_nonT_NY580__MC 1]
Bm_nonT_NY580__TC 3
Bm_nonT_NY860__BC 87
Bm_nonT_NY860__DC 3
NY860 Bm_nonT_NY860__MC 7
Bm_nonT_NY860__NK
Bm_nonT_NY860___TC 6}
— BT860 DC_aTreg_BT860__DC 1]
NY580 DC_aTreg_NY580__DC 1
DC_nonT_BT580__DC 51
BTS80
DC_nonT_BT580__MC 3
Dendritic_cells DC D gE-:Z:;—z:iZ%—DDCC iz 142 0.0704 142
pelreny REEY DC_nonT_NY580__MC 1
DC_nonT_NY860__DC 15
NY860 DC_nonT_NY860__MC 5
DC_nonT_NY860__TC 1
BT580 M14_aTreg BTS80__MC 1]
T BT860 M14_aTreg_BT860__MC 4
NY580 M14_aTreg_NY580__MC 2)
NY860 M14_aTreg_NY860__MC 2
M14_nonT_BT580__BC 3
. M14_nonT_BT580__DC B
M14_nonT_BT580__MC 231
M14_nonT_BT580__TC 3
M14_nonT_BT860__BC 3
L2 I . M14_nonT_BT860__DC 5 1263 L0248
- M14_nonT_BT860__MC 326
M14_nonT_BT860__TC 4
vsg0 M14_nonT_NY580__MC 337
M14_nonT_NY580__TC 4
N M14_nonT_NY860__MC 327
M14_nonT_NY860__TC g
Monocytes M14_rTreg NY580 M14_rTreg_NY580__MC 1] 1661
M14_Tncl BT580 M14_Tncl_BT580__MC 1
BT580 M16_aTreg BTS80__MC 4
e BT860 M16_aTreg BT860__MC 5
NY580 M16_aTreg_NY580__MC 7
NY860 M16_aTreg_NY860__MC 7
1580 M16_nonT_BT580__DC 7
M16_nonT_BT580__MC 57,
M16_nonT_BT860__ BC 1
M16 - M16_nonT_BT860__DC 1 398 00352
M16_nonT M16_nonT_BT860__MC 97
M16_nonT_BT860__TC g
vsg0 M16_nonT_NY580__MC 79
M16_nonT_NY580__TC 7
NY860 M16_nonT_NY860__MC 126]
M16_T8em BT580 M16_T8em_BT580__MC -1|
M16_T8em NY860 M16_T8em_NY860__MC 1
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_alreg BTS80 |
NK_aTreg NY580 NK_aTreg_NY580__TC 3
NY860 NK_aTreg NY860__TC ]
NK_nonT_BT580__MC 3
BTS80 NK_nonT_BTS80__NK 214
NK_nonT BT580__TC 39
NK_nonT_BT860__BC p)
BT860 NK_nonT_BT860__NK 337
NK_nonT NK_nonT_BT860__TC | |
NK_nonT_NY580__MC B
NY580 NK_nonT_NY580__NK 160
NK_nonT_NY580__TC 2
e NK_nonT_NY860__NK 216
NK_nonT_NY860__TC 43|
NK Tdem NY860 NK_T4em_NY860__TC ]
NK_cells NK NK_T4naive NY860 NK_T4naive_NY860___TC 1] 1394 1 1394
a15%0 NK_T8em_BT580__NK 19
NK_T8em BT580__TC 25|
e e —
em
NK_T8em e
vsg0 NK_T8em NY580__NK 1)
NK_T8em _NY580__TC o
NK_T8em_NY860__NK 34
NY8eo NK_T8em_NY860__TC 34
a1o80 NK_Tncl BTS80__NK B
NK_Tncl_BT580__TC g
o— NK_Tncl_BT860__NK 4
NK Tncl NK_Tncl_BT860__TC o
S Ysg0 NK_Tncl_NYS80__NK fl
NK_Tncl_NY580__TC 10|
NK_Tncl_NY860__NK 3
Y860 NK_Tncl_NY860__TC 9
130 T aTreg BT580__MC 1]
T aTreg BT580__TC 240)
aTreg T aTreg BT860 [T aTreg BT860__TC 43 o1 0.0011
NY580 T aTreg NY580__TC 229)
NY860 T aTreg NY860__TC 215
R [T_nonT BTS80__NK 4
[T _nonT BT580__TC 50
aree0 T_nonT_BT860__NK 51
nonT T_nonT T_nonT_BT860__TC B e
B 0ED T_nonT_NY580__NK 9|
[T_nonT_Nysso__Tc 3
[T _nonT NY860__NK 3
Y860 [T_nonT _Nvsso__Tc 75
a1o80 [T_rTreg_BTS80__MC 3
T rTreg BT580__TC 310
T rreg BT860__MC 1]
A BT860 ! ] 1072 .0037
riree Trireg T_rTreg BT860__TC PEe I 0003
NY580 T _rTreg NY580__TC 337
NY860 T rTreg_NY860__TC 188]
a1oa0 T T4em_BT580__MC 1]
T_T4em_BTS80__TC £
T T4em_BT860__NK 3
BT860 —em BB !
Tdem T_T4em rEoicTeoMTC o 0.0041
NY580 T_T4em_NY580__TC 254
NY860 T T4em_NY860__TC 132)
T Tanaive BT580__DC 1]
BTS80 T Tanaive BT580__MC 1]
T cells T Tanaive BTs80_TC 480 226
Tanaive T_Tanaive BT860 T_Ténaive BTE60__MC 1 134 0.0035
= [T Tanaive BT860__TC 264 -
. T Tanaive NYSB0_NK 1
T Tanaive_NY580__TC 29
NY860 T Tanaive_NY860__TC 9%
[T_T8em_BT580__MC 1]
BTS80 T T8em_BTS80__NK 1]
T T8em_BT580__TC 254
a18e0 [T_T8em_BT860__NK 16|
T8em T_T8em T _T8em_BT860__TC 288 1031 0.0504
Y580 T T8em_NY580__NK 1
T_T8em_NY580__TC 255
T T8em_NY860__NK 13|
Y860 T _T8em_NY860__TC 182)
BT580 [T _T8naive BT580__TC 318
BT860 T_T8naive B1860__TC 486
Tanai T_T8nai — S 1336 0.0000
naive e NYS80 T T8naive_NY580__TC 256}
NY860 T T8naive_NY860__TC 276
[T Tncl_BTS80__MC P
BT580 T Tncl_BT580__NK E
T Tncl_BT580__TC 191}
T Tncl_BT860__MC 1
BT860 T _Tncl_BT860__NK o
Tndl T_Tnl  HaEL 1831 0.0203
ne e T Tndl_BT860__TC 359
[— T Tncl_NY580__NK 7
T _Tncl_NY580__TC 37
T Tncl_NY850__NK B
Yy T Tndl_NY850__TC 480)
[Al (predicted) 1543] 166 1696) 1316) 8462 13183 13183}
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EXP DataSets Subtype TotalCellNTraining Testing Accuracy: 0.898226
2 BC 10085 v Precision: 0.968421 0.5 0.86755519 0.5498008 0.954872
M14 2612 W Recall/Ser 0.927813 0.011111 0.97701689 0.81947743 0.909687
NK 8385 \ Specificity 0.994523 0.99975 0.96870079 0.95065502 0.939938
CD45RA+CD2| 10479 W F1 Score: 0.947682 0.021739 0.91903816 0.65808298 0.931732
10x (Clean) T4 11213| 85423 |V Predicted| B_cells]ritic_cells Monocytes: NK_cells| T _cells All
CD45RA+T8n: 11953 W B_cells 1748 0 111 15 10 1884
8 10209 W Dendritic 4 3 120 2 141] 270
CDA5RO+T4 10224 W Monocyte| 31 0| 2083 (o] 18 2132
CD4+CD25+Ti 10263 \ NK_cells 4 0 9| 690 139 842
M14_d1 425 v T_cells 18] 3 78 548| 6517, 7164
M14_d2 431 W All 1805 6) 2401 1255 6825 12292
NK 309 \
T4 222 v
T8 310 v
iNKT 325 W
MAIT 382 W
vd1l 284 v
Vd2 204 W
T4 965 W
CCR5+CD69-1 435 v
GEO (of R12) 14185 |v
v
W
v
v
v
Vv
HLA-DR 48 v
HLA-DR_con 2397 v
CD19 26 W
CD19_contro] 1760 \
CD8 5662 v
Bn 1169 W
Bm 491 v
DC 142] W
M14 1263 W
M16 398 v
NK 1394 v
aTreg 921 Vv
BroadS1 onT 226 13183 5
rTreg 1072 \
T4dem 975 W
T4naive 1134] \
T8em 1031 v
T8naive 1336 \
Tncl 1431 \
BC 1884 v
DC 202 v
pDC 68 v
BroadS2 (Clean) MY 1809 12292 i
M16 323 W
NK 842 W
T4 3380 v
8 3784 v
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True/ Predicted BC DC MC NK i Al (true)
pbmcl v2_A_BC__BC 239)
pbmcl v2 A BC__MC 3
pbmcl v2 A BC___NK 6
pbmcl_v2_A_BC__TC 3
pbmcl_v2_B_BC__BC 351]
pbmcl v2_B_BC__MC 31
pbmcl v2 B BC__NK 4
B_cells BC pbmel v2 8 BC__TC L P 0.0722 1884
- [pbme1 v3 BC__BC 323
pbmcl v3 BC__MC 1
pbmcl_v3_BC__NK 3
pbmcl_v3_BC__TC 1
[pbme2 v2 BC__BC 835)
pbmc2_V2_BC__MC 2|
pbmc2_V2_BC__NK 2
pbmc2 V2 BC__TC 3
pbmcl_v2_A_DC__MC 32
[pbme1 v2 A bc__TC 23|
pbmcl_v2_B_DC__MC ©
pbmecl pbmcl v2_B_DC__TC 2]
pbmcl_v3_DC__MC 1]
e v3 pbmcl v3_DC__NK 2| 202
pbmcl_v3_0C__TC >
pbmc2 V2_DC__DC 3
» pbmc2 v2 pbmc2_V2_DC__MC 2
Dendritic_cells TV ToCI = 270
pbmcl_v2_A_pDC__BC 1
A [pbmel v2_A ppC__MC 19)
pbmct | v2 pbmcl_v2_A_pDC__TC o
pbmcl v2 B pbC__MC 7
[pbmcl_v2 B pDC__TC B
pbmc2_V2_pDC__BC 3
pbmc2 v2 bbmc2_V2_pDC__MC 17]
[pbme2_v2 ppC__TC 10}

