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I 

Abstract 

When new solid formulations reach a stage of research and development (R&D), the 

number of experiments to be performed is generally several times higher than expected such 

that the R&D cost will surge. It is noteworthy that the quality evaluation standard for solid 

formulations and the dissolution test results take on critical significance to guiding the solid 

formulation research, whereas the experimental phenomenon of dissolution is difficult to be 

fully observed by experimenters for the extremely long experiment time of at least 8 h. Thus, 

a system exhibiting prediction and phenomenon monitoring functions is developed and tested 

in this study to tackle down the above-described problems.  

First, a computer technology-based prediction system for the dynamic solubility of active 

pharmaceutical ingredient (API) is developed in accordance with the solid formulation R&D 

process, where a novel equation is employed, instead of polynomial regression. After the 

experimentally acquired dynamic solubility data are trained, the developed system is capable 

of predicting the dynamic solubility rate of API following the blade dissolution speed. 

Moreover, a novel tablet dissolution rate prediction system is built using artificial neural 

networks (ANN) and non-linear regression methods. Compare with SVM, ANN can offer a 

faster prediction speed and suitable for the future big data model. This system can predict 

dissolution rates with ANN and processing the prediction results based on two novel non-linear 

regression methods. Accordingly, the demanded system database becomes less than the 

orthogonal design. Compared with previously developed systems, the built system exhibits 

higher prediction precision with a less amount of training data. Besides, the system, based on 

the novel input data design, is enabled to use the data whose formulation composition 

resembles prediction composition. Furthermore, the input data screening function is introduced 

into the system based on the prediction function to avert the effect of experimental error.  



II 

Lastly, a phenomenon monitoring system covering a camera module and an image 

recognition module is developed to monitor the dissolution phenomenon of tablets during the 

dissolution test. The image recognition program based on the region growth, Hue, Saturation, 

and Value (HSV) is capable of capturing and pixelating tablets of different colors during their 

movement in the dissolution cup. To be specific, the camera module comprises a 

visible/infrared light camera and an infrared light source, such that the monitoring system is 

enabled to recognize tablets in dark and bright environments.  

Using ANN, non-linear regression, and image recognition methods, the dynamic 

solubility of API is predicted, the tablets dissolution rate is predicted based on a smaller 

database, and the real-time dissolution phenomenon is monitored in a wide variety of 

environments in this study. 
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Chapter 1 Introduction 

 

1.1 Background and Motivation 

Considerable resources (e.g., time and funding) have been invested in the research and 

development (R&D) of new drugs over the past few years, with the average cost worldwide 

(e.g., clinical costs) approaching RMB 15 billion [1]. Furthermore, all operating results fail 

due to uncertain and unpredictable clinical risks (e.g., whether new drugs can capture a 

large market share compared with conventional drugs). Thus, given R&D costs, the price 

of new drugs during the patent protection period tends to be extremely high. In contrast, 

generic drugs have significantly lower R&D costs since the cost of discovering a new API 

and conducting clinical trials can be saved (i.e., most generic formulations require 

bioequivalence tests, instead of clinical trials). The total cost is consistently less than RMB 

15 million [2]. Accordingly, numerous generic drugs have been developed after the patent 

of reference drugs expired. 

Generic drugs account for 95% of the drug market in China, 22.8% in Japan, and 18% 

in Europe. China’s quality control system in terms of generic drugs has been lifting several 

strict restrictions over the past few decades [3]. As a result, a considerable number of 

generic drugs exhibit poorer quality and efficacy than the reference drugs in the drug 

market. The China Food and Drug Administration (CFDA) has issued the “Consistency 

Evaluation of Generic Drug” guidelines for the improvement of the quality of generic drugs 

[4]. It is imperative for pharmaceutical companies to improve the quality of their products 

to be equivalent to the reference drugs. Only those formulations that pass the consistency 

assessment are allowed to be marketed. Accordingly, how to produce generic drugs 

exhibiting the same qualities and efficacies as the reference formulations has become a 

formidable challenge facing China’s pharmaceutical R&D industry.  
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Existing research on drug formulation has suggested that dissolution serves as a 

crucial indicator for quality assessment of new and generic drugs. Formulation technology 

has been confirmed as a critical step in pharmaceutical production, and the safety and 

efficacy of drugs are directly dependent on the effects of dynamic solubility on the 

bioequivalence of formulation products. Most inactive ingredients are naturally occurring 

substances (e.g., microcrystals and starches). They have complex functional structures 

where interactions occur (e.g., the inactive ingredients of spherical structures block the 

pores of the inactive ingredients of vesicular structures). Because of the complexity of 

factors affecting formulations, researchers tend to rely on their own experience instead of 

extensive calculations when designing experiments. Accordingly, experiments should be 

conducted to explore the best prescription amount and formulation process to ensure that 

the products have exemplary safety, efficacy, and quality control. However, most of the 

experiments conducted so far are unnecessary. 

Dose Disintegration and Dissolution Plus (DDD PLUS) [5], developed by Simulation 

Plus Company in the United States, is the most widely used software for predicting the 

dynamic solubility and dissolution rate of solid dosage forms. Major users include the US 

FDA, the Chinese CFDA and other government agencies, the Academy of Military 

Sciences, the National Nano Center and other scientific research institutions, as well as 

Sanofi, GSK and other leading international pharmaceutical companies. First, the types of 

solute and other experimental conditions are selected. Subsequently, the physical and 

chemical properties of the API (e.g., its solubility, particle size, crystal form, and moisture) 

are input. Next, the type and proportion of excipients in its database are selected. The 

process type should be selected, and the process parameters should be set. Using its 

database, DDD PLUS will predict dissolution profile for a given formulation, whereas this 

is not the result. Afterward, one or more sets of experimental data should be used to revise 
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the results for the final model, used to predict subsequent experiments. 

During the prediction of dynamic solubility and dissolution based on a large database, 

the DDD Plus prediction logic of in the practical project process does not capture all 

ingredients in the database, especially inactive ingredients. Most inactive ingredients are 

natural products exhibiting high molecular weight, such that their physicochemical 

properties are affected by molecular weight. For instance, the molecular weight of 

commonly used alginic acid ranges from 20,000 to 240,000 [6], such that the physical and 

chemical properties of products from different raw material manufacturers are different. In 

addition, the use is affected by the cumbersome processing steps. 

The trend line is a curve used by researchers to analyze the trend of the dissolution 

curve as a function of the dissolution rate at each time point. It aims to evaluate the ratio of 

the dissolution rate in each period scientifically. However, the long-term lack of relevant 

studies and lack of a relevant equation to fit the scattered dissolution data scientifically lead 

to the main method to fit the trend line is polynomial fitting [7]. 

A simpler forecast method is offered as a substitute for DDD Plus. Some research 

predicts the solution result by ANN or regressing. Although they have high prediction 

accuracy, the required input database exceeds the number of orthogonal experiments. Thus, 

although the prediction of Dissolution Result is theoretically possible, it cannot be used in 

practice. 

In addition to the dissolution curve, the dissolution behavior and disintegration time 

are also one of the main criteria for evaluating the dissolution. However, the dissolution 

test usually lasts 8-72 h and even longer for some delayed or controlled release tablets. 

Accordingly, few people observe the dissolution behavior, but they judge the dissolution 

behavior like the disintegration time by the dissolution curve. To solve the above-described 

problem, researchers record the dissolution process with a camera and analyze the images 
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with software (e.g., dissoGUARO PRO) to generate a volume change curve [8]. However, 

software (e.g., dissoGUARO PRO) fails to analyze the volume change of moving objects 

[8], such that the tablet with iron wires should be fixed and analyzed, whereas this method 

significantly affects the process and results of the dissolution experiment. Besides, the 

dissolution behavior should be recorded in advance and then analyzed using software, it is 

unlikely to monitor the dissolution behavior in real time and give a dynamic report. For 

some photolabile tablets, the monitoring process should be conducted under shading 

conditions. In existing research, red light has been adopted to reduce the effects of light on 

tablet stability, whereas several risks remain. 

 

 

Figure 1.1 Structure of Research 
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1.2 Problem Statements 

1.2.1 Problem 1: API Dynamic Solubility Parameter 

DDD PLUS, extensively used in both companies and governments, is the most 

popular software for dynamic solubility prediction [5]. However, due to algorithm 

limitations, complex operations and parameter inputs are required for prediction making, 

which greatly increases the labor cost of the experiment. Besides, the existing trend line 

formulas are derived from simple polynomial fitting and fail to provide a scientific trend 

basis. 

1.2.2 Problem 2: Prediction of Tablet Dissolution Rate 

Despite the constantly conducted prediction research on drug dissolution by neural 

networks, an applicable neural network prediction method for drug dissolution has not been 

discovered thus far. The main reason is that previous works using ML, SVM require a large 

amount of input data to train the model, even larger than the number of orthogonal 

experiment design. 

1.2.3 Problem 3: Image Recognition in Dissolution Phenomenon Monitoring 

Image recognition has been extensively adopted to monitor the dissolution 

phenomenon, whereas it fails to monitor the dissolution phenomenon of the tablet in real-

time in practical application. The existing dissolution monitoring system by image 

recognition cannot monitor the tablets in motion, such that the tablets are only fixed at the 

bottom of the dissolution cup, such that the dissolution results are affected. In this case, an 

alternative software is needed for image analysis of the tablets. In addition, for the 

experimental monitoring of photolabile tablets, there is no special treatment for its light 

source, and the previous works only use one specific tablet as the test sample, failing to 

prove its applicability in other conditions. 
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1.3 Research Questions 

⚫ Question 1: How to predict API dynamic solubility in an easy way and derive a 

scientific equation to fit the trend curve? 

⚫ Question 2: How to reduce the ANN model prediction input data less than orthogonal 

experiment? 

⚫ Question 3: How to monitor the moving tablet dissolution phenomenon even generally 

and automatically in a lightless environment? 

1.4 Research Objective 

According to the above analysis, this project aims to develop a computer-aided system 

based on ANN and Image Recognition, as well as supporting hardware equipment, to 

predict and monitor the entire dissolution process. The whole project mainly includes three 

main research objectives, and Figure 1.2 illustrates each research objective relationship. 