pbmcl_v2_A_M14__BC 19|
A [pbmclv2 A_M14__MC 616}
pbmcl v2 A M14__TC B
pbmcl_v2_B_M14__BC B
B |pbmcl vz B_M14__MC 372)
M14 pbmcl_v2_B_M14__TC 2| 1800 0.0216
pbmcl_v3_M14__MC 353]
pbmel_v3_M14__TC 1]
pbmc2_V2_M14__BC 5
pbmc2 v2 pbmc2_V2_M14__MC 229
pbmc2 V2_M14__TC 2|

pbmcl_v2_A_M16__BC 2|
A [pbmecl v2 A M16__MC 9|
pbmcl v2 A M16__TC )

pbmcl B

pbmc2 v2

pbmcl

2132

Monocytes

pbmcl
Mi16 B [pbmcl v2 B M16__MC 73] 323 0.0310

@ pbmcl v3 M16__MC 97
pbmcl_v3_ M16__TC 1
pbmc2 V2 pbmc2_V2_M16__MC 50|
pbmcl v2 A NK__BC 1
pbmcl_v2_A_NK__MC E
pbmcl_v2 A NK__NK 128}
pbmcl v2_ A NK__TC 34
pbmcl v2 B NK__BC 1
pbmcl_v2_B_NK__MC E
pbmcl_v2 B NK__NK 189)
pbmcl v2 B NK__TC 70) a2 DTS a2
pbmcl v3 NK__BC 1
pbmcl_v3 NK__MC 2
pbmcl v3 NK__NK 175|
pbmcl v3 NK__TC 16}
pbmc2_V2_NK__BC 1
pbmc2 V2 NK__MC 1
pbmc2 V2_NK__NK 198}
pbmc2_V2_NK__TC 19|
pbmcl_v2 A T4__BC 2|
pbmcl v2_A_T4__MC 4|
pbmcl_v2_A_T4__NK 5|
pbmcl v2_A_T4__TC 539)
pbmcl v2 B T4__BC 1
pbmcl pbmcl v2_B_T4__MC B
pbmcl_v2 B T4__NK 10}
pbmcl_v2 B T4__TC 889)
pbmcl v3 T4__MC 4
v3 ’EHCI_VLTA_N K 15|
pbmcl v3 T4__TC 941]
|pbme2 v2 T4__BC 3
pbmc2_V2 T4__DC 3|
pbmc2 v2 pbmc2 V2 T4__MC 8
pbmc2 V2 T4__NK E
pbmc2 V2 T4__TC 945
pbmcl_v2_A_T8__BC 8|
A pbmcl v2_A_T8___MC 22|
bmcl_v2_A_T8__NK [
pbmcl v2 A T8 TC 970}
pbmcl v2 B T8 BC 1
i s |pbmclv2B T8 mC 11]
pbmcl v2 B T8 __NK 110}
|pbmc1 v2 B T8__TC 832 3781 S
3 BC 1
pbmcl_v3_T8___MC 10
3 NK 151]

pbmcl B

NK_cells NK

pbmc2 v2

3380 0.0195

T_cells 7164

pbmc2 V2 T8__MC 1]
pbmc2 V2 T8 NK 80
pbmc2 V2 T8__TC 601
Al (predicted) 1805) 6| 2a01 1255 ss?s'

pbmc2 V2

12292| 12292
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[exp

DataSets Subtype SubtypeN TobalCeII!'Training Testing Accuracy:  0.102080236
BC 10085 v Precision:  0.64285714 0 0.032306 0.992411 0.968488
M14 2612 u Recall/Sens 7.23€-02 0 0.973201 0.14037 6.64E-02
NK 8385 u Specificity: 0.99462423 0.99990635 0.080533 0.999883 0.993407
CD45RA+CD25-T4naive 10479 v F1 Score: 0.12995811 0 0.062537 0.245951 0.124273
10x (Clean) T4 11213| 85423 v Predicted B_cells| Dend 7cellshonocytes NK_cells| T_cells All
CD45RA+T8naive 11953 v B_cells 729] 0| 9354 0| 2 10085
T8 10209 v [3 6] 2542 3| 55 2612
CD45RO+T4mem 10224 v NK_cells 1) 0| 7125 1177] 82 8385
CD4+CD25+Treg 10263 V. T_cells 398 2| 59663 6) 4272 64341
M14_d1 425 v All 1134] 8 78684 1186 4411 85423
M14_d2 431 v
NK 309 v
T4 222 v
T8 310 v
325 v
382 v
284] V.
204 v
T4 965 v
CCR5+CD69-T4 435 W
GEO (of R12) 14185 |V
v
v
v
v
v
v
HLA-DR 48] V.
HLA-DR_control 2397 v
CD19 26 v
CD19_control 1760 Vv
CD8 5662 v
Bn 1169 v
[Bm 491 v
DC 142 v
M14 1263 v
M16 398 v
NK 1394 v
aTreg 921 v
BroadS1 onT 226 13183 v
rTreg 1072 v
Tdem 975 v
T4naive 1134 A
T8em 1031 v
T8naive 1336 A
1431 V.
BC 1884 v
DC 202 v
pDC 68| v
Broads2 (Clean) LR 1809 12292 I
M16 323 v
NK 842 v
T4 3380 v
T8 3784 v
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True/ Predicted

BC

DC

mcC

NK

TC

SubtypeN |SubtypeER |All (true)

B_cells

BC

021-CD19+B__BC

729

021-CD19+B__MC

9354

021-CD19+B___TC

10085 10085

Monocytes

M14

003-M14__BC

003-M14__DC

003-M14__MC

2542

003-M14__NK

003-M14__TC

55

2612 2612

NK_cells

NK

018-CD56+NK___ BC

018-CD56+NK___MC

7125

018-CD56+NK___NK

1177

018-CD56+NK___TC

82

8385 8385

T_cells

CD45RA+CD25-T4naive

025-CD4+CD45RA+CD25-NaiveT___BC

27

025-CD4+CD45RA+CD25-NaiveT___ MC

025-CD4+CD45RA+CD25-NaiveT___TC

300]

10479

T4

026-T4__BC

97|

026-T4__DC

026-T4__MC

026-T4__TC

472

11213

CD45RA+T8naive

027-CD8+CD45RA+NaiveCytotoxicT__ BC

027-CD8+CD45RA+NaiveCytotoxicT___MC

i

027-CD8+CD45RA+NaiveCytotoxicT___NK

027-CD8+CD45RA+NaiveCytotoxicT___TC

243]

11953

T8

022-T8___BC

022-T8__MC

9357

022-18__NK

022-T8__TC

847

64341

10209

CD45RO+T4mem

023-CD4+CD45RO+MemoryT___BC

023-CD4+CD45RO+MemoryT___MC

9182

023-CD4+CD45R0+MemoryT__NK

023-CD4+CDA45RO+MemoryT__TC

1033]

10224

CD4+CD25+Treg

024-CD4+CD25+RegulatoryT__BC

263

024-CD4+CD25+RegulatoryT___MC

8623

024-CD4+CD25+RegulatoryT___ TC

1377,

10263

All (predicted)

1134

78684

1186

4411

85423 85423
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[Exe
4

DataSets Subtype SubtypeN _[TotalCellf Training |Testing Accuracy: 080655622
BC 10085, Vv Precision:  0.81570409 0 0.853066 0.175699 0.925857
M14 2612 u Recall/Sensi 0.70380739 0 0.733414 0.996764 0.848219
NK 8385 v Specificity: 097709493 0.99993 0.961687 0.895863 0.889362
|CD45RA+CD25 Tanaive 10479) v F1 Score: 0.75563571 0 0.788728 0.298739 0.885339
10x (Clean) T4 11213 85423 [v Predicted B _cells]ritic_ NK_cells] T _cells Aﬂl
CD45RA+T8NaIve 11953 v B cells 1257 1 204 79 25 1786
T8 10209) v Monocytes 64 o 242 465) 351 3ao<1l
CD45RO+T4mem 10224 v NK_cells 0 0| 0| 308] 1] 309
CD4+CD25+Treg 10263] v T_cells 220 0| 213 ezﬂ 7455|8789
|M14_d1 425 v All 1541 1 2838 1753 805:
M14_d2 431 v
NK 309, v
T4 222, v
T8 310, v
325, v
382, v
284 v
204 v
T4 95| v
[CCRS+CDE9-T4 435) v
GEO (of R12) 14185 v
v
v
v
v
v
v
HLA-DR 48, v
HLA-DR_control 2397 v
CD19 26 v
CD19_control 1760 v
CD8 5662 v
Bn 1169 v
Bm 491 v
DC 142 v
M14 1263 v
M16 398 v
NK 1394 u
aTreg 921 v
Broads1 i@ ] [u
rTreg 1072} v
T4em 975 u
T4naive 1134 vV
T8em 1031 vV
T8naive 1336 vV
1431 Vv
BC 1884 v
[oc 202 v
|BDC 68| v
Broads2 (Clean)  [Mi4 1809 12092 X
[m16 323] v
NK 842 u
T4 3380 u
78 3784 v

Page | 272



True/ Predicted BC| DC| MC| NK| TC|
GEO_GSM3258348_CD19_control__BC 1249)
GEO_GSM3258348_CD19_control__MC 197
GEO_GSMI3258348_CD19_control__NK 75
GEO_GSM3258348_CD19_control__TC 235
B_cells GEO_GSM3258346_CD19__BC g 1786
GEO_GSIMI3258346_CD19_DC 1
GEO_GSM3258346_CD19__MC 7
GEO_GSM3258346_CD19_TC 10
GEO_GSM2773408_M14_d1__MC 420
M14_d1 GEO_GSM2773408_M14_d1__NK 1 425
GEO_GSM2773408_M14_d1__TC 4
GEO_GSM2773409_M14_d2__BC 3
GEO_GSM2773409_M14_d2__MC 419
GEO_GSM2773409_M14_d2__NK 4
GEO_GSM2773409_M14_d2__TC 5
Monocytes GEO_GSM3258345_HLA-DR_BC 5 3301
GEO_GSM13258345_HLA-DR_MIC 33
(GEO_GSM3258345_HLA-DR_NK 3
GEO_GSMI3258345_HLA-DR_TC 7
GEO_GSM3258347_HLA-DR_control_BC 56
GEO_GSM3258347_HLA-DR_control_MC 1549
GEO_GSM3258347_HLA-DR_control_NK 457,
GEO_GSM3258347_HLA-DR_control_TC 335
GEO_GSMI3544603_NK__NK 308
GEO_GSM3544603_NK__TC 1
T4 GEO_20190108_GSM3544603_T4__TC 2 om 0.0000
GEO_20190108_GSM3544603_T8__MC 1
8 GEO_20190108_GSM3544603_T8__NK 4
GEO_20190108_GSM3544603 T8__TC
GEO_20190108_GSM3544603_iNKT__NK 37
GEO_20190108_GSM3544603_INKT__TC
GEO_20190108_GSM3544603_ MAIT__NK 2
GEO_20190108_GSM3544603 MAIT__TC
GEO_20190108_GSM3544603 Vd1__MC 1
vd1 GEO_20190108_GSM3544603_Vd1__NK [ 1w
44

All (true)

CD19_control 1760 903

CD19

26

0.0118

M14_d2 431 0.0278

HLA-DR

48 125

HLA-DR_control 2397 38

309 0.0032 309

NK_cells NK

310 0.0161

305

288]

362

T_cells GEO_20190108 GSM3544603_Vd1l__TC 155] 8789

GEO_20190108_GSM3544603_Vd2__NK
GEO_20190108_GSM3544603 Vd2__TC 160)
GEO_20190620_GSM3209407_T4__NK
(GEO_20190620_GSM3209407_T4__TC 949
GEO_20190620_GSM3200408_CCR5+CD69-T4__NK 9
GEO_20190620_GSM3209408_CCR5+CD69-T4__TC 426}
GEO_GSM3087628_T8__BC 220
GEO_GSM3087628_T8__MC 211
02 GEO_GSM3087628 T8__ NK H
GEO_GSM3087628_T8__TC 4588}

All (predicted) 1541 1| 283g 1753 8052 14185) 2.7720] 14185

vd2

|

T4

CCR5+CD69-T4
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SplitConfusionMatrix-R17-clean

(R17solely included clean data sets.)

Train: 10x(Clean)+GEO(Clean)+BroadS2(Clean)