1.4.1 Research Objective 1: To Develop an API Dynamic Solubility Prediction Model 

Using BPNN and RBFN 

The prediction method of the existing application software DDD PLUS is complicated, 

which requires users to input the parameters of solubility, particle size, crystal form and 

dissolution environment, and correct the model based on the experimental data before the 

prediction. Besides, the existing curve fitting method is also a simple polynomial fitting, 

not a scientific one. Indomethacin will thus be taken as an example for the prediction of 

dynamic solubility of API under different experimental conditions by ANN, and the input 

data will be only the experimental data. To ensure the accuracy of the experimental data, 

the input data will be first filtered by the model. Additionally, a more scientific curve fitting 

equation will be derived based on the classic equation as a trend line. 
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1.4.2 Research Objective 2: To Develop a General Formulation Dissolution 

Prediction Model 

ANN's prediction on solid formulation dissolution has not been applied to the practical 

R&D process. The combination of ANN and non-linear regression will be adopted to 

reduce the amount of input data for the prediction of the orthogonal experiment on the 

premise of prediction accuracy, such that it can be applied to the practical production, as 

well as the research and development. Furthermore, this study will realize the function of 

reusing related data by leaving a position for the potential factor and set it as 0. 

1.4.3 Research Objective 3: To Develop a General Tablet Dissolution Phenomenon 

Recognition System 

The method of region growth and image segmentation will be hereby used for image 

recognition of the tablet, and the volume change curve of the tablet will be calculated on 

the pixel area. Besides, a camera system, consisting of a photosensitive switch, an infrared 

light source and an infrared/transparent light camera, will be designed and installed on the 

dissolution apparatus. To meet the research and development needs of tablets in different 

colors, the system will also satisfy the automatic adaptation to the above-mentioned tablets 

by adjusting the parameter settings. 

1.5 Report Organisation 

In this study, the risk parameters in the formulation experiment were digitized 

according to the QbD risk assessment and input into the constructed computer model. 

Dynamic API solubility, component dissolution rate, and method dissolution behavior are 

three important quality indices for formulation research and development. Three PC 

models could be developed for this project to predict API dynamic solubility (Chapter 3), 

the rate of dissolution of formulations (Chapter 4), and system dissolution behavior 

(Chapter 5). In general, this model falls divided into three parts: 
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Figure 1.2 Structure of Report Organization 

 

Chapter 3 refers to the prediction of the dynamic solubility of API under different 

conditions and the facilitation of the API solubility study at the pre-preparation stage. 

Chapter 4 is to predict the dissolution profile when the formulation is screened and 

optimized. Under the insufficient input data, the results can be predicted using algorithms; 

when the prescription excipients are fine-tuned, the previous similar data can still serve as 

input data to train the model. Moreover, a data filtering function is substituted into the 

model to ensure the reliability of input data and avoid the input of abnormal data caused 

by experimental mis operation. Using the above-described system, the requirement of input 

data is controlled in orthogonal design number. 

Chapter 5 is referring to using image recognition technology to monitor the dissolution 

behavior in the dissolution process. In general, it takes a long time (over 8 h) to conduct 

dissolution experiments. During the experiment, most of the time was unsupervised. Thus, 

it is difficult to monitor the experimental phenomena. The image recognition program and 

equipment we designed can recognize the moving tablets volume change and analyze the 
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phenomenon according to the characteristics of various dissolution behaviors in real time. 

Thus, the volume change curve, the video results, and the analysis results of the system's 

dissolution behavior can be obtained. Moreover, the image recognition system exhibits a 

night vision function, such that the dissolution behavior can be observed and analyzed 

under shading conditions. 
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Chapter 2 Formulation Research of New Drugs: 

Trends and Issues 

 

2.1 Related Projects 

2.1.1 DDD Plus 

DDD Plus refers to an advanced computer program which is adopted by 

pharmaceutical scientists to simulate the disintegration of drugs in vitro and the dissolution 

of active pharmaceutical ingredients and excipients under diverse experimental conditions 

[9]. In general, it has been applied to the research on disintegration, dissolution patterns, 

and active ingredients of dosage forms. It is noteworthy that a single calibration experiment 

should be performed in the novel API form. Subsequently, DDD Plus is adopted to predict 

the effect of formulation changes or experimental parameter changes on the dissolution rate, 

such that accurate dissolution and disintegration rates can be provided. Moreover, using 

conventional trial-and-error methods is not long the only way to determine the final 

formulation [5, 10]. 

2.1.2 ANN in API Dynamic Solubility 

Existing reports have suggested that nearly 40% of the market approved drugs and 

approximately 90% of compounds failed at the stage of research and development due to 

the poor dynamic solubility [11, 12]. Extensive studies have suggested that the poor 

aqueous solubility is a critical limitation against drug bioavailability [13]. Thus, existing 

research on the dynamic solubility of the drug with a low aqueous solubility is considered 

a significant step of drug research and development. In 2017, Safa has investigated the 

effect of different solubilizers on the dynamic solubility of indomethacin using ANN and 

well predicted its dynamic solubility at different solubilizer concentrations [14]. However, 

different rotational speeds of the stirring paddle should be explored to obtain the optimal 
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dissolution profile resolution in the process of developing the dissolution method [15]. 

Accordingly, an ANN model will be built in this study to predict the indomethacin dynamic 

solubility at different blade speeds. 

2.1.3 ANN in Formulation Dissolution Prediction 

Computational method serves as vital alternative to the experimental method. 

Machine learning algorithm is adopted to predict drug solubility [17] through  the analysis 

and calculation of drug sequence data [16]. In general, commonly used machine learning 

algorithms comprise the support vector machine [18], neural network algorithm [19], 

random forest [20], and so forth. CCSOL [21] refers to an SVM-based prediction tool 

established by FEDERICO et al. in 2012. Besides, it was first proposed to use 

hydrophobicity, β folding, and α helix as the main features. PaRSnIP [22] refers to a tool 

established by REDA et al. in 2017. Moreover, existing research has suggested that a high 

proportion of exposed residues shows a positive correlation with drug solubility, whereas 

tripeptides comprising multiple histidine and tripeptide fragments are negatively correlated 

with drug solubility. SOL pro [23] extracted 23 groups of features from the first-level 

sequence for training the two-stage support vector machine (SVM) architecture. 

Furthermore, PROSOII [24] refers to a second-level logical classifier with modified 

Cauchy kernel probability density window model employed by PAWEL et al. However, 

SVM model has served as a classifier in most existing research, thus considerably limiting 

the processing ability and slow speed for big data. Deep learning has been confirmed as the 

core field of artificial intelligence technology thus far [25]. The deep learning model is 

capable of obtaining more nonlinear relations compared with "shallow learning" (e.g., 

SVM) [26]. Convolutional neural network is recognized as one of the crucial frameworks 

of deep learning. In addition, it has been extensively applied to image detection [27], face 

recognition [28], and audio retrieval [29], and it has achieved favorable results. 
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Nevertheless, it has been rarely applied to the research field of drug solubility prediction. 

SAMEERKHURANA et al. [23, 30, 31] of MIT built the DeepSol prediction model in 

2018. One hot was primarily adopted to encode drug sequences, and 21 x 1200 feature 

matrix was developed. A shallow parallel convolutional neural network model with seven 

convolution kernels of different sizes was built to predict drug solubility. Arthur Manda 

[32] predicted the dissolution release at different formulation component ratios using BP 

and Broyden-Fletcher-Goldfarb-Shanno (BFGS) 57 training algorithm, such that a more 

effective result was achieved than the RSM method. However, the input data of this method 

is also over orthogonal design. 

The formulation is developed to conform to the needs of treatment or prevention in 

accordance with specific dosage form requirements. A formulation refers to a medicine that 

can be finally provided to the subject for use. The formulation has different dosage forms 

(e.g., tablets, pills, powders, tinctures, patches, injections, aerosols, sprays, ointments, and 

suppositories). Tablets are employed as the main dosage research of this project [24]. 

This project places a major focus on the prediction of formulation dissolution result 

during the changing of formulation composition. Table 2.1 presents the recent research 

comparison. 
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Table 2.1 The comparison of relevant projects 

Projects ANN model 
Regression 

Method 
Input and output 

Amounts of 

Parameters and 

Samples 

This project 

ANN with 

back 

propagation 

net work 

EDRM and 

RLRM 

Input: The factors of tablets 

and the time points of 

dissolution. 

Output: Dissolution result 

in every time points. 

 

21 samples, 7 

parameters. 3 types 

of formulation 

composition. 

Yixin Chen’s 

Project [33] 

No algorithm 

showed in the 

paper. 

The average value 

of 10 times 

prediction 

Input: The factors of 

Tablets 

Output: dissolution result 

of a single time point 

 

22 samples 4 

parameters 

Jothi G. 

Kesavan’s 

Project [34] 

 PROC REG 

Input: hardness, friability, 

thickness, Output: 

disintegration time 

 

23 samples ， 3 

parameters 

Uttam 

MANDAL’s 

project [27] 

 

ANN Using 

Multilayer 

Perceptrons 

Higuchi equation 

Input: The composition of 

Tablets 

Output: Dissolution Result 

of a single time point. 

 

13 samples ， 3 

parameters 

Arthur 

Manda’s 

Project [32] 

ANN using 

BP and BFGS 
 

Input: ratio of ingredient 

component 

Output: Dissolution Result 

of different time point 

29 samples, 7 

parameters 

 

As depicted in Table 2.1, most regression methods fail to meet the stability 

requirement of prediction results due to the prediction times and the regression method. In 

this project, two methods cover the function of screening abnormal prediction result before 

regressing. In contrast, this project employs small amount of input data while achieving 

accurate prediction. Moreover, there are three types of formulation composition in this 

experiment. Despite the change of the formulation composition in the model, the relevant 

experimental data remains valid. 
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In an experiment process, experimental design serves as a vital optimization. In the 

design and production of experiments, researchers are required to predict the next step of 

the planned process in the following experiment and then perform experiments to decrease 

the number of experiments and increase the efficiency of the quantity project based on the 

experiments. However, human prediction requires a considerable amount of experience, 

and its results also have partial results prediction, so it is impossible to predict the 

possibility successfully. Optimization requires 100 or more experiments to complete, so 

researchers cannot import massive data for analysis [20]. 

Existing formulation prediction software mainly uses linear regression algorithms or 

ANN for calculation. For the simulation of the dissolution of the formulation, accurate 

prediction can be achieved when the data difference is not significant. However, when the 

data changes significantly, its accuracy will be reduced. Secondly, the existing formulation 

prediction software needs to input a considerable amount of data to fit the curve before 

each prediction, perform the curve correction automatically or manually, and then start the 

prediction. However, because the linear regression algorithm cannot solve the non-linear 

problem of the dissolution of the preparation, there is always a bottleneck in prediction 

accuracy. When it reaches a certain level, the accuracy will not increase even though the 

amount of input data is increased. For some applications of AI used in formulation 

prediction, they always use a considerable amount of data to train the model. Then they can 

receive a prediction result from the model. The problem is elucidated as follows: the project 

is nearly complete when the experiment result reaches that amount [21]. The prediction 

becomes meaningless. 