Test: BroadS1

EXP. DataSets Subtype SubtypeN TotalCellN [Training [Testing Accuracy: 0.94614276
1 BC 10085 v Precision: 0.99806076 0.81437126 0.99323493  0.79407407 0.9544331
M14 2612 V. Recall/Sensitivi 0.93012048 0.95774648 0.97230584  0.76901004 0.9735768
NK 8385 \ Specificity: 0.99973965 0.99762288 0.9990453 0.9764187 0.9203212
CDA5RA+CD25-T4ng 10479 u F1_Score: 0.96289367 0.8802589 0.98265896  0.78134111 0.9639099
10x (Clean) i 11213| 85423 v Predicted B_cellsDendritic_cells]  Monocytes]  NK_cells] T cells
CD4SRA+T8naive 11953 [V B _cells 1544] 20| 5] 60) 31] 1660]
T8 10209 V. Dendritic_cells 0| 136 5| 0) 1] 142
CD45RO+T4mem 10224 \ Monocytes 1] 9 1615 0] 36| 1661
CD4+CD25+Treg 10263 u NK_cells 2| 0| 1 1072 319 1394
M14 d1 425 \ T_cells 0| 2| 0] 218 8106| 8326
M14_d2 431 U All 1547 167 1626| 1350] 8493| 13183
NK 309 U
222] v
310] V.
GEO (Clean, R17) 325] 2292 v
382 u
284 u
204] [V
T4 965 u
CCRS+CD69-T4 435 \
Bn 1169 v
Bm 491 v
DC 142 \
Mi14 1263] \
M16 398 \J
NK 1394 v
aTreg 921] v
Broads1 nonT 226 13183 v
rTreg 1072] v
Tdem 975 \J
T4naive 1134] \J
[T8em 1031 v
T8naive 1336 v
1431] v
BC 1884 u
DC 202 u
pDC 68) v
14 1809 u
BroadS2 (Clean) M16 323 12292 v
NK 842] \
T4 3380f u
18 373# v
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True/ Predicted BC MC NK TC All (true)
BT580 Bn_aTreg_BT580__ BC 4
Bn_aTreg  [BT860 Bn_aTreg_BT860__BC 6|
NY860 Bn_aTreg_NY860__BC 3]
Bn_nonT_BT580__ BC 237
BTS80 Bn_nonT_BT580__ DC 1
Bn_nonT_BT580___NK 4
Bn_nonT_BT580__TC B
Bn_nonT_BT860__ BC 519
s1860 Bn_nonT_BT860__DC 6|
Bn_nonT_BT860___NK 19|
Bn Bn_nonT_BT860__ TC 9| 1169 0.0633
Bn_nonT Bn_nonT_NY580__ BC 153]
B Bn_nonT_NY580__DC 3|
Bn_nonT_NY580__ NK 5
Bn_nonT_NY580__ TC 3]
Bn_nonT_NY860__ BC 171
Bn_nonT_NY860___DC 3
NY860 Bn_nonT_NY860___MC 2|
Bn_nonT_NY860___ NK 13
Bn_nonT_NY860__TC 1
Bn_T4em BT860 Bn_T4em_BT860__ BC 1)
B_cells 1660
- Bn Tncl __[BT860 [Bn_Tncl_BT860__BC 1
BT860 Bm_aTreg_BT860__ BC 6)
Bm_aTreg NY580 Bm_aTreg_NY580___BC 1
NY860 Bm_aTreg_NY860__ BC 2]
Bm_nonT_BT580__ BC 85
BTS80 Bm_nonT_BT580__ NK 2|
Bm_nonT_BT580__ TC 1]
Bm_nonT_BT860__BC 207}
Bm_nonT_BT860__ DC 4
BT860 Bm_nonT_BT860__MC 1
Bm Bm_nonT_BT860__ NK 4 401 0.0855
Bm_nonT_BT860__ TC 7|
Bm_nonT Bm_nonT_NY580__ BC 59)
NY580 Bm_nonT_NY580__ DC 1
Bm_nonT_NY580___NK 1
Bm_nonT_NY580___TC 2]
Bm_nonT_NY860__ BC 89
Bm_nonT_NY860__ DC 2|
NY860 Bm_nonT_NY860__MC 2)
Bm_nonT_NY860__ NK 12
Bm_nonT_NY860__ TC 3]
— BT860 DC_aTreg_BT860__DC 1
NY580 DC_aTreg_NY580__ DC 1]
DC_nonT_BT580__ DC 51}
BT580 DC_nonT_BT580__MC 2
Dendritic_cells bC DC_nonT_BT580___TC 1 142 0.0423 142
DC_nonT BT860 DC_nonT_BT860__DC 19)
NY580 DC_nonT_NY580__ DC 26|
— DC_nonT_NY860__DC 18}
DC_nonT_NY860__MC 3
BT580 M14_aTreg_BT580__MC 1}
BT860 M14_aTreg_BT860___MC 4
M14aTreg  Tiveso M14_aTreg_NY580__MC 2)
NY860 M14_aTreg_NY860___MC 2)
M14_nonT_BT580__DC 2|
BT580 M14_nonT_BT580___MC. 230}
M14_nonT_BT580___TC 6]
M14_nonT_BT860__BC 1]
M4 BT860 M14_nonT_BT860__DC 4 1263 0.0269
M14 nonT M14_nonT_BT860___MC 326
= M14_nonT_BT860__TC 7]
M14_nonT_NY580__DC 1
NY580 M14_nonT_NY580___MC 335)
M14_nonT_NY580__TC 5|
— M14_nonT_NY860___MC 327,
M14_nonT_NY860___TC 3|
Monocytes M14_rTreg  |NY580 M14_rTreg_NY580__MC 1 1661
M14_Tncl BT580 M14_Tncl_BT580__ MC 1
BTS80 M16_aTreg_BT580___MC 4
M16_aTreg BT860 M16_aTreg BT860___MC E
NY580 M16_aTreg_NY580___MC 7
NY860 M16_aTreg_NY860__MC 7]
T M16_nonT_BT580__DC 1
M16_nonT_BT580___MC 58}
M16_nonT_BT860__ DC 1
M16 BT860 M16_nonT_BT860___MC 99 398 0.0302
M16_nonT M16_nonT_BT860___TC 7|
NY580 M16_nonT_NY580__MC 79
M16_nonT_NY580__TC 2|
— M16_nonT_NY860___MC 125}
M16_nonT_NY860__TC 1
M16_T8em  |BTS80 M16_T8em_BT580__MC 1
M16_T8em  |NY860 M16_T8em_NY860___MC 1
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BT580 NK_aTreg BT580__TC B
NK_aTreg  [NY580 NK_aTreg NY580__TC 3
NY860 NK_aTreg_NY860__TC 1]
— NK_nonT_BT580__NK 230
NK_nonT_BT580__TC 24
NK_nonT BT860__BC P
BT860 NK_nonT BT860__NK 344§
NK_nonT BT860__TC |
NK_nonT o =S
L NK_nonT_NY580__MC 1
NY580 NK_nonT_NY580__NK 166
NK_nonT_NY580__TC 21
NK_nonT_NY860__NK 235
. _nonT_NY860_|
NY8E0 NK_nonT_NY860__TC 29
NK_Tdem __|NY860 NK_T4em_NY860__NK 1
NK_T4naive _|NY860 NK_Tdnaive_NY860__TC 1]
NK_cells NK 1m0 NK_T8em_BT580__NK 1] 1394 10 1394
NK_T8em_BT580__TC 29)
- e =
NK_T8em NK_TSem_NVSSO_NK 11}
NY580 —rsem N5
NK_T8em_NY580__TC 7
NK_T8em_NY860__NK 33
NY8&0 NK_T8em_NY860__TC 30
— NK_Tncl_BT580__NK )
NK_Tncl_BT580__TC 3
- foeem —
NK_Tncl NKiT"cliNVSBDVNK i
NY580 e
NK_Tncl_NY580__TC 10
NK_Tncl_NY860__NK 4
NY8&0 NK_Tncl_NY860__TC 3
— T aTreg_BT580__DC 1]
T aTreg BT580__TC 240
aTreg T_aTreg BT860 T_aTreg_BT860__ TC 243 921 0.0011
NY580 T aTreg NY580__TC 22
NY860 T aTreg NY860__TC 215
87580 T nonT BT580__NK 22}
T nonT BT580__TC 54
— T_nonT BT860__NK 47}
o T ront T_nonT_BT860__TC 7] B
- Y580 T_nonT_NY580__NK 46}
[T nonT NYs80__TC 39
T nonT NY860__NK 15}
NY860 o
T_nonT_NY860__ TC 66}
BT580 T rTreg BT580__TC 313
BT860 T_rTreg_BT860___TC 234
T T L TEE ST 1072 0.0000
g -Tree - [nysso T _rTreg NYS80__TC 337]
NY860 T_rTreg_NY860__TC 183
BT580 T_Taem BT580__TC 330)
Taem S I T T4em _BT860__TC EEE [ 00000
- NY580 T T4em_NY580__TC 254 -
NY860 T T4em NY860__TC 137
7580 T Tanaive_BT580__DC 1]
T_cells T Tanaive BT580__TC 481 8326
T4naive T_T4naive BT860 T_T4naive_BT860__ TC 265) 1134 0.0009
NY580 T Tanaive_NY580__TC 291
NY860 T_Tanaive_NY860__TC 9%
— T T8em BT580__NK o
T T8em BT580__TC 260|
Eree) i oo a1 g —
T8em T_T8em — S 1031 0.0281
Y580 T T8em NY580__NK g
T T8em NY580__TC 258
T_T8em NY860__NK o
NY860 — S
T_T8em_NY860__TC 189)
BT580 T_T8naive BT580__TC 318
; : 87860 T_T8naive_BT860__TC 486
T8naive T_T8naive NY580 T Tanaive NY580_TC 256 1336 0.0000
NY860 T T8naive_NY860__TC 276
BT580 T_Tncl_BT580__TC 201
aT860 T Tndl_BT860__NK 1
T Tndl_BT860__TC 365
Tncl T_Tncl NY580 T_Tncl_NY580__ NK 4] 1431 0.0063
T Tndl_NY580__TC 375
T_Tncl_NY860__NK 4
NY860 —
T_Tnd_NY860__TC 481
Al (predicted) 1547 167 1626) 1350 8493 13183 13183)
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EXP DataSets Subtype TotalCell§Training Testing Accuracy: 0.917345
2 BC 10085 v Precision: 0.930983 0 0.92384682 0.55555556 0.988289
M14 2612 W Recall/Ser 0.995223 0 0.99577861 0.9263658 0.907035
NK 8385 W Specificity 0.986645 0.999917 0.98277559 0.94550218 0.984984
CD45RA+CD2| 10479 W F1 Score: 0.962032 0 0.95846501 0.69456812  0.94592
10x (Clean) T4 11213 85423 |V Predicted| B_cells]ritic_cells Monocytes: NK_cells| T _cells All
CD45RA+T8n: 11953 W B_cells 1875 0 6) 0f 3 1884
8 10209 W Dendritic | 103 0 152] 0] 15 270
CD45R0+T4n| 10224 v Monocyte| 6| 0| 2123 [J 3 2132
CD4+CD25+Ti 10263 \ NK_cells 6 0 0f 780 56 842
Mi14_d1 425 v T _cells 24 1 17| 624 6498 7164
M14_d2 431 W All 2014 4l 2298 1404 6575 12292
NK 309 W
T4 222 v
T8 310, W
GEO (Clean, R17) 325 4292 |V
382 W
284 W
204 W
T4 965 W
CCR5+CD69- 435 \
Bn 1169 v
Bm 491 v
DC 142] W
M14 1263 W
M16 398 v
NK 1394 W
aTreg 921 v
BroadS1 onT 226 13183 v
rTreg 1072 v
T4em 975 W
T4naive 1134 \
T8em 1031 v
[ T8naive 1336 \
1431 \
BC 1884 v
DC 202 \
pDC 68| v
M14 1809 v
BroadS2 (Clean) MG 323 12292 v
NK 842 W
T4 3380, v
T8 3784 W
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True/ Predicted BC MC NK TC All (true)
pbmcl_v2_A_BC__ BC 286
pbmcl v2_A_BC__MC 1]
v2 pbmcl v2_ A BC__TC 1
pbmcl pbmcl v2 B_BC__ BC 385)
pbmcl_v2_B_BC__MC 3
B_cells BC " pbmcl v3 BC__BC 345 1884 0.0048 1884
pbmcl v3_BC___MC 1]
pbmc2_V2 BC___BC 859
pbmc2 v2 pbmc2_V2_BC___MC 1
pbmc2 V2 BC__TC 2)
pbmcl v2_ A_DC__ BC 6|
pbmcl v2_ A _DC___MC 47|
V2 pbmcl v2 A DC__TC 2|
pbmcl v2 B DC___BC 2]
pbmcl pbmcl_v2_B_ DC___MC 29|
pbmcl v2 B DC__TC 2
RC pbmcl v3 DC__BC 8| 202
v3 pbmcl_v3_DC___MC 24
pbmcl v3_DC__TC 6|
Dendritic_cells pbme2 V2 DC___BC 25 270
pbmc2 v2 pbmc2_V2_DC___MC 50
pbmc2_ V2 DC___TC 1
pbmcl v2_ A pDC__ BC 25
et 2 pbmcl v2_A pDC__MC 1
pbmcl_v2 B pDC___BC 9|
pDC pbmcl_v2_B_pDC__TC 3 68
pbmc2_V2 pDC__ BC 28|
pbmc2 V2 pbmc2_V2_pDC___MC 1
pbmc2_V2 _pDC__TC 1
pbmcl v2_ A M14__ BC 2
pbmcl v2_A_M14___MC 636)
S pimer 5 Vi e ; ’
pbmcl v2 B_M14__ |
E pbmcl_v2_B_M14__MC 37§ 1809 DD
v3 pbmcl v3_M14___MC 354]
Monocytes pbmc2 V2 pbme?_V2_M14__BC 2 2132
pbmc2_V2_M14___MC 434
pbmcl_v2_A_M16__BC 1]
V2 pbmcl v2 A M16___MC 100
G pbmcl pbmcl v2_A_M16__ TC 1 323 0.0062
pbmcl v2_B_M16___ MC 73]
v3 pbmcl v3_M16___MC 98|
pbmc2 V2 pbmc2 V2 M16___MC 50|
pbmcl_v2_A_NK__BC 2]
pbmcl v2_A_NK___NK 156
v2 pbmcl v2_ A NK__TC 8|
pbmcl pbmcl v2 B NK__ NK 220
pbmcl_v2_B_NK__TC 43|
NK_cells NK pbmcl_v3_NK__BC 3 842 0.0736 842
v3 pbmcl v3 NK__NK 187
pbmcl_v3_NK__ TC 4
pbmc2 V2 NK__BC 1]
pbmc2 V2 pbmc2_V2_NK___NK 217
pbmc2_V2_NK__TC 1
pbmcl v2_ A T4 BC 4
pbmcl v2_ A T4 ___MC 2]
pbmcl v2 A T4 NK 12|
v2 pbmcl v2 A T4 TC 532]
pbmcl v2_B_T4___MC 4
pbmcl pbmcl v2 B T4 NK 12|
pbmcl v2 B T4 TC 892
pbmcl v3_T4___BC 2
T4 - BmELVATARING a 3380 0.0210
pbmcl v3 T4 NK 18]
pbmcl v3 T4 TC 939
pbmc2_V2_ T4___BC 3
pbmc2_V2_T4___DC 1|
pbmc2 V2 pbmc2_ V2 T4___MC 4
T_cells 7164
- pbmc2_V2_T4___NK 8|
pbmc2_ V2. T4__TC 946
pbmcl v2_ A T8 BC 12|
pbmcl v2_ A T8 __MC 6|
pbmcl v2_A_T8__NK [ 103
v2 pbmcl v2 A T8 TC 963]
pbmcl pbmcl v2 B T8 BC 1]
T8 pbmcl v2 B_T8__ NK 110] 3784 0.1572
pbmcl v2 B T8 TC 843
3 pbmcl v3 T8 NK 152
pbmcl v3 T8 TC 810]
pbmc2_V2 T8 _BC 2]
pbmc2 V2 pbmc2 V2 T8 NK 119
pbmc2 V2 T8__TC 573]
All (predicted) 2014 1 2298 1404 6575| 12292 12292
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Accuracy: 0.98292