Recent research [19, 35-48] has estimated tablet dissolution rates using ANNs, 

whereas none of the above-mentioned ANNs have resolved the issue of excessive input 

data, such that they become ineffective for pharmaceutical R&D. 
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In this project, machine learning methods are applied to artificial intelligence, and a 

neural network is adopted to address nonlinear problems and build a mathematical model 

and train the model with the experimental data. In this project, all the factors in the 

experiment, including prescription ratio, preparation process parameters, equipment 

parameters, and batch size, are digitized. Compared with conventional linear prediction 

methods, this method requires a considerable amount of known data for training, but the 

requirements for training data are entirely different. The required training data should only 

be the preparation development data regarding the prediction (e.g., the formulation data 

adopting the same or similar excipients as the target formulation, or those employing the 

same or similar process as the target formulation). Furthermore, the system can become an 

"omnipotent wise man" under the training of high-throughput data. The trained model is 

capable of predicting any relevant formulation variety under the premise of a small number 

of experiments.  

This project features the constant effectiveness of predicting the results through 

algorithms even in the case of insufficient input data. To collect more data during the 

practical applications, a method is correspondingly designed in this model when the 

prescription excipients are fine-tuned. The previous similar data can still be used as input 

data to train the model. In addition, potentially existing problems in future high-throughput 

data input are also studied. First, since there is a considerable amount of data, abnormal 

data arising from operator errors and other reasons will be inevitably generated. 

Accordingly, the automatic data input method of this project is optimized, and artificial 

intelligence methods are adopted to detect input data and support the manual or automatic 

screening functions. 

2.1.4 Image Recognition in Dissolution Monitoring 

Image recognition technology serves as a critical tool to monitor different 
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experimental phenomena in the absence of experimental personnel. Recording and analysis 

of dissolution test videos are for the study of tablet behavior during the dissolution test. In 

Tjaša Felicijan’s study [8], an iron wire was adopted to fix the tablet in the bottom of 

dissolution cup. Subsequently, a 10-second video of the dissolution process was recorded 

at the respective sampling point. Next, the video was fed into the software named disso 

GUARO PRO to reduce the noise of particles in the dissolution liquid prior to the 

calculation of the relative volume of the tablet using Microsoft PaintTM. The photo 

instability tablets were recorded using a red-light source, and fixed tablets are capable of 

providing a stable image to capture but may affect the dissolution result. Besides, the real-

time monitoring cannot be achieved by recording the video and then inputting it into other 

software, such that the monitoring also becomes more complicated. The red-light source is 

capable of basically solving the recording of photo instability tablets behavior, whereas 

infrared ray with lower light particle energy is a preferred choice. Wei Li [49] also recorded 

the dissolution test with a camera. Yutaka Morita [50] determined the trim size of tablets 

with three tablets fixed in the bottom of dissolution cup by an iron wire. A camera on the 

top of a dissolution cup was adopted to record changes on the surface of the above-

described three tablets, and the space between the above-mentioned three tablets was used 

to calculate the area changes of tablet surface. Nevertheless, both the tablet fixing and the 

multi-tablets dissolution tests were limited following the guidance of drug administration 

in all countries. The overall design of the monitoring dissolution equipment was conducted 

in accordance with Chinese patents 201721009959 [51]. However, it functions rather 

simply, only equipped with the functions of real-time monitoring and video recording. In 

addition, the above-described two designs also fail to monitor the dissolution appearance 

of photolabile drugs under night vision. Kazarian and van der Weerd [52] explained the 

physical changes of hydroxypropyl methylcellulose (HPMC) and Buflurdil pyridinal 
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phosphate tablet during the lysis of the specially designed cells using simultaneous 

macrophotography and Fourier transform infrared spectroscopy attenuated total reflection 

(FTIR-ATR) imaging. By utilizing macro photography alone, changes in tablet appearance 

can be observed, but the substance concentrations cannot be quantified. However, by 

simultaneously employing FTIR-ATR imaging, both the water immersion and the drug 

concentration at different locations of the tablet were quantified, thus showing the 

correlation between the visually observed fronts (i.e., gel formation front and erosion front) 

and different yield of water. Morita et al. [53] also analyzed the disintegration time of 

rapidly disintegrating tablets with a camera. Tres et al. [54] adopted photographic images 

of the dissolution process in specially-designed flow cells to observe the tablets containing 

varying amounts of felodipine, a drug less soluble in water. To be specific, tablets with a 

small drug content dissolved completely. Besides, for the tablets with large drug content, 

they had the same appearance prior to the dissolution, but decreased in the tablet size after 

the initial swelling. Cao et al. [55] investigated the changes of photographic images with 

time in the research on the release of HPMC-coated tablets with a camera on the side of 

the dissolution vessel in a USP paddle apparatus. The initial swelling of the photographic 

images and the subsequent disintegration of the coating tablet show a correlation with 

favorable drug release. Tieu et al. [56] provided the side and bottom views of the dissolution 

vessel with a camera to evaluate different potentials. On that basis, the dissolution process 

can be monitored via the video. Besides, a conclusion is drawn that the camera is capable 

of easily evaluating the presence or absence of a tablet and its location in the dissolution 

vessel. Furthermore, they recommended the application of cameras in the preparation of 

formulas while studying the camera recordings of the dissolution systems under different 

vessels, vessel heating types, and camera angles, so as to evaluate the use of video 

surveillance in several devices.  
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The drug release process is controlled by two mechanisms of the dissolving drugs, 

namely disintegration and erosion, which often occur simultaneously [57-59]. Drug 

solubility affects the gel properties, and drug release and poorly soluble drugs reduce the 

entanglement of the polymer chains, thus reducing the gel strength [60, 61]. Thus, erosion 

turns out to be the main release mechanism. For the highly soluble drugs, the release from 

the matrix is considered primarily diffusion controlled. Furthermore, the highly soluble 

drugs may serve as a pore former in the gel, such that the perviousness of water can be 

enhanced. Moreover, they can be considered additional permeability contributors, such that 

the growth of the gel layer can be boosted [62]. 

 

Table 2.2 The comparison of related projects. 

Projects Novel Points 

This project 

1. Image recognition is adopted to record the pixel to calculate 

volume change of tablet. The model is capable of 

automatically tracing the tablet. 

2. Based on the volume change of disintegration and corrosion 

phenomenon, the system can give a result of phenomenon by 

a decision tree. 

3. To address the recording problem of the phenomenon of light 

unstable drugs, the camera in the system has the recording 

function under infrared light. Besides, some infrared lights 

are installed on the camera. 

Comparison of Related Articles 

Tjaša Felicijan’s 

Project [8] 

1. Use red light to record light unstable tablets. 

2. The tablet was fixed in the bottom of dissolution cup by 

using an iron wire. (It is already against the guidance of 

dissolution test). 
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3. Record the 10 seconds video of dissolution at the respective 

sampling point, then put the video into the dissoGUARO 

PRO software to reduce the noise of particles in the 

dissolution liquid. Then use Microsoft Paint to calculate the 

relative volume. 

Yutaka 

MORITA’s 

Project [50] 

1. Three tablets were fixed in the bottom of dissolution cup by 

using an iron wire. (It is already against the guidance of 

dissolution test). 

2. Use a CCD camera to record the 3 drugs surface changing of 

tablet. (Normally, in the dissolution test, one dissolution cup 

only allowed one tablets) 

3. Use the space between the above-mentioned 3 tablets to 

calculate the area changing of tablet surface. 

WEI LI’s Project 

[49] 
Just use camera to record the phenomenon of dissolution test. 

Conclusion 

1. None of the methods in the articles can track the dissolution 

behavior in real-time and give the results in real-time. 

2. In addition, only one article considers the dissolution test of 

photosensitive drugs. However, it still uses visible light. The 

infrared light source in this project has less influence on light 

unstable drugs. 

3. Both methods of analyzing tablet changes require a fixed tablet. 

In this project, the image recognition system will track the tablet. 

It can be tested whether the tablet is stationary or moving in the 

water. 

Comparison of Related Patents 

patent number 

201721009959 

[51] 

This utility model is correlated with a dissolution instrument 

monitoring system that comprises a camera module and a 

monitoring record host. The camera module covers a bracket, a 

camera, a universal connector, a switch, as well as a network cable; 
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the bracket includes an upper beam, a column, and a supporting foot, 

wherein a universal connector is installed on the lower surface of the 

upper beam, and the universal connector is then connected to the 

Camera connection, the network cable connects the camera and the 

switch. It has a network cable and a power cord from the switch to 

the monitoring host. The upper beam of the support is selected from 

a straight shape, a concave shape, or a back shape. The upper beam 

exhibits a hollow structure, and the network cable is routed from the 

cavity inside the upper beam. It does not take up the area of the 

experimental table. Besides, there is no messy cable, and the 

operation of the experimenter is not affected. Even if the solution of 

the dissolution medium containing salt is sprinkled on the 

experimental table, the camera and network cable will not be 

corroded. It is not accessible to damage and has a long life and good 

versatility. The system can carry out real-time monitoring while 

storing and recording videos. 

Conclusion 

The patent has conducted the overall design of the 

monitorable dissolution equipment. Nevertheless, its function is 

relatively single, which merely comprises real-time monitoring and 

video recording functions. Moreover, the above-described two 

designs are also unable to monitor the dissolution appearance of 

photolabile drugs under night vision. The dissolution monitoring 

system designed in this project can monitor the dissolution 

appearance under visible light conditions and monitor the 

dissolution appearance of some photo-labile agents under shading 

conditions. Furthermore, the system performs image recognition 

based on the volume and shape changes of the tablet during various 

dissolutions and records its volume changes. Subsequently, a curve 

is drawn, and which dissolution behavior it belongs to and which 

dissolution stage it belongs to are determined at the respective time 

point. 
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This study aims to offer a dissolution phenomenon behavior system using image 

recognition to record video and use the pixel area to calculate the tablet volume change. 

Besides, the model can automatically trace the tablet. The system, following the volume 

change of disintegration and corrosion phenomenon, employs decision tree method to give 

the results of phenomena. The camera in the system exhibits the recording function under 

infrared light to address the problem of recording the phenomenon of light unstable drugs. 

Furthermore, some infrared lights are installed on the camera. 

2.2 Computer Science and Technology 

2.2.1 Artificial Neural Networks 

Given the potential of neural networks to replicate the human brain's ability to 

assimilate instances and make decisions with incomplete information, they have been 

recognized as one of the most significant existing computing tools by scientists and 

engineers over the past few years. ANN technology can simulate the pattern recognition 

ability of the neural network of a human brain and simulating the adaptation of the brain to 

new situations. Likewise, in terms of a single neuron in the brain, artificial unit neurons 

receive inputs from numerous external sources, process the information, and make 

corresponding decisions. The ANN comprises many processing units (PE) and artificial 

neurons. The strength of the connection among all units is determined by the coefficient or 

weight. The ANN simulates the learning and generalizing behaviors of the human brain 

through data modeling and pattern recognition of complex multi-dimensional problems. 

The significant difference between the ANN model and the statistical model is explained 

as follows: the former can generalize the correlation between both the independent and the 

dependent variables without a specific mathematical function. Accordingly, ANN excels in 

addressing nonlinear problems in multivariable and multi-response systems (e.g., the 

spatial analysis of quantitative structure-activity relationships in pharmacokinetic research 
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and structure prediction in drug development) [63-66]. 

2.2.2 Back Propagation 

In back propagation (BP) networks, information only travels forward with layers as a 

medium, and it is not allowed to flow backwards. Errors obtained as the divergence 

between the output figure and the target value will be propagated back in the training 

process. On that basis, the errors can be reduced in the next iteration by changing the weight. 

Network training refers to find the combination of weights with the minimum number of 

errors, and the trained network exhibits a function to estimate a given model. In general, 

the error reducing function of the network is expressed in Eq. 2.1 as follows [67]. 

 

 

Figure 2.1 The representative BP network with one hidden layer. 

 

 𝐸 =
1

2
∑ ‖𝑜𝑖 − 𝑡𝑖‖

2𝑃

𝑖=1
 (2.1) 

Where Oi, ti, and p denote the number of output, target, and input modes, respectively. 

Learning is conducted through error backpropagation in the BP network, in which the 
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descent gradient method is adopted. The weight is regulated by Eq. 2.2. 

 𝑤𝑖𝑗(𝑡 + 1) = 𝑤𝑖𝑗(𝑡) − 𝜂
𝜕𝐸

𝜕𝑤𝑖𝑗
+ 𝜇𝛥𝑤 (2.2) 

Where η represents the learning rate coefficients, μ denotes the momentum terms, and 

𝛥w signifies the weight change of the previous layer. The values of η and μ are between 0 

and 1. Besides, the BP network is presented in Figure 2.1 [67]. 

2.2.3 Radial Basis Function Network 

 

  

Figure 2.2 The RBFN structure 

 

RBFN Theory has been extensively elucidated in existing research. In this thesis, the 

basic principle of RBFN is briefly introduced. Figure 2.2 presents the main network 

structure including the input, hidden, and output layers. Instead of processing information, 

the input layer diffuses the input vectors to the hidden layer, where there are several RBF 

units and biases. The respective hidden layer unit is endowed with a radial fundamental 

function, a relatively central position, as well as a suitable length. Neurons in the hidden 
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layer apply the radial fundamental function as a non-linear transfer function to determine 

input information [68]. 

2.2.4 Hue, Saturation, Value (HSV) 

HSV, which was also named Hexcone Model by A.R.Smith in 1978, is a color space 

created by the properties of colors [69]. 

(a) Hue (H) 

The angle degree is applied to measure the hue. According to the wavelength of the 

color, the range of value is between 0° to 360°. The value of hue was calculated 

anticlockwise. For example, red is 0°, green is 120°, and blue is 240°. 

(b) Saturation (S) 

Saturation is a value of the degree of color close to the spectrum. Colors are the result 

of mixing spectrum color and white color. The saturation means the percentage of spectrum 

color. 

(c) Value (V) 

Value (V) denotes the brightness of colors, which is associated with the radiance of 

light. The usual range of value is 0% (black) to 100% (white). 

2.2.5 Morphological Transformations 

Morphological transformation can be interpreted as a simple transformation based on 

the shape. The objects detected through morphological transformations basically cover 

binarization images, or color images sometimes. In general, there are two inputs and one 

output involved in the morphological transformation, i.e., the original image and the core 

as the inputs in the image after morphological transformation as the output [70]. 
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2.3 Pharmaceutical Technologies 

2.3.1 Tablet 

In general, most tablets in daily use are regular oral solid tablets, and there are also 

other types of tablets (e.g., lozenges, sublingual tablets, oral patches, masticatory tablets, 

dispersible tablets, soluble tablets, effervescent tablets, vaginal tablets, vaginal effervescent 

tablets, sustained-release tablets, controlled-release tablets, enteric-coated tablets, and oral 

collapse tablets) [71]. 

Tablets are usually subject to the technological processes (e.g., wet granulation, dry 

granulation, and powder direct granulation). The properties of the API and formulation 

technology process make it inevitable for the dissolution behavior of tablets to differ from 

each other. There are two dissolution phenomena in standard tablets under normal 

circumstances (i.e., disintegration and corrosion). In general, the above-mentioned tablets 

are immediate-release formulations and their inactive pharmaceutical ingredients contain 

disintegrating agents, such that the disintegration and release of drugs are facilitated. For 

corrosion, the inactive pharmaceutical ingredients basically comprise weaker or stronger 

adhesives without disintegrating agents [71]. 

2.3.2 Dissolution Test 

The absorption of drugs with active pharmaceutical ingredients is dependent on their 

dissolution or release from the formulations, their dissolution under physiological 

conditions, as well as their infiltration into the gastrointestinal tract. Dissolution takes on 

critical significance in the absorption of drugs, and the vitro dissolution test may predict 

their vivo behaviors. Given the above-mentioned analysis, a vitro dissolution test method 

has been developed for active ingredients. [72] 

Two basic vitro dissolution measurement techniques (i.e., the stirring beaker method 

and the flow process) have been developed over the past four decades. Baskets and paddles 
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have been confirmed as the most applied dissolving devices worldwide. In existing research, 

the blade method has been employed with the dissolution cup simulating stomach, basket 

and paddle simulating gastrointestinal peristalsis, and dissolution medium simulating 

gastric juice. The parameter of the dissolution cup has been considered, and the digestion 

device is illustrated in the following figures [72]. 

The parameter of dissolution cup will be considered.  

 

Figure 2.3 The internal parameter of the dissolution cup, affecting the solvent flow 

distribution. 

 

Figure 2.4 The parameter of the blade, the decisive factor of the solvent flow rate. 
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Figure 2.5 The location (height) of the blade, affecting the flow rate distribution in the 

dissolution cup 

2.3.3 F2 Similarity 

F2 Similarity Factor [73, 74] is a reference value for evaluating the similarities 

between two dissolution curves under the same dissolution conditions. Under the 

computing principle, Rt denotes the dissolution amount of reference formulation; Tt, the 

dissolution amount of the self-study sample; (Rt-Tt)2, the square of the difference value 

between the dissolution amount of the reference formulation and that of the self-study 

sample at the same time point. Notably, in the next step, the sample number (n) is divided 

directly. Thus, the 10% deviation represented by F2=50 refers to the indicated dissolution 

of 10% of the average difference between the sample points, i.e., the average deviation, 

rather than the average relative deviation. Table 2.3 lists the supporting data. 

 

Table 2.3 The contrast of average deviation and factor F2. 

Average Deviation 2% 5% 10% 15% 20% 30% 50% 70% 100% 

F2 Factor 83 65 50 41 35 26 15 8 0 

 

The F2 Similarity Factor is determined through the reciprocal transformation of the 

logarithmic square root of the total square errors. Similarities between the two drug release 

curves are elucidated in the following. 
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Where n represents time points; Rt denotes the percentage of dissolution of drug A (as 

reference drug); Tt expresses the percentage of the dissolution of drug B (as experimental 

drug). The value of F2 should range from 50 to 100 for homologous curves and the equation 

of F2 is presented as follows.  

The equation of F2 is illustrated below, 

𝐹2 = 50 𝑙𝑜𝑔 {[1 +
1

𝑛
∑ (Rt − Tt)2𝑛

𝑖=1
]

−0.5

× 100}         (2.3) 

Where Rt denotes the dissolution rate of the reference formulation; Tt represents the 

dissolution rate of the experimental sample; (Rt-Tt)2 expresses the square of the difference 

value between the dissolution amount of the reference formulation and that of the 

experimental sample at the same time point; n is the number of samples [75]. 

2.3.4 Dynamic Solubility 

Dynamic solubility indicates the mass curve of the solute dissolved in a known 

quantity of solvent under certain conditions. The dynamic solubility of API serves as a vital 

parameter affecting the dissolution rates of insoluble drugs [76].  

2.3.5 Biopharmaceutics Classification System (BCS) 

Biopharmaceutics Classification System (BCS), a guiding framework issued by the 

Food and Drug Administration (FDA) in the United States, has evaluated the API from 

three aspects (i.e., permeability, solubility, and immediate release), as demonstrated below 

[77]. 

Table 2.4 The BCS classes 

Class Ⅰ High Solubility and High Permeability 

Class Ⅱ Low Solubility and High Permeability 

Class Ⅲ High Solubility and Low Permeability 

Class Ⅳ Low Solubility and Low Permeability 
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2.3.6 Disintegration 

Disintegration refers to the physical dissolution of a medicinal product before its 

absorption while disintegration time denotes the time required to disintegrate pills, tablets, 

and capsules into granules under certain conditions. The latter is one of the main factors 

that affect the dissolution of oral drugs [78,79].  

2.3.7 Corrosion 

Corrosion refers to the gradual disappearance of a non-disintegrating solid 

formulation during dissolution. In general, it occurs during the dissolving of sustained-

release formulations [80]. 

2.4 Pharmaceutical Instruments 

2.4.1 High Performance Liquid Chromatography (HPLC) 

High performance liquid chromatography (HPLC), i.e., a crucial branch of 

chromatography, employs liquids as the mobile phase and adopts the high-pressure infusion 

system to pump the single solvents with different polarities or mix solvents with different 

proportions into a stationary phase chromatographic column. The respective component in 

the column is separated and subsequently enters the detector for testing, such that the 

sample analysis can be conducted. The above-described method has served as a separation 

and analysis technique in a wide variety of areas (e.g., chemistry, medicine, industry, 

agriculture, commodity inspection, and law inspection) [81].  