Precision:  0.976932 0 0.84933 0.985147 0.992145
Recall/Sens 9.62E-01 0 0.897779 0.925462 9.97E-01
Specificity:  0.99696 0.997787 0.994977 0.998481 0.975904

F1 Score: 0.969218 0 0.872883 0.954372 0.994667

Predicted B_cells|ritic_ NK_cells| T _cells All
B_cells 9698 28 356 1 2| 10085
Monocyte: 202 19 2345 3| 43| 2612
NK_cells 0| 135 27| 7760 463 8385
T_cells 27 7 33 113 64161 64341
All 9927 189 2761 7877] 64669 85423

EXP DataSets Subtype SubtypeN|TotalCellNTraining |Testing
3 BC 10085 v
M14 2612 v
NK 8385 v
CD45RA+CD25-T4naive 10479 v
10x (Clean) T4 11213| 85423 v
ICD45RA+T8naive 11953 v
T8 10209] v
CD45RO+T4mem 10224 v
CD4+CD25+Treg 10263 v
M14_d1 425 v
M14_d2 431] v
NK 309 v
T4 222 v
T8 310 v
GEO (Clean, R17) 325 4292 |V
382 v
284 v
204 v
T4 965 v
CCR5+CD69-T4 435 v
Bn 1169 v
Bm 491 v
DC 142 v
M14 1263 v
M16 398 v
NK 1394 v
aTreg 921 \
BroadS1 onT 226 13183 v
rireg 1072} \
T4em 975 v
T4naive 1134f v
[T8em 1031 v
[T8naive 1336) A
1431 v
BC 1884 v
DC 202] v
pDC 68 v
M14 1809 v
BroadS2 (Clean) M16 323 12292 M
NK 842] v
T4 3380] v
T8 3784] v
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True/ Predicted

BC

DC

MC

NK

TC

SubtypeN |SubtypeE|

All (true)

B_cells

BC

021-CD19+B__BC

9698]

021-CD19+B__ DC

28

021-CD19+B___MC

356

021-CD19+B___NK

021-CD19+B___TC

10085

384

10085

Monocytes

M14

003-M14__BC

202

003-M14__DC

19

003-M14___MC

2345

003-M14___NK

003-M14___TC

43

2612

2612

NK_cells

NK

018-CD56+NK__ DC

135

018-CD56+NK__MC

27|

018-CD56+NK___NK

018-CD56+NK___TC

7760

T_cells

CD45RA+CD25-T4naive

025-CD4+CD45RA+CD25-NaiveT__ BC

025-CD4+CD45RA+CD25-NaiveT___DC

025-CD4+CD45RA+CD25-NaiveT___MC

15

025-CD4+CD45RA+CD25-NaiveT___NK

16|

025-CD4+CD45RA+CD25-NaiveT___TC

8385

8385

10435}

10479

0.0042

T4

026-T4__BC

026-T4___DC

026-T4__NC

026-T4__NK

026-T4___TC

11189

11213

0.0021

CD45RA+T8naive

027-CD8+CD45RA+NaiveCytotoxicT__ BC

027-CD8+CD45RA+NaiveCytotoxicT___MC

027-CD8+CD45RA+NaiveCytotoxicT___NK

027-CD8+CD45RA+NaiveCytotoxicT___TC

11942

11953

0.0009

64341

T8

022-18___MC

022-T8___NK

74

022-18__TC

10128

10209

0.0079

CD45R0+T4mem

023-CD4+CD45RO+MemoryT__ BC

023-CD4+CD45R0+MemoryT___MC

023-CD4+CD45RO+MemoryT___TC

10221

10224

0.0003

CD4+CD25+Treg

024-CD4+CD25+RegulatoryT__ BC

024-CD4+CD25+RegulatoryT__ NK

12

024-CD4+CD25+RegulatoryT__ TC

10246

10263

0.0017

All (predicted)

9927

189

2761

7877,

64669

85423

85423
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[exe

DataSets Subtype SubtypeN |TotalCell|Training |Testing Accuracy:  0.93522833
BC 10085 v Precision: 0 0.997622 0.539405 0.99652416
Mi14 2612 v Recall/Sensi 0 0.98014 0.996764 0.91685321
NK 8385 Vv Specificity: 0.99930103 0.999418 0.933969  0.99141631
CD45RA+CD25-T4naive 10479 v F1 Score: 0_0.988804 0.7 0.95502998
10x (Clean) T4 11213| 85423 |v Predicted B ¢ NK_cellsl T cells| All
CD45RA+T8naive 11953 v Monocytes 3| 839 S| 9 856
T8 10209 v NK_cells 0 0| 30% 1 309
CD45RO+T4mem 10224 v T_cells 0f 2| 258 2867 3127,
CD4+CD25+Treg 10263 v All 3 841 571[ 2877] 4292
M14_d1 425 Vv
M14_d2 431 v
NK 309 v
T4 222 v
T8 310 v
GEO (Clean, R17) 325| 4292 v
382 v
284] Vv
204 V.
T4 965, Vv
CCR5+CD69-T4 435 v
Bn 1169 v
Bm 491 Vv
DC 142 v
M14 1263 v
M16 398, V.
NK 1394 v
Broads1 alicg 921 13183 [V
[nonT 426 v
rTreg 1072 v
T4em 975 v
T4naive 1134] Vv
T8em 1031 V.
T8naive 1336 v
1431 v
BC 1884 Vv
DC 202 v
pDC 68| v
Broads2 (Clean) M 18091 12202 [
M16 323 V.
NK 842 v
T4 3380 v
T8 3784 v
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True/ Predicted BC| DC| MC NK]| TC| SubtypeER |All (true)
GEO_GSM2773408_M14_d1__MC 420
M14_d1 GEO_GSM2773408_M14_d1__ NK 1| 425 118
GEO_GSM2773408_M14_d1__TC
Monocytes GEO_GSM2773409_M14_d2__ BC 3 856
GEO_GSM2773409_M14_d2__MC 419
RLsdz GEO_GSM2773409_M14_d2__ NK 41
GEO_GSM2773409_M14_d2__TC
NK_cells - GEO_20190108_GSM3544603_NK___NK 308] 309 TR 309
GEO_20190108_GSM3544603_NK__ TC 1
T4 GEO_20190108_GSM3544603_T4__ TC 222 222 0.0000
GEO_20190108_GSM3544603_T8___MC 1
T8 GEO_20190108_GSM3544603_T8___NK 4 310 0.0161
GEO_20190108_GSM3544603_T8__TC 305
37]
258 325
20 382
362
T_cells 1 3127
- —
155]
44
160l 204
m GEO_20190620_GSM3209407_T4___NK 16 o5 00166
GEO_20190620_GSM3209407_T4__TC 949
GEO_20190620_GSM3209408_CCR5+CD69-T4___NK 9
CCRS+CD6S-T4 GEO_20190620_GSM3209408 CCR5+CD69-T4___TC 426 435 0.0207
All (predicted) 3 of 841 571] 2877 4292 4292
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Appendix 9 E-R Graph of This Project
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Appendix 10 Visualization of SCT Data Distribution

10xG_003-CD14+Monocytes_std_2612

12000

10000

8000 .

o 1000 2000 3000

Positive

4000 5000

10xG_022-CD8+_Cytotoxic_T_std_10210

12000

10000

8000

2000

o 1000 2000 4000 5000

3000
Positive

10xG_018-CD56+_NK_std_B385

A

12000

Sum

0000

10000
8000
6200
4000
2000
0
o 1000 2000 3090 4000
Positive

5000 0000

10xG_023-CD4+_CD45RO+-_Memory_T_std_10225

L

12000

10000 :
]

0000

10xG_025-CD4+_CD45RA+_CD25-_Naive_T_std_10480

12000

10000

8000

2000

o 1000 2000 3000

Positive

4000

axo

-

5000 6000

8000

fo

2000

0 1000 2000 4000

3000
Positive

10xG_026-CD4+_Helper T std_11214

Positve

5000 0000

o

12000

10000

8000

2000

10xG_024-CD4+_CD25+_Regulatory_T_std_10264

12000

10000

2000

0

0

0

10xG_021-CD19+B_std_10085

'S

5.