2.4.2 Ultraviolet-Visible 

Ultraviolet-Visible (UV-VIS) Spectroscopy, commonly applied for qualitative and 

quantitative analysis, can measure the absorbance of a substance at a specific wavelength 

or in a specific wavelength range in the ultraviolet region. 

Ultraviolet spectra are the absorption spectra of substances in the near-ultraviolet and 



30 

visible regions of 200~400 nm and 400~850 nm, respectively. In general, UV-VIS 

spectroscopy is adopted to identify, inspect, and determine the drug content in the 

inspection range of 190~900 nm. Moreover, it applies to the analysis of traces and 

components with the sensitivity of 10-4~10-7g/ml or lower. 

The application of UV-VIS spectroscopy as an analytical method can be justified by 

two main reasons. The first is light absorption, i.e., the absorption degree of light by 

substances. From the perspective of electromagnetic waves, all electromagnetic waves are 

identical except for the only difference in their wavelengths or frequencies. The order of 

wavelengths from the shortest to the longest is R-rays, X-rays, ultraviolet, infrared, and 

microwaves. Energy exchange occurs when electromagnetic radiation source interacts with 

a matter. Spectroscopy can fall into absorption spectroscopy and emission spectroscopy in 

accordance with the matter conversion direction and radiation energy. When a sample is 

irradiated by an electromagnetic radiation source, its atoms or molecules will absorb some 

photons with suitable energy, while the absorption lines or bands will appear at the 

corresponding wavelength positions, such that the absorption spectrum is formed. 

Absorption spectroscopy refers to the quantitative, qualitative, and structural analysis 

employing the absorption spectra of substances. UV-VIS spectroscopy is a type of 

molecular absorption spectroscopy generated by the transition of outer electrons of atoms 

in a molecule. Ultraviolet absorption is primarily dependent on the electronic structure of 

the molecule. Accordingly, the ultraviolet spectrum is known as the electronic spectrum. 

The light absorbing degree of a substance is examined at different wavelengths. Absorption 

spectrum refers to a curve drawn with the wavelength as the abscissa and the absorbance 

as the ordinate. The wavelength range examined in the ultraviolet-visible region is called 

an ultraviolet-visible spectrum, abbreviated as an ultraviolet spectrum [82]. 
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2.4.3 Dissolution Tester 

The essential hardware components of the instrument are equipped with a computer 

image recognition system, natural light, infrared light, an IR/visible light camera connected 

to the PC host, a Water Bath Box system, a sampler, a removable window curtain, a 

dissolution cup, as well as an impeller with the motor control system and the temperature 

control system of dissolution by the host. 

In general, the determination methods of their dissolution and release fall into the 

basket, paddle, small cup, paddle dish, revolving barrel, flow pool, and simple 

reciprocating method in accordance with the different properties of solid formulations. To 

be specific, the basket, paddle, and small cup methods are the most extensively applied. 

Limited by the observation conditions, only the paddle and small cup methods are applied 

to the system proposed in this study [83]. 

A dissolution tester exhibiting an automatic sampling function is presented in Figure 

2.6 

 

 

Figure 2.6 A dissolution tester with a sampling function, with a dissolution tester on the 

left and a sampling instrument on the right. 



32 

2.5 Chapter Summary 

The dynamic solubility of API in different solvents serves as a critical parameter 

affecting the dissolution rate of the formulation. The most applied dynamic solubility 

prediction software is DDD Plus, which utilizes the linear regression method for 

calculation. However, the dynamic solubility data is often non-linear, hence this method 

cannot achieve accurate prediction. Moreover, after predicting the dynamic solubility, the 

software provides a curve fitting formula that is binomial regression, which is of no guiding 

significance. 

Existing methods of predicting dissolution curves based on computer models fall into 

two categories (i.e., to predict the dissolution results using neural networks and to predict 

the model through linear regression or formula calculation). However, all methods require 

a considerable amount of data to train the model. In contrast, the computer model method 

is provided with a ratio of factors to a sample size of 1:6.5, whereas that of the second 

method is 1:5.4 and 1:7.6. In the actual research and development process, the experimental 

design often follows the orthogonal design. For example, an orthogonal experiment with 4 

levels and 4 factors requires 16 experiments, while an orthogonal experiment with 3 levels 

and 3 factors requires 9 tests, indicating that the number of experiments required by the 

previous method has exceeded that of conventional orthogonal design. 

Moreover, the previous method could only predict a single prescription, and the data 

were not applicable when the prescription composition was fine-tuned. Furthermore, the 

input data have not been filtered in existing research, whereas unfavorable operational or 

experimental environments often result in the generation of abnormal data in the actual 

application process. Accordingly, the credibility of the data should be screened before they 

are input into the model. 

The existing dissolution behavior monitoring methods are divided into two types. The 
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first type is to video the dissolution process with a camera; so that the experimenter can 

analyze the experimental phenomenon by watching it; the second type is to record the 

dissolution process with a camera, and then process and calculate the images via software. 

Given the existing patents and articles, the second method has been applied to two projects, 

where the common problem is that the tablets fixed with iron wire will affect the dissolution 

results. The dissolution test of photosensitive drugs has been considered by merely one 

article, whereas it still utilized visible light. Moreover, the two dissolution behavior 

monitoring methods cannot track the dissolution test of the tablet in real time. 

Thus, this study will design a real-time and accurate dissolution appearance analysis 

system with automatic tracking and infrared recording functions using image recognition 

technology. 
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Chapter 3 Artificial Neural Network in Predicting API 

Dynamic Solubility 

 

3.1 Chapter Introduction 

In this chapter, an ANN model with a derived equation, instead of DDD Plus, is built 

to predict the dynamic solubility. Due to the effect of dynamic solubility on the 

bioequivalence of the formulations of drug products, formulation technology has been one 

of the most important steps of pharmaceutical production that directly affect the safety and 

effectiveness of drugs. Most of the inactive components are natural-occurring substances 

like microcrystalline and starch with a complex and functional structure, making it possible 

for them to have interaction effects (e.g., the inactive component with a ball structure plugs 

the hole of that with a vesicular structure). Given the complexity of factors on formulations, 

researchers are inclined to rely on their personal experience instead of extensive 

calculations while planning experiments. Thus, numerous experiments have been 

performed to investigate the optimal prescription volume and the formulation process to 

ensure the favorable safety, effectiveness, and quality control of the products, whereas most 

of which are indeed unnecessary and a waste of resources [84]. Currently, two methods are 

capable of predicting API dynamic solubility using ANN, i.e., the Back Propagation Neural 

Network and the Radial Basis Function Network. Furthermore, a newly derived scientific 

dynamic solubility equation is developed to fit the dissolution curve. 

3.2 Materials and Methods 

3.2.1 Materials 

Indometacin Powder [85] 
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Table 3.1 API parameters 

API Parameters 

API name Indometacin 

Full name 1-(4-Chlorobenzoyl)-5-methoxy-2-methyl-3-

indoleacetic acid 

CAS number 53-86-1 

Molecular formula C19H16ClNO4 

Structure formula 

 

External properties The white or yellow crystalline powder 

Molecular weight 357.78800 

Polar surface area (PSA) 68.53000 

Log P 3.92730 

Melting point 158~162℃ 

Crystal form 
All the APIs in this research are from the same 

batch, hence the crystal form is not considered. 

BCS classification Ⅱ 

Solution Parameters 

Solution name Pure water 

pH 7.0 

Temperature 37±0.5℃ 

Ionic strength N/A 

Volume 500 ml 
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3.2.2 Preparation of API Sample 

First, the Indometacin API was dried under reduced pressure at 60°C for 2 h and 

pulverized in a pulverizer for 30 sec. Then, the pulverized Tinidazole powder passed 

through an 80-mesh sieve. 

3.2.3 Assay for Indometacin API 

The standard substance was dried for 4 h at 105℃ to constant weight to prepare the 

standard solution preparation. 28 mg accurately weighted anhydrous substance dissolved 

into 100 ml methanol in a 100 ml volumetric flask. 5 ml methanol solution was injected 

into a 50 ml volumetric flask. Next, degassed pure water at pH 7.0 was added till the volume 

of the solution reached 50 ml. Afterward, the volumetric flask with the prepared solution 

was put into the ultrasonic mixer for 2 min. The obtained solution was the standard solution. 

Next, ultraviolet spectrophotometry was used to analyze the concentration of the 

sample. A quartz absorption cell filled with blank solvent was put in the ultraviolet-visible 

(UV-VIS) spectrophotometer to build a baseline, and the reference line was built using the 

same method. Furthermore, the absorption wavelength was determined at 320 nm. The 

quartz absorption cell was measured using the UV-VIS spectrophotometry with the 

reference solution.  

The above-described samples should be examined from low concentrations to high 

concentrations to reduce the experimental errors caused by the rest of the samples. After 

the respective measurement, the quartz absorption cell should be cleaned with pure water 

more than three times and then dried by lens paper. 

The absorbance of each sample at 320 nm was recorded and then calculated by 

Equation 3.1. 

 =𝑊𝑆 × [
𝐴𝑇(𝑛)

𝐴𝑆
+ ∑ (

𝐴𝑇(𝑖)

𝐴𝑆
×

1

90
)

𝑛−1

𝑖=1
] ×

𝑉′

𝑉
×

1

𝐶
× 90 (3.1) 

Where Ws denotes the standard weight, C represents the total mass of solute, At 
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expresses the reference solution absorbance at 320 nm wavelength, As is the sample 

absorbance at 320 nm wavelength, V’ is the volume of the reference solution, and V 

represents the volume of the sample solution [86]. 

3.2.4 Design of Experiment 

Step 1: Preparation of Indometacin sample. Six copies of 25 mg Indometacin API 

were weighed by analytical balance to ensure the samples' consistency. 900 ml degassed 

pure water at pH 7.0 was added to the respective dissolution cup to create a stable 

dissolution environment. 

Step 2: Dissolution tester parameter setting. The temperature of the system was set as 

37.5℃ to stabilize the temperature of the dissolution cup at 37±0.5℃. Six different rotation 

speeds of paddles were set in six parallel experiments (i.e., 25 rpm, 50 rpm, 75 rpm, 100 

rpm, 125 rpm, and 150 rpm revolution per minute) to design a gradient experiment. 10 ml 

of the sample was taken at 5 min, 10 min, 15 min, 30 min, 45 min, 60 min, 120 min, 240 

min, and 480 min to be filtered using 0.45 μm filtered hydrophilic film and then injected 

into the test tube. A 10 ml dissolution medium was introduced to the cup after sampling to 

keep the constant volume of dissolution medium. A total of six dissolution cups were 

employed in the respective parallel experiment to repeat this experiment six times to reduce 

the experimental errors.  

Step 3: Six prepared API samples were added from the top of dissolution cups during 

the dissolution test. After sampling, the test tube was covered by the parafilm to keep the 

samples from evaporating. 

3.2.5 Core Equation 

The core equation is derived to solve the academic gap in API dynamic solubility trend 

equation in curve fitting. 

⚫ Core Equation Derivation 
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The Noyes Whitney Equation: Nernst and Brunner proposed that during the 

dissolution process, a rapid equilibrium (i.e., saturation) is achieved at the solid-liquid 

interface and then diffusion occurs through a small diffusion layer of the stagnant solution 

to enter the bulk solution. In most situations, the diffusion through the diffusion layer is 

rate-controlled, such that the heterogeneous dissolution process is transformed into a 

homogeneous one. Thus, this model is also termed the movie model [87]. The dissolution 

rate can be expressed as follows:  

 
𝑑𝑀

𝑑𝑡
=

𝐷𝐴

ℎ
(𝐶𝑠 − 𝐶𝑡) (3.2) 

Herein, D represents diffusion coefficient while A denotes solid surface and h is 

diffusion layer thickness. 

 
ⅆ𝑄

ⅆ𝑡
= 𝐷𝐴

(𝐶𝑠−𝐶𝑏)

ℎ
 (3.3) 

When the volume of solvent (V) does not change dramatically during the dissolution 

process, the concentration in the volume solution could be expressed as follows， 

  𝐶𝑏 =
𝑄

𝑉
 (3.4) 

Herein, Q represents the amount dissolved while V denotes the solvent volume. 

 𝐶𝑏 =
4

3
𝜋𝜌(𝑎0

3−𝑎3)

𝑉
 (3.5) 

Hixson-Crowell cubic root law was initially obtained from the hypothesis that the 

dissolution rate and the surface area of spherical particles are in the direct radio. [88] 

Moreover, it can be obtained from a simple diffusion layer model. 

 𝑊1∕3 = 𝑊0

1
3⁄

− 𝑘1∕3𝑡 (3.6) 

 𝐾1∕3 = (
4𝜋𝜌𝑁

3
)

1
3⁄ 𝐷𝐶𝑠

𝜌ℎ
 (3.7) 

Herein, W denotes the particle weight at time t, W0 represents the initial particle 

weight, K1/3 signifies composite rate constants, ρ implies the density of the particle, N is 

the number of particles, D denotes the diffusion coefficient, CS represents the solubility, h 

is the diffusion layer thickness, and k’ represents a constant. 
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Wang-Flanagan Equation: By calculating the curvature of the concentration gradient 

of the diffusion layer around the spherical particle, Wang and Flanagan devised a general 

method for diffusion-controlled dissolution of a single particle [89]. 

 
𝐷𝐶𝑠

𝜌ℎ
𝑡 = 𝑎0 − ℎ 𝑙𝑛

ℎ+𝑎0

ℎ+𝑎
 (3.8) 

 
𝐷𝐶𝑠

𝜌ℎ
𝑡 = (

3𝑤0

4𝜋𝜌
)

1∕3

− (
3𝑤

4𝜋𝜌
)

1
3⁄

− ℎ 𝑙𝑛
ℎ+(

3𝑤0
4𝜋𝜌

)
1/3

ℎ+(
3𝑤

4𝜋𝜌
)

1/3 (3.9) 

Brooke Equation: Brooke obtained the precise equation of powder dissolution with 

logarithmic normal distribution based on the cubic root single-particle dissolution model. 

Although the calculation is complex, it can be accomplished by calculators using regular 

distribution tables [90].  

𝑾𝒕 = 𝐫𝒆
𝟑(𝝁+

𝟑𝝈𝟐

𝟐
)

(𝟏 − 𝑭 [
𝒍𝒏(𝝉) − (𝝁 + 𝟑𝝈𝟐)

𝝈
])

− 𝟑𝒓𝝉𝒆𝟐(𝝁+𝝈𝟐) (𝟏 − 𝑭 [
𝒍𝒏(𝝉) − (𝝁 + 𝟐𝝈𝟐)

𝝈
])

+ 𝟑𝒓𝝉𝟐𝒆
(𝝁+

𝝈𝟐

𝟐
)

(𝟏 − 𝑭 [
𝒍𝒏(𝝉) − (𝝁 + 𝝈𝟐)

𝝈
]) − 𝒓𝝉𝟑 (𝟏 − 𝑭 [

𝒍𝒏(𝝉) − 𝝁

𝝈
]) 

 𝐹(𝐱) =
√𝟐

𝟐𝝅
∫ 𝒆−𝒙𝟐/𝟐𝒅𝒙

𝒙

−∞
 

 𝛕 =
𝟐𝒌𝑪𝒔

𝝆𝒕
 (3.10) 

Herein, Wτ denotes the undissolved weight, μ represents the mean particle diameter, 

σ is its standard deviation, r = πρ N/6, CS signifies the particle solubility, ρ denotes the 

particle density, and k represents a constant. 

⚫ Derivative Equation 

The following equation is the derivative formula of the dynamic solubility of soluble 

solid elements. 

 𝐲 = 𝐦 + 𝟑𝐤(𝐱 − 𝐧) − 𝟑𝒌𝟐(𝒙 − 𝒏)𝟐 + 𝒌𝟑(𝒙 − 𝒏)𝟑, (3.11) 

when 
𝒅𝒙

𝒅𝒚
= 𝟎，y=Cs 
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This equation was derived by applying Hixson-Crowell cube root law and Nernst-

Brunner expression. Herein, n is the correction coefficient of the experimental environment 

influencing factor, k represents a constant concerning the physicochemical property and 

experiment conditions, and m denotes the correction coefficient of sample wetting. 

3.2.6 Curve Fitting 

Nowadays, people who engage in the research and development of solid formulations 

generally apply the dissolution curve to analyse the drug dissolution behavior. Under 

normal conditions, binomials tend to be selected as a trendline to guide the analysis. 

Nonetheless, with no scientific basis support, binomial formulas do not apply to the 

description of dissolution behavior. To reduce the experimental errors, the artificial model 

employs Equation 3.11 as a curve fitting formula, which more closely resembles the 

practical experiment formula. The fitting curve built by the model is shown as follows. 

 

 

Figure 3.1 The fitting curve with a limit of Equation 3.11 

 

As depicted in Figure 3.1, the fitting curve generated by the model is a regression 
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curve of scattering that follows Equation 3.11. In figure 3.1, x-axis “t” is dissolution 

time(hours), y axis “Dissolution” is percentage of API release. Accordingly, this model 

function can be utilized to address the problem of the dissolution curve trend line. 

3.3 Result and Discussion 

3.3.1 BPNN and RBFN Modeling 

There are typically three layers contains in an ANN model, including an input layer, 

hidden layers, and output layer. In this model, the input layer includes three elements which 

are time value of dissolution test, percentage of API concentration and blade speed. In the 

output layer, there is a neuron that represents the API dynamic solubility value. To avoid 

the problem of underfitting during the machine learning process, the number of neurons in 

the hidden layer should be large enough to solve the problem. On the other hand, too many 

neurons in the hidden layer may result in overfitting. Following the trial-and-error test, the 

number of neurons in the hidden layer has been determined as three. The ANN model 

structure is illustrated in Figure 3.2 below. 

 

Figure 3.2 The structure of ANN model 
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In Figure 3.2, the X1-X3 represent: X1, time value (minutes) of dissolution test.; X2, 

concentration of API, X3, blade speed; and H1-H3, neurons of Hidden Layer. The output 

is Y, which is the percentage of API released at the time points indicated in X1. 

A diagram of the model process is shown in Figure 3.3： 

 

 

Figure 3.3 ANN model process 

 

The input vector of these three feedforward neural network layers is 

1 2=(x ,x , ,x )T

nX  , and if 0 1x = −  is added to the input layer, the threshold value of 
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neurons in the hidden layer can be determined. Assuming that the hidden layer has a vector 

assume 1 2( , , , )mY y y y=  as a vector of the hidden layer, and 0 1y = −  was added as a 

vector to the hidden layer, the threshold value for the output layer should be 

1 2( , , , )T

iO o o o=  . The output vector of the target is 1 2( , , , )T

kd d d d=  , the weights 

between the input layer and hidden layer is 1 2( , , , )T

mV v v v=   and 
jv   is the 

corresponding weight vector of jth neuron in the hidden layer. 1 2( , , , )T

kW w w w=
 is the 

weight between the hidden layer and output layer 
( kw  is the corresponding weight vector 

of the kth neuron in the output layer.) 

Hence, in the input layer of the model the input is 
0

, 1, 2, ,
n

j ij i

i

net v x j m
=

= =  and 

the output is  ( ), 1,2, ,j jy f net j m= =  . Besides, the input of the output layer is 

0

, 1,2, ,
m

k jk j

j

net w y k i
=

= = , and the output is followed ( ), 1,2, ,j ko f net j i= = . 

Here, the continuous and derivable function (*)f  is the activation function which is 

the Sigmoid function given by 
1

( )
1 a

f a
e−

=
+

.  

Nevertheless, an error will appear between the actual output and the target output. The 

function of the error 
2

1

1
( )

2

i

k k

k

E d o
=

= −  is determined by the weight and threshold values. 

It is possible to improve the performance of the model by adjusting the value of these 

parameters. 