1000 2000 3000

Positive

4000

:
.
£
)
1000 2000 3000 4000
Positive

10xG_027-CDB+_CDA5RA+ Naive_Cytotoxic_T_sid_11954

5000 0000

5000 0090

Page | 284



BroadS1_B_cells_std_1660
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BroadS2_pbmet_10x_v2_B._spht_Dendritic_colls_std_33 BroadS2_pbrmct_10x_v2_6_spik_NK_colls_sto_263. BroadS2_pome{_10« v2_B_split Plasmacytold_Dendsikc_cells_std_12

Page | 287



wm,ug_u_;mm Broad32_pbme2_10X_V2_spit_B_cslis_sid_B62 BroadS2_pbmc2 10X _V2_spht_CD4+ T _cells_std_962

Page | 288



GED_GSM2773408 Morocytes_d1_sid_425 GEO_GSM2772409 Morocytes_d2 sid_431

o wo 20 w00 ey
Postie Postie

G AT GOk S SR TS GEO_GSM3162630_tonsil_DC_2739

8000

600

Sum

4000

° . O 1000 200 3000 4000 500 6000

Posine Paositive

GEO_GSM3200408_CDA+T_C_CCRE+CD60-_std 435 GEO_GSM3256345_HLA DR sid_48

o o
5 o
B
i
o
o ane P ‘ o 20 e e

GEO_GSM3087628_CD8+ T cels Inve_std_5062

oo 0 000 o o
Poskive

GEO_GSM3162632_tumor_ascites_DC_1613

1000 000 800
Paositive

5000 60

GEO_GSM3258346_CD19_ B std_20

w0 0 00 o s
Poskive

Page | 289



GEO_GSM3258347_cantrol HLA DR std 2307

GED_GSM3258348_corrol CD19 8. std_1760

w0 0

GED_GSM3130548_Donor! _ IL-10-producing_Foxpd-_CD4+_T_sid_1247

1o

0 w0 0 o e
Postve

GEO_GSM2544603_CO4_T sid_222

o w0 20 w00
Postie

e

sne

0o

GEO_GSM3430349_Donar2_IL-10-producing_Foxpd- CO4= T_std_1902

o

w0

o

o o
Poskive

o a0 wn
Postive

GEO_GSM3544603_CO8 std_310

050
Postie

GEO. | (P5_CO3+CI

GEOQ_GSM3375767_tonsil_monocytes_CD14+_1663

8000

Sum

00

;0 4000 00 600
Positive

Int]_CO4+_T_oslls_sid_4486

oo

ant0

aa
a0
Y e ww a0 e e
Posiive
GE0_GSMIBA4003 INKT_std_325
ey S
o
5
S
-
o !
% W ome o me  oem o se  sw

Page | 290



GED_GSM3544603 MAIT sid_382

o wo 20 w00
Postie

GEQ_GSMI544603 V2 sid_204

.

‘,% o

0o
Postive

o

0o

GEO_GSMIBA4803_NK std 309

o 0 050 e
Postie
oL (PS5

1290
am
"

o oo 0 o wo

Posiive

w0

) CO4+._T_cels_sher_therapy_sid_3725

GEQ_GSM544603 V1 sid_284

oo

0

000
Poskive

o

Page | 291



Appendix 11 Posters During This Project

Jll University of University of Nottingham Ningbo China
Nottingham . . &

UK | CHINA | MALAYSIA

Classification of cells using single cell transcriptomics

data and machine learning
Jiahui ZHONG, Vladimir BRUSIC

Supervised MU steps (v

The green parts are the topics of this project. :;:‘:.f'::m"

* Cycle 7: ANN trained using all 10xS + GEOS data sets.

* High accuracy relative to previous cycles, using an independent test set.
* Accuracy = 89.4%

TABLE V. CYCLE 7 CONFUSION MATRIX e

Cycle 7
5’“‘" PR | ivaerome | Fac | i “
PHMC BC 164 o | 2 b o
PRMCDC o | ® | 2| o | o
PBMC MC 120 14 134 | 2 o
PMCNK ) u 4 | o s}
PRMC TC 58 10 © Tocse oo rowcic

EC I 0 T [ —
SUM 1522 240 1560 [ 1578 [ 50w (129 | s wsr
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Jll University of University of Nottingham Ningbo China
!:‘ Nottingham Y . .

UK | CHINA | MALAYSIA

Classification of cells

using single cell transcriptomics data and machine learning
Jiahui ZHONG, Vladimir BRUSIC
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Nottingham

UK | CHINA | MALAYSIA

FoSE

Faculty of Science
and Engineering

University of Nottingham Ningbo

SSNI Jiahui Zhong 20120196

Artificial Neural Networks for

Classification of Single Cell Gene Expression

INTRODUCTION

Single cell transcriptomics (SCT) can detect heterogensous
genetic information which is not obtained by mixed sample
multicellular sequencing. This leads the whale field of genetics inta a
new di i Computerized cell 1 with SCT data sets
using supervised machine learning can bring specific labeled learning
and classification procedure to each individual single cell gene count
expression profile, where is improved to unsupervised machine
learning clustering and biological manual cell sorting FACS.

Cell classification with SCT data and artificial neural network
(ANN) is aim to achieve to build classification of single cells, detect
rare subtype of blood cells, refine the ontology of immune cells and
conduct diseases diagnosis and health prediction. This research has
demonstrated the classificalion system with five main cell types of
peripheral blood menonuclear cells (PBMC)

MATERIALS AND METHODS

Data organization — Collect, clean and standardize a large,
sparse, noisy and diverse 10x SCT PBMC data sets o serve as
input for classification system. (Done)

Cell logy on hi ical class
(Done)

. Concept demonstration of multi-class SCT data sets
classification with implementing supervised machine learning
method artificial neural network (ANN). (Done)

. Incremental learning on optimization of model architecture and
algorithm. (In progress)

of PBMC data sets.

. Generalize the performance of classification method across
multiple diversified independent SCT data sets. (In progress}

Saurce Cell Type

s oy | BEmn Monooe  ken e

Oenarmiccell | Totol

A0 Gen Daro Oute [ TD0BS{1)  REIZ(N A WS{1) B4347E) [} 85,479 (8]

GEDData areyy esam wa(  ATES o 713

Bros0s1 180 1IN LMACn 8RS e

2138 B2

131881

Bioass2 18844} TR TwE | 12220

Tota ST 7261(12) 109307 IBERS(2Y 4128 | 12287859

Table 1. Defailed compenents of 58 3CT data sefs involved in this study, sorted under five
classes (fve main cel 5 of PEMC). The nurber of data sets have been shown in the
brackels. These dala sels have been amanged inlo training sels and lesting seis for each
cyela inlaarning procass

Figure 1. The onlalogy ilustation of PEMK, that demonstietes the taxanomy and the
heterogenaity of blood calls in nature. The subtypas of five main cell types of PEMC have
been dlarfied based on collected 10x SCT data sets.

- e

]

0 mE—
B
-

I!—H*.I_H—H_II_I‘H—\‘\

Figure 2. The detailed components of wraining and testing data sets in each pencais
cyele in incremantal learning In @ach next coming up periode cyele, the ceta sets with
next publicalion date have been addsd inta tha previous raning data sels 1o form the,
new currant fraining data set. Mewly formed curert fraining data set has been
implemented into the next periodic AMN training and festing cycle. The cycles and data
sets have been ordered and set u o fheir publicafion dates (1o simulate the actual
stuation in real life). Al last oycle, BroadS1 and BroadS2 data sels have been sweppad to
oosanve tha ANN periomiance on genaralzabon propertiss

Jiahui Zhong, Prof. Vladimir Brusic

Single Cell Transcriptomics Group, SSNI, UNNC

Rt Output

Figure 3. The overall sinle cell ciassification system for fhis study, SCT data has been
oolleste, standardizad. and spitinto training set and testing et Single oel classification
madel hias been rained with muli-source cumulative data sets. In each cycle of mode|
sting and validation, testing en inclividusl new data sel, 2-foid wross validation, and
cafion on present training set have been demonstrated The oulpus heve shown

the fve-giass classficabon resull. Cuing keepng collesting and feedng with nawly
upsorming cata sefs, the cyclical system has been criven by incremental learring method,

s obint) Gy Gatn

St Mo

Figure 4. The artificial neural netuark model architctuns has besn employed in this study
that compnses of one (U [ayar, onS hicken laysr with 10 Ridsen notss, and one ouput
layer. The input layer has 30658 ingut urits, that refers to 30,598 pene featurss in the
idata sets, The outoun layer has five cutput units that refers 1o five cel claszes of PBMC.
The model has been trained with incremental training sefs. while tested with well-
annctated high-quality testing set. The aciivation funclion RelU has been used in Ihis
model, pz eters in detail have been documented in tex! The madel has
tacagnized different ranseiptional expression pattsrns across differsnt cell types. Taining
with welllabeled PEMC SCT data sets.
A

Figure 5. The assessment metrics of ANN dassification performance used in this study.
Ceniusion matix is a visual modal evaluation method, that consists of four situations to
the result — TN, TP FN. and FP. RecalkSansitivity. spsdificity. precision. F1 score and
accuracy have been used fo measure the capability of AN dassifier

ANN classification to 10x SCT data sets with multi source data
sets has been done with incremental learning based on 10x
demonstration data, BroadS1 data, BroadS2 data and GEQ DB data.
The performance results of incremental learning with all data sets
has been shown.

AGG OF BROADS1 GLASSIFIGATION

T

T AN

P

Figure §. #HH performance on cell type dassification of incremental leamning process
across diferart cycle steps. The cassification result has he dlassiicatior
aoouracy of the final step in each fraining cyele tested with BroadS1 cata sats. Within
the increasing number of the fraining data sets, the perfonmance of ANN modal
classiication accuracy on &l cell fypes has shown the trend of steady increasing.

ACC IN INCREMENTAL LEARNING

Figure 7. The overall average dassiication accuracy of ANN on each oall type across

individual cyclical tesing steps duing incremenial leaming, Dwing incrementa

laarning prooass. the cverall accuracy across B cells, Manocytas + DG, MK cells and T
=56 from 0,645 %0 0,873, from Cycle 0 (Stap 4. Figure 7. 10 the
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Figure 8. The resuit of sensitivity ana speciicity of B cels, Menocytes «
Dendiitic cells, MK cells and T cells in each franing and testing
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Table 2 The confusion malriz of the final Usining snd festing sep 65 1n siep

65, 1527 B calls have been camectly predicted as B cells (8199%), 22 B

cells predicted as DC, 22 B cells predicted as monocytes, 63 B cells predicted

as NK cells, 26 B calls predicted as T cells. The classification accuragy of DO

Is 94.37%, of moncoyles s 96.9%%, of NK cells is 81.48%, of T cells is
.37%. The owetall accuracy of PBIC i 64.30%,

Assessmant/Cell type | Boell  Dendrificcall Monosyts | WKcell | Toal
Precision 096600611 070526316 05005284 | 075635029 | 0.8630717
RecallSensiivity | 091967952 094366107 0.96980765 | 081492100 | 096372808
Spacificity 03054753 DA9STDSES  0.9372227 | 036845305 | nanaEst e
F1_Score 095640727 DO0TZIAEE 0.8731016 | 07861317 | 086401752
Accuracy 0.943032684

Table 3. The assessment melrics of the final training and testing step 25 in
” The ANN clessiication model parlormance on pracision

snsilivity, spaciiisty. F1_Soors, accuracy of B cell dass, Denantic
oall class. Monocyte dass, NK cell slass, and T call class have been listed
in this teble.