3.3.2 Data Prediction 

The same dose of indomethacin was used in this experiment to avoid the errors caused 

by inter-batch differences. Six rotation speed conditions were measured, i.e., 25 rpm, 50 

rpm, 75 rpm, 100 rpm, 125 rpm, and 150 rpm. The temperature condition was determined 
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as 37.5±0.5℃. Each experiment was repeated six times to reduce experimental errors. The 

experimental data were calculated by Equation 2.1 to obtain the F2 value. According to the 

United States of America National Food and Drug Administration (FDA) guidance, F2≥50 

indicates that the two dissolution curves are similar. The experimental result data is 

presented as follows: 

 

Table 3.2 The dissolution data of Indometacin in water 

Indomedacin Water 

Time (Minute) 25rpm 50rpm 75rpm 100rpm 125rpm 150rpm 

0 0 0 0 0 0 0 

5 0.25 0.36 5.07 3.50 5.47 4.23 

10 2.10 1.45 4.64 4.59 8.61 6.92 

15 4.28 3.51 6.29 6.72 11.62 9.30 

30 6.25 7.08 10.72 12.26 16.09 14.63 

45 7.24 10.48 14.15 16.95 20.28 18.18 

60 10.09 11.50 16.44 21.06 27.31 21.80 

120 14.44 16.49 22.94 28.67 29.96 29.55 

240 20.71 22.64 29.20 33.74 35.09 33.96 

480 29.14 33.52 35.59 38.60 40.09 40.97 

 

Figure shows the percentage of Indomedacin dissolved in the water in different time 

point under changed rotate speed condition. 
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Figure 3.4 The dissolution test results of Indometacin in water 

 

Five sets of the experiment data rather than the average value were randomly selected 

from six experiments and input into the model. Moreover, the data of group 6 was predicted 

by the model. We compared the above-mentioned data with the practical value, and the 

results are presented as follows: 
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Table 3.3 The comparison of real data, BPNN prediction data, and RBFN prediction data 

under 25 rpm/water condition 

Indometacin 25rpm water 

  Reference BPNN RBFN 

5min 0.25 0.88 0.57 

10min 2.10 2.13 1.69 

15min 4.28 3.28 2.77 

30min 6.25 6.23 5.73 

45min 7.24 8.51 8.31 

60min 10.09 10.27 10.52 

120min 14.44 14.33 16.24 

240min 20.71 18.54 17.88 

480min 29.14 29.22 29.92 

F2   93.24 88.92 

 

 

Figure 3.5 The dissolution test results of Indometacin under 25 rpm/water condition 
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Table 3.4 The comparison of real data, BPNN prediction data, and RBFN prediction data 

under 50 rpm/water condition 

Indometacin 50rpm Water 

  Reference BPNN RBFN 

0min 0 0 0 

5min 0.36 0.76 0.79 

10min 1.45 2.38 2.09 

15min 3.51 3.89 3.33 

30min 7.08 7.76 6.78 

45min 10.48 10.73 9.81 

60min 11.50 12.98 12.45 

120min 16.49 18.05 19.60 

240min 22.64 23.64 22.82 

480min 33.52 33.28 32.77 

F2   93.50 90.62 

 

 

Figure 3.6 The dissolution test results of Indometacin under 50 rpm/water condition 
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Table 3.5 The comparison of real data, BPNN prediction data, and RBFN prediction data 

under 75 rpm/water condition 

Indometacin 75rpm Water 

  Reference BPNN RBFN 

0min 0 0 0 

5min 5.07 2.38 2.90 

10min 4.64 4.12 4.33 

15min 6.29 5.77 5.70 

30min 10.72 10.12 9.52 

45min 14.15 13.60 12.91 

60min 16.44 16.33 15.88 

120min 22.94 22.49 24.13 

240min 29.20 29.40 28.43 

480min 35.59 37.24 36.14 

F2   91.12 91.46 

 

 

Figure 3.7 The dissolution test results of Indometacin under 75 rpm/water condition 
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Table 3.6 The comparison of real data, BPNN prediction data, and RBFN prediction data 

under 100 rpm/water condition 

Indometacin 100rpm Water 

  Reference BPNN RBFN 

0min 0 0 0 

5min 3.50 4.77 4.59 

10min 4.59 6.83 6.40 

15min 6.72 8.74 8.12 

30min 12.26 13.72 12.82 

45min 16.95 17.66 16.84 

60min 21.06 20.75 20.23 

120min 28.67 27.72 29.13 

240min 33.74 32.40 35.56 

480min 38.60 38.37 37.30 

F2   88.82 90.46 

 

 

Figure 3.8 The dissolution test results of Indometacin under 100 rpm/water condition 
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Table 3.7 The comparison of real data, BPNN prediction data, and RBFN prediction data 

under 125 rpm/water condition. 

Indometacin 125rpm Water 

  Reference BPNN RBFN 

0min 0 0 0 

5min 5.47 6.13 7.93 

10min 8.61 8.08 9.51 

15min 11.62 9.98 11.04 

30min 16.09 15.26 15.3 

45min 20.28 19.71 19.1 

60min 27.31 23.23 22.44 

120min 29.96 30.30 31.86 

240min 35.09 34.37 36.88 

480min 40.09 39.52 39.62 

F2   86.55 81.61 

 

 

Figure 3.9 The dissolution test results of Indometacin under 125 rpm/water condition. 
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Table 3.8 The comparison of real data, BPNN prediction data, and RBFN prediction data 

under 150 rpm/water condition 

Indometacin 150rpm Water 

  Reference BPNN RBFN 

0min 0 0 0 

5min 4.23 5.87 10.43 

10min 6.92 7.50 12.04 

15min 9.30 9.17 13.59 

30min 14.63 14.26 17.92 

45min 18.18 19.12 21.76 

60min 21.80 23.40 25.15 

120min 29.55 33.05 34.64 

240min 33.96 37.04 39.3 

480min 40.97 38.83 39.3 

F2   83.29 67.23 

 

 

Figure 3.10 The dissolution test results of Indometacin under 150 rpm/water condition. 
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Figure 3.11 Data summary of this chapter 

As revealed by the experiment results, all predicted values are highly accurate with 

the F2 value larger than 80, except for RBFN prediction data under the 150rpm condition. 

In addition, the F2 value of the RBFN/150 rpm group is 67.23, suggesting the most 

significant relative standard deviation compared with the practical values. The curve 

similarity requirement (F2≥50) remains significantly higher than that for this standard 

deviation. In this case, it can be concluded in accordance with the above-described data 

that the model is endowed with high prediction accuracy that meets the requirements for 

the dissolution experiment. Furthermore, it takes on prominent guiding significance to the 

research and development of solid formulations. 

3.3.3 Data Optimisation 

The respective experiment is completed by the same dissolution tester six times with 

six dissolution cups to reduce the experimental errors. The average value is adopted to build 

the dissolution curve.  

In this experiment, the acceptable relative standard deviation range is set as 0-20%. 

As depicted in Table 3.9, the relative standard between the average value and sample 6 

substantially exceeds 20%, such that the data of sample 6 is automatically deleted. 
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Table 3.9 The dissolution data of Indometacin under 100 rpm condition 

Indomedacin 100rpm Water From SYPU 

  

Sample  

1 

Sample  

2 

Sample  

3 

Sample  

4 

Sample  

5 

Sample 

 6 

AVERAGE 

% 

RSD 

% 

5 0.78  0.58  0.39  1.26  0.68  0.87  0.76  39.07  

10 1.75  1.85  1.26  1.95  1.46  2.04  1.72  17.42  

15 2.44  3.02  2.63  2.83  2.63  3.41  2.83  12.31  

30 6.33  6.24  5.55  5.76  6.04  8.57  6.42  17.07  

45 9.96  8.99  7.72  8.60  9.37  13.37  9.67  20.31  

60 12.05  11.17  9.70  10.98  11.95  17.81  12.28  23.13  

120 19.78  15.89  14.22  16.08  17.74  27.61  18.55  25.98  

240 26.09  21.99  17.49  22.47  24.23  41.15  25.57  31.89  

360 27.97  23.36  20.88  23.55  26.49  44.85  27.85  31.22  

480 29.08  24.35  21.47  24.93  27.30  46.83  28.99  31.45  

 

Figure 3.12 The dissolution test curve of Indometacin under 100 rpm condition 
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All the data in Table 3.9 are input into the model. After screening, the model 

recognizes sample 6 as a group of abnormal data since the relative standard deviation 

between sample 6 and the average data takes on more significance than the set value. The 

value range of relative standard deviation can be set in the main_Fun script. The 

comparative data between sample 6 and the average value is presented in the following. 

 

Table 3.10 The relative standard deviation between average values and abnormal data 

(sample 6) 

AVERAGE Sample 6 RSD% 

0.76 0.87 10.29789 

1.72 2.04 13.26583 

2.83 3.41 14.5881 

6.42 8.57 23.74494 

9.67 13.37 27.07127 

12.28 17.81 31.87154 

18.55 27.61 34.51896 

25.57 41.15 43.07652 

27.85 44.85 43.15475 

28.99 46.83 43.505 

 

This replication experiment demonstrates that the problem of abnormal data screening 

has been tackled by keeping the relative standard deviation within the acceptable range. In 

this way, the model constructed in this study can screen the abnormal data among mass 

data without manual work. 
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3.4 Chapter Summary 

In this chapter, a novel model for predicting the dynamic solubility for solid active 

pharmaceutical ingredients is developed based on the ANN model structured by BPNN and 

RBFN. The domain-driven design DDD Plus application software marketed by 

Simulations Plus Inc. holds the largest market share of formulation dissolution prediction. 

However, the algorithm of DDD Plus has limited its development, whose core is based on 

a formula that calculates the result by inputting it with many parameters, some of which 

are unnecessary. In addition, no matter how much data are input in this software, its 

predictive accuracy remains unimproved. 

In this model, we only need to consider the required parameters and design a gradient 

experiment to collect the necessary data for training. With more data being input, the 

predictive accuracy would be remarkably enhanced.  

In addition, we also derived an equation from the Hixson-Crowell cube root law and 

Nernst-Brunner Equation, which can help set a trend curve that does not link the points by 

mere binomial. 

In future work, the prediction model of formulation dissolution will be established. 

Meanwhile, the users will save large amounts of resources due to fewer experiments and 

less experimental expenditure. 
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Chapter 4 Backpropagation Neural Network and Non-

liner Regression Approach in Predicting Solid 

Formulation Dissolution Rate 

 

4.1 Chapter Introduction 

In this chapter, the dissolution rate prediction requirement of input data is reduced 

using ANN and regression methods. Fully connected neural network (FCNN) has been 

extensively applied to data screen and prediction of the experimental results of 

pharmaceutical research. Thus, a novel dissolution result prediction and screening system 

is modeled using backpropagation networks and regression methods, with 21 sets of 

dissolution data adopted to train and verify the FCNN model. Based on the design of the 

input data, the relevant data remains available to train the FCNN model when the 

formulation composition is changed. In contrast to the orthogonal experiment, Effective 

Data Regression Method (EDRM) and Reference Line Regression Method (RLRM) 

facilitate this system to predict the dissolution results more accurately with fewer data. 