CONCLUSION & DISCUSSION

The efficiency of ANN multi-classification prototype
has been proved on blood cell PBMC classification with
diverse high-dimensional and sparse 10x SCT data sets.
Supervised machine learning has demonstrated good
for it data sets

u ity and

with multiple data sources.
The n 1ce has been

improved in the incremental learning process. The
classification system has achieved high accuracy, good
robustness, and good generalization ability with
incremental learning method

. The ANN model has demonstrated overall good
robustness and high accuracy (94.30%) on PBMC five-
dlass classification in incremental learning process.

. The model performance needs to be generally validated
and demonstrated on other different models.

. The effect of biological variants and technical variants
brought from data set processing protocols on SCT
expression profiles needs to be figured out in further
study. It can bias the recognition performance of ANN
model.

The optimization of ANN architecture should be
considered based on hidden layers and hidden nodes.
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BACKGRO

Single-cell RNA-seq (SCT) can detect heterogeneous genetic
information for individual cell. Single cell classification has met
challenges in lack of classification method and reference data sets

b e

IS RN}

Qur research [1-4] has proved the concept that single cell
classification can be done with SCT data and supervised machine
learning (ML) method artificial neural networks (ANN) with high
accuracy, where is improved to unsupervised ML clustering and
biclogical manual cell sorting FACS/MACS. We have made reference
data sets and demonstrated a classification system using five main
cell types of peripheral blood mononuclear cells (PBMC). Here, this
exhibited study builds on an extension of our previous research [1].
This study aims to analyze the misclassification, model vulnerability,
and data quality in PBMC single-cell classification, with four super
sels external validation experiments.

MATERIALS AND METHODS

= DATA
This study involves SCT data sets of four different data sources:
10xDemo data, GEO, BroadS1, and BroadS2.

o

ubstme o U oo w  Tauw o
sats)
o WSH)  aenl) RmSH) G sz
GEO 1,7601(1) o 856 (2) 309(1) 8,789(9) 11,714(13)
BROADSL 1,660(1) 142(1) 1661(1) 1,394(1) 8326(1) 13,183(5)
BROADS? 1,884 (4) 270(7) 2,132(8) 842i4) 7,184(8) 12,292 (31)
TOTAL 193689(7)  412(8)  7.261(12) 10.930(7) 88.620(24) 122.612(58)

Table 1. Detalled components of 58 SCT data sets involved in this study, sorted under five
dasses (BC. DC, MC, NK, and TC) The number of data sels have besn shown in the
brackets These data sels have been amanged into fraining sefs and testing sefs for
axternal validafion experiments

Figure 1. The ontology illssiraion of PEMC. that demanstrates the taxanomy and the
heterogeneily of baod cels in nature, The subtypes of five main cell types of PEMC have
been darified based on oalected 10x SCT data sets.

* ANN MODEL AND ASSESSMENT METRICS
The architecture of ANN model used in this study is as described in [1].

ean T ——
BC el k k
8 Tc —
. —
8 Mc —
@ oc —* T Lt

Figure 2. The ANN modl comprises of one input layer, one hidden layer with 10 fidden
notes, and one output layer. Tha input layer has 30,688 input units, that refers 1o 30,658
gens features in the data sets. The outpul layer has fivs output units that refers to five oall
diasses of PBMC. The acivalion funchion ReLL has been used in this modsl. The mode!
is trained with welHabeled PBMC SCT data sets

A
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Figure 3. The assessment melrics of ANN model used in this study. Confusion matr is &
visual model evaluation method. that consists of four situations to the result ~ TH, TP, N,
and FP. Recall/Sensiiity, specifcl, precision, F1 score and aceuracy have been used
to measura the capabilty of ANN dassifier

= STUDY DESIGN

In this study, four sources’ data sets have been split into train set and
test set for super sets swapping train-test validation. There has been
three rounds of 4-sets swapping: the original one as described in
previous study [1], the second round removed seven empty cells, and
the third round further removed two GEO sets ‘CD19 and 'TC-5662',
for analysis of misclassification, data quality, and model vulnerability.

oy
Jom— uh,L

Figure 4. The workflow of study design and the detal of rain-test set in thiee rounds of
4super-sels-swapping expenments

RESULTS

= COMPARATIVE ANALYSIS

Figure 5. The comparative analysis to ‘GEO-CD19' set 1o other BC sets, and ‘GEO-TC-
5662 set 10 olher TC sels of four data sowces, using Pearson carrelation heatmap.

= The comparative analysis of ‘GEQ-CD19’, ‘GEOQ-TC-5662' to other
BC, TC data sets has heen done. The results has shown ‘GEO-
CD19' set and 'GEO-TC-5662 sets have different gene expression
profiles from other BC and TC SCT data sets.

The average of correlation coefficient value of 'GEO-CD19 to
other BC sets was 0.77 (compared to 0.96 of others). The TC set
‘GEQ-TC-5662" has shown weak association with other involved
TC sets (correlation coefficient 0.56~0.67)

OVERALL ACCURACY

ACC OF PBMC CLASSIFICATION IN FOUR-SUPER-SETS-
SWAPPING OF THREE ROUNDS

Woutey 1scundn

Figura 6. The overall ACC of each swapping Iraindest step of hres rounds

T~

* The classification model has been vulnerable for 6.87% when train
set involving misleading data sets (R#2), for 18.41% when
involving seven empty cells and two misleading sets (R#1), In
average. The seven empty cells has dragged down for 13.32%
ACC in average, when they were invalved in super sets swapping
experiments.

SSNI Jiahui ZHONG 20120196

F1-SCORE

F1-SCORE OF PBMC CLASSIFICATION IN FOUR-SUPER-SETS-
SWIAPPING STEPS OF ROUNDITL

F1-SCORE OF PBIMC CLASSIFICATION IN FOUR-SUPER-SETS-
SWAPPING STEPS OF ROUNDH2

Wl BDmiicsets @hoscres WA WT_cek

F1-SCORE OF PEWIC CLASSIFICATION IN FOUR-SUPER-SETS-
SWAPPING STEPS OF ROUNDH3

Figure 7. The F1-score resuls of each o2 type (BC, DG, MC. NK, and TG)in
ach swapping rain-est step of tree rounds.

= After removing seven empty cells in train set, the
classification ability to BroadS2 Dendritic cells have been
improved for 0.656 with F1-score (R#2vsR#1).

= When excluding mislabeled data sets in train set (step3
and stepd in R#2 and R#3), F1-score of BC classification
has increased from 0.689 to 0.998, MC from 0.313 to
0.959, NK from 0.752 to 0.959, TC from 0.907 to 0.995
(in terms of the large number of TC), in step3. In stepd,
MC has increased from 0.797 to 0.989, NK from 0.385 to
0.700, TC from 0.904 to 0.955.

CONCLUSION & DISCUSSION

The ANN classification has been wulnerable when
invalving few empty cells (7/~122,600) in train set, and
involving mislabeled data sets in train set.

The correctness of label of training data sets is essential
to build a solid ANN SCT classification model.

The binary misclassification of NK and TC needs to be
further studied.

The misclassification of sub cell types (in detailed
confusion matrix) needs further study with prepared SCT
cell ontology.

The comparative analysis to DC of BroadS1 and
BroadS2 needs to be done. There might be underlying
gens exprassion discrepancies between them.
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Appendix 12 Wet Lab Background Information — Upstream Workflow
and Analysis for SCT

The upstream workflow and analysis for SCT can be divided into two parts:

l.

The protocol of SCT experiments (Measure transcripts and have raw data).
1.

The upstream data analysis to the generated raw data (File conversion, alignment, QC & filtering).

The detailed steps mainly include single-cell isolation, single-cell experiments (generation of GEMs (Gel Bead in

emulsion)), reverse transcription of RNA to cDNA (emulsion PCR + barcoding), breaking GEMs, cDNA amplification,
library construction and quality control, sequencing and data analysis.

Library —
Tissue Isolation

Construction Sequencing

Single Cell cDNA Single Cell

: o Expression
Isolation Amplification Profiles

= Reverse Further
Experiments 2
Transcription Downstream
(GEMs :
: to Form cDNA Analysis
Generation)

The workflow of SCT sequencing technology (upstream, GEMs, 10x Genomics).

Isolate Freeze Ship Assess Remove Prepare single- Sequence on
cells cells* samples viability dead cells* cell libraries lllumina
® & N ° ’
O . — ‘ —_— o 4 — b 00 — —_—
o) ° .
L] ¢} =
“optimized protocol Ronene)
| =
] | | | 10x c;om\ aore
eoee 0@ —m@—=—"-3~ —
o umi cDNA Sample
10x Barcoded : |T| i poly(A) e S i
Cells & oil
Reagents
Cell Partitioning Reverse Transcription Library Generation

An example of SCT workflow (Azenta Life Sciences, 2023).
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. l 1 I E Library prep Amplification
Biological data De-multiplexing and 3. MOLECULAR PREPARATION
interpretation data alignment 4. SEQUENCING & AMPLIFICATION

Another example of SCT workflow’.

1. Single cell isolation methods

A heterogeneous population of cells must be separated into individual cells for SCT. With the availability of various
current methods, when choosing a separation method, it needs to consider the experimental design requirements
for cell throughput, and the requirements of the selection method - blind selection or biased selection based on a
parameter.

Fluorescence-activated cell sorting (FACS) is a commonly used cell isolation/purification/sorting method, it is biased
cell sorting, performed with factors such as the target surface protein markers, the same as magnetic-activated cell
sorting (MACS). Unbiased cell separation is done by microfluidics (Fluidigm C1 and 10x Genomics) and droplet-based
technologies (Bio-Rad ddSEQ Single-Cell Isolator). The process of tissue and cell isolation can change the profile of
single-cell expression.

The manual single-cell isolation methods include laser capture microdissection (LCM) and microscope checking, they
are biased selection methods based on fluorescence reporting of gene expression or cell morphology. They allow us
to figure out the microtissue environment and the specific location of each single cell.

Throughput Technologies Cell Selection Cell Quantity Final Volume
Microscope/LCM Biased 10'~ 10? pL
Low FACS Biased 102~ 10° uL
MACS Biased 102~ 10° uL
Microwell Unbiased 102~ 10* nL
High Microfluidics Unbiased 10%~ 10* nL
Droplets Unbiased 103~ 10* nL

The comparison of different single cell isolation methods.
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Single-cell isolation and library preparation?.

2. SCT protocols
SCT started in 2009°, the current mainstream SCT technologies include 10x Genomics, Fluidigm C1, and Smart-seq2.

The ideal scRNA-seq method is desired to be universal in terms of cell size, cell type, and cell state, and be cost-
effective per cell, easy to use, and open source. It can assay every single cell (i.e. 100% capture rate), and detect
every full-length sequence transcript in every cell (i.e. 100% sensitivity) in in-situ measurements, without doublets,
minimum input of the number of cells, and additional multimodal measurements.

Currently, different SCT technologies have different advantages and disadvantages. They are selected and used
according to research needs.
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Single-Cell Genomics Timeline Overview

Event Type D Research Product Launch

e
International Human n
Cell Atlas Initiative ~
launchedinLondon - =
onOct 13142016 | WMo || YCelse®
Nadia T Single-cell
multimodal omics
Single-cell genomics Y
named 2013 Nature 10«\ ENOMCS @BD n N:ngdeﬁ);: of
Method of the Year ! Genesis ipiis ‘
_ . ———" —
Chromium
Rhapsody
Bihoiie e OB
e B e S S 3 ¢ 9 - o eoe. .- 1]
2012 2013 2014 2015 2016 2017 2018 2019 2020
9 FLUNOIGH inDrop and Drop-seq RAD /)
. papers published, l”—”
shifting the market
paradigm towards ’ .
C1 dropletmicrofluidics .
ddSEQ
| Tapestri
“LUFIFERGEH ‘ [ 3
’ CELL
| e
- — A
ICELL8" ‘
InDrop
Note * WaferGen acquired by Takara USA which modified and rebranded the instrument; ICELL8 cx Single-Cell System
Source: Press releases, DeciBio analysis
SCT technology timeline (DeciBio, 2021).
Comparison of single cell sequencing platforms.
SCT Methods Advantages Disadvantages Scope of Application
e High cell quantity
and viability. :
: " .y Cells <40 um in
e High throughput. e 3’ sequencing (gene ; %
3 ; diameter (limited
e Cost-efficient. detection rate lower Bt eervea i
10x Microfluidic- e  Easy to use. than full-length v ;
; . 2 of the instrument
Genomics droplet e High degree of sequencing). pipe]
automation. e Quality control '
X e large-scale cell
e  Mostly used. points. -
. sample studies.
e High cost of
personalization.
e Low operation
requirements.
e Short experimental cycle e Low throughput.
s : 2,55 P ¥ - i Cells 5725 pm.
Fluidigm Microfluidic (several hours for 96 e High cost.
. Few cell sample
Cl capture cells). e Quality control ctudias
e  Full-length mRNA data, points. '

high gene detection
rate.
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e  Manual operation of cell
sorting, more flexible
protocol according to
experimental conditions.

e Low sample volume of

e Low throughput.

High cost.

High operation

Trace cell sample

Smart- Manual demand. : studies (such as
- 3 requirements.
seq2 selection e  Many quality control . embryo cell
: e Long experimental
points, able to check cell le (96 cell s samples, etc.).
. cle cells nee
condition from the start. z\e Wesk)
e  Full-length mRNA data, ’
high gene detection
rate.
inDrops 10x Genomics Drop-seq Seq-well (Honeycomb) SMART-seq
Cell capture
~70-80% ~50-70% ~10% ~80% ~80%
efficiency
Time to capture 10k ~30min 10min 1-2 hours 5-10min
cells
Droplet Droplet Droplet Nanolitre well Plate-based
o®0
CEL-seq SMART-seq SMART-seq SMART-seq SMART-seq
Library prep - Exponential PCR Exponential PCR based Exponential PCR based Exponential PCR based
Linear ampilification by VT ampiification amplification ampiification
Commercial Yes Yes - Yes (Summer 2020) Yes
Cost (~$ per cell) ~0.06 -0.2 ~0.06 -0.15 1
Good cell capture * Good cell capture » Good cell capture Good cell capture
Cost-effective « Fast and easy 10 run * Cost-effective « Cost-effective « Good mRNA capture
w Real-time monitoring « Parallel sample collection |+ Customizable « Real-time monitoring « Full-length transcript
» High gene / cell counts * Customizable * No UMI
: Ditficult to run & low cel §
Weaknesses Difficult 10 run Expensive capture efclency Available Soon Expensive

Comparison of SCT methods (HMS).

In 2017, a commercial sequencing platform (10x Genomics®) appeared, enabling single-cell sequencing technology
to enter the market. The 10x platform generally provides a number of cells in the 1,000~100,000 range. This level of
sequencing cell quantity can cover single-cell population types in most tissues.

In 10x Genomics, the barcoded gel beads meet and combine the cells and enzyme reagents in the first inlet of the
microfluidic double-cross junction system, and then they form GEMs packaged by oil surfactants at the second inlet
of the double-cross junction. Single-cell capture is achieved through this process.

10x is a reliable large-scale SCT technology and the most successful platform for commercialization so far. Currently,

the vast majority of single-cell research is done with 10x technology, and the production of 10x SCT datasets has
grown exponentially.
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The workflow of 10x SCT technology (10x Genomics).

3. Reverse transcription, library construction, and sequencing

In this step, polyA selection is typically used to enrich for mRNA, and modified Oligo (dT) primers are used for reverse
transcription. During reverse transcription, unique molecular identifiers (UMIs) are used to label individual
molecules. Afterward, the cDNA is amplified by PCR for library construction and sequencing.

Sequencing is commonly performed on the lllumina sequencing platform. The product selection depends on the
design and scale of the experiment (e.g. the NovaSeq 6000 supports large-scale studies, and the NextSeq 500 is
suitable for small experiments).

4. Upstream data analysis

In general, the upstream data analysis of SCT includes three steps: 1) file conversion (base detection), 2) sequence
alignment, and 3) quality control (QC) and filtering.
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== 1. File Conversion (*.bcl - *.fastq)

eConvert raw data BCL format to FASTQ format for
following analysis.

2. Sequence Alignment

eAlign reads with the reference genome.

= 3. QC & Filtering

eExclude non-cellular barcodes and low-quality cells
with multiple indicators.

The general steps of SCT upstream data analysis.

1) File conversion

The raw data files produced by sequencing are in Binary Base Call (BCL) format and need to be converted to the text-
based sequence file format (FASTQ) to complete subsequent data analysis.

2) Sequence alignment

It needs to map and align reads into the reference genome. It usually uses Burrows-Wheeler (BWA) aligner and STAR
alignment algorithm, which aligns splice transcripts to the reference genome. The read matrix (read counts) or count
matrix (gene matrix of molecular counts) (which depend on whether UMIs are used in the experimental protocol)
are generated by raw sequencing data, these matrices have cell barcodes/cell numbers as the horizontal heading,
gene names/gene list as the vertical heading and gene expression numbers as the digital matrix.

3) QC & Filtering

Before downstream data analysis, SCT data cell quality control needs to be done to ensure low-quality cells are
removed. For example, doublets/multiplets (co-capture of multiple cells) and empty droplets (capture of no cells)
can appear. This will result in the barcode incorrectly labeling multiple cells or zero cells, respectively. Read quality
control (reads QC) is usually performed by assigning reads to the corresponding cellular barcode and genome
expression. In the 10x protocol, this step is done with the Cell Ranger pipeline.

The QC indicators include the expressed gene number of each barcode (the number of positive), the total counts of
gene expression of each barcode (the total sum of each barcode, the count depth), the ratio aligned to
mitochondrial/ribosomal/hemoglobin genes, and the assessment of doublets, etc.?. Cells outside the standard
expected range represent low-quality ‘cells’ that do not require downstream analysis, or they represent unusual
cells that require further study. A high read ratio to mitochondria and ribosomes can be caused by increased cell
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apoptosis and it can be filtered out. The number of genes that exceed the standard expectations can be used to
detect and exclude doublets®. The QC indicators should be considered parallelly and determined coordinately, or it
can lead to misunderstanding of SCT expression information®.

The raw count matrices generally comprise 20,000~30,000 genes features. After the QC of cell states, transcript
level QC also needs to be conducted by setting a threshold to filter out genes that are not expressed in most cells
and won’t provide valuable information about cellular heterogeneity. The setting of the threshold needs to be
careful when it comes to datasets that have high dropout rates.

Cell types and states are diverse and different in datasets containing different heterogeneous cell populations, and
QC strategies should be evaluated based on the results and needs of downstream analysis®.
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THE END
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