Based on the decision tree, the data screening function is also realized in this system, such 

that the abnormal data can be filtered during data inputting. This ANN model provides a 

novel drug prediction system that saves the prediction time and the costs, such that the 

design of new formulations can be facilitated [91-93]. 

4.2 Materials 

⚫ Tinidazole 

Tinidazole refers to an anti-anaerobic and antigenic drug for the treatment of bacteria 

and insect infections, and a nitroimidazole derivative with higher efficacy, a shorter 

treatment course, better tolerance, and wider distribution in vivo after metronidazole. Pfizer 
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developed it in the late 1960s and marketed it in 1972 in Switzerland and West Germany 

under the brand name of Fasigyn. [94] Tinidazole tablets were recorded in the 12th Edition 

of the Japanese Medical Board in 1991. In 1993, the domestic company Hubei Institute of 

Pharmaceutical Industry Co. Ltd. first exclusively developed Tinidazole tablets and 

obtained the new drug certificate issued by the Ministry of Health of the People’s Republic 

of China (PRC) [29]. In the same year, Lizhou Group Lizhu Pharmaceutical Factory (Lizhu 

Kuifujing) was granted the production certificate of tinidazole tablets by the Ministry of 

Health of the PRC. Tinidazole can be observed in Chinese Pharmacopoeia (ChP 2010) [4], 

Japanese Pharmacopoeia (JP 16) [95], European Pharmacopoeia 7.0 (EP 7.0) [96], British 

Pharmacopoeia (BP 2013) [97], and the United States Pharmacopoeia (USP 35) [75], 

whereas the examination methods for relevant substances remain different. High-

performance liquid chromatography (HPLC) was performed in ChP 2010, EP 7.0, and BP 

2013 for analysis, while thin-layer chromatography (TLC) was employed in USP 35 [75] 

and JP 16 [95]. In this study, the analysis method refers to the one adopted in EP 7.0. 

Physical and chemical properties [96] 
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Table 4.1 Tinidazole Parameters 

Tinidazole Parameters 

Structure formula 

 

Molecular formula C8H13N3O4S 

Relative molecular 

mass 

247.28 

Chemical name 2-methyl-1-[2-(ethylsulfonyl)ethyl]-5-nitro-1 H imidazole 

CAS number 19387-91-8 

Appearance White or faint yellow crystal or crystalline powder 

Solubility Soluble in acetone or trichloromethane and slightly soluble in 

water or ethyl alcohol 

Melting point 125~129℃ 

pKa 1.84 
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Table 4.2 The solubility of tinidazole in pH 1.2, pH 4.0, and pH 6.8 dissolution media and 

water [86] 

Solubility in different dissolution 

media (37℃) 

pH 1.2: 27.5 mg/ml pH 4.0:14.3 mg/ml 

pH 6.8: 13.2 mg/ml Pure Water: 14.0 mg/ml 

 

⚫ Tinidazole Tablet 

 

Table 4.3 The basic information of selected tablet [77] 

Name Tinidazole tablets 

Chemical name 2-methyl-1-[2-(ethyl sulfonyl) ethyl]-5-nitro-1 H imidazole 

Molecular formula C8H13N3O4S Expiration date 36 months 

Dosage form Tablet Dose 500 mg 

Reference 

formulation 

approval number 

US: NDC 0178-8500-20 

 Marketing 

Authorization 

Holder (MAH) 

Mission Pharmacal 

Company/US 

 

4.3 Pharmaceutical Experimental Methods 

4.3.1 Assay for Tinidazole 

The whole assay method including mobile phase preparation, standard solution 

preparation, sample solution preparation, chromatographic system setting, system stability 

validation, analysis method, and acceptance criteria.[96] 

  



60 

Table 4.4 The assay of Tinidazole  

Mobile phase 

preparation 
Acetonitrile, methanol, and water (10:20:70) 

Standard solution 

preparation 

0.1mg/ml of USP Tinidazole RS was prepared as follows. A proper 

amount of USP Tinidazole RS was transferred to a suitable 

volumetric flask, and methanol was added to 10% of the flask 

volume. Then, dilute with Mobile Phase to volume. 

Sample solution 

preparation 

0.1mg/ml of Tinidazole was prepared as follows. A proper amount of 

Tinidazole was transferred to a suitable volumetric flask, and 

methanol was added to 10% of the flask volume. Then, dilute with 

Mobile Phase to volume. 

Chromatographic 

system 

Mode: LC; 

Detector: UV 320 nm; 

Column: 3.0-mm X 25-cm and 5-μm packing L7; 

Flow rate: 0.5 ml/min; 

Injection Volume: 20 μL; 

Run Time: 1.5 times the retention time of tinidazole. 

System stability 

Sample: Standard solution; 

Suitability Requirements: 

Tailing Factor: No more than 1.5; 

Relative Standard Deviation: No more than 0.73%. 

Analysis 

Samples: Standard solution and sample solution; 

The percentage of tinidazole (C8H13N3O4S) in the portion of 

Tinidazole taken is calculated as follows: 

Result = (ru/rs) X (CS/Cu) X 100 

ru implies peak response of tinidazole from the sample solution; 

rs represents peak response of tinidazole from the standard solution; 

CS denotes the concentration of USP Tinidazole RS in the standard 

solution (mg/ml); 

Cu indicates the concentration of Tinidazole in the sample solution 

(mg/ml). 

cceptance criteria 100%±2% on the dried base 
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4.3.2 Organic Impurities Analysis 

The method of organic impurities analysis including mobile phase, sample solution, 

chromatographic system, standard stock solution, standard solution, system stability, 

analysis formula, and acceptance criteria. [86] 

Table 4.5 Organic impurities analysis of Tinidazole 

Mobile phase, 

sample solution, 

and 

chromatographic 

system 

Refer to Assay Analysis 

Standard stock 

solution 1 
Use the standard solution from the Assay Analysis 

Standard stock 

solution 2 

USP Tinidazole Related Compound A RS (0.05 mg/ml) and USP 

Tinidazole Related Compound B RS (0.05 mg/ml) were prepared as 

follows. A proper amount of USP Tinidazole Related Compound A 

RS and USP Tinidazole Related Compound B RS was transferred to 

a suitable volumetric flask, and methanol was added to 10% of the 

flask volume. Then, dilute with Mobile Phase to volume. 

Standard 

solution 

USP Tinidazole RS (0.1 μg/ml) and USP Tinidazole Related 

Compound B RS (0.2μg/ml) in mobile phase from standard stock 

solution 1 and standard stock solution 2. 

System stability 

Sample: Standard Solution; 

Suitability Requirements: 

Resolution: NLT 2.0 between Tinidazole Related Compound A and 

Tinidazole Related Compound B; 

Relative standard deviation: No more than 5.0% for each peak; 

Analysis 

Samples: Sample solution and standard solution. 

The percentages of tinidazole related compound A and tinidazole 

related compound B in the portion of Tinidazole taken is calculated 

as follows: 

Result = (ru/rs) X (Cs/Cu) X 100 
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Acceptance 

criteria 

Name 
Relative 

retention time 

Acceptance 

criteria (no 

more than) 

Tinidazole Related Compound A 0.6 0.2% 

Tinidazole Related Compound B 0.7 0.2% 

Tinidazole 1.0 -- 

Any Unspecified Impurity -- 0.10% 

Total Impurities -- 0.4% 

 

4.3.3 Impurity Study 

Table 4.6 The Impurity names and chemical structural formulas recorded in USP, EP, and 

CP. [4, 77, 96] 

USP Name EP Name CP Name Structural Formula 

Tinidazole Tinidazole Tinidazole 

 

Impurity A Impurity A ImpurityⅠ 

 

Impurity B Impurity B N/A 

 

 

4.3.4 Dissolution Test Study 

⚫ Dissolution Test Method Study 

Tinidazole refers to a BCS Ⅱ drug with poor water solubility but good permeability, 

whose absolute bioavailability is ≥100%. Among the pharmacopeias of various countries, 

http://yaodian.juhe.com.cn/image/2/38/large/tinidazole_cf1051-b.png?published-date=2016-08-23
http://yaodian.juhe.com.cn/image/2/38/large/tinidazole_cf1051-a-b.png?published-date=2016-08-23
http://yaodian.juhe.com.cn/image/2/38/large/tinidazole_cf1051-b-b.png?published-date=2016-08-23
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only the Chinese Pharmacopoeia 2015 and Indian Pharmacopoeia 2010 incorporate 

Tinidazole tablets, whereas the former does not contain the “dissolution” item. The 

dissolution methods, limits, and detection methods of Tinidazole tablets given in the 

respective pharmacopeia are presented in Table 4.7： 

 

Table 4.7 The comparison of dissolution test in Chinese Pharmacopoeia (CP), Japanese 

Orange Book, and FDA dissolution method database. [4, 77, 86] 

Source 
Dissolution 

Medium 

Dissolution 

Method 
Assay Limit 

Chinese 

Pharmacopoeia 

2015 

HCl solution 

(9~1000ml) or 

Water (900ml) 

Basket Method 

100 rpm 
UV 317nm 30 min, ≥80% 

Japanese 

Orange Book 
900 ml Water 

Blade Method 

50 rpm 
UV 317nm 45 min, ≥75% 

US FDA 

Dissolution 

Method 

Database 

900 mL Water 
Basket Method 

100 rpm 
N/A N/A 

 

  



64 

⚫ Japanese Orange Book Method [86] 

 

Table 4.8 The details of dissolution method in Japanese Orange Book 

Dissolution method Dissolution Method-2 (Blade Method) 

Dissolution medium 900 mL water 

Rotation speed 50 rpm 

Surfactant Not used 

Dissolution method 

According to the dissolution determination method (paddle 

method), the sample was put in 900ml of water and the rotation 

speed was set as 50 rpm. Following the method, after a specified 

time, take an appropriate amount of solution, filter it, and discard 

at least 10ml of primary filtrate. Afterward, accurately measure 

an appropriate amount of continuous filtrate and dilute it with 

water to obtain the test solution containing 13μg solution per 1ml. 

In addition, accurately weigh 0.027g of tinidazole reference 

substance pre-dried at 105℃ for 2 hours, put it into a 100 ml 

volumetric flask, add water to dilute to the scale, and shake it 

evenly. Then, accurately measure 5ml of the solution, put it into 

a 100ml volumetric flask, add water to dilute to the scale, and 

shake it. The resultant solution is the reference solution. 

According to UV-VIS spectrophotometry, measure the 

absorbance of these two solutions at 317 nm wavelength and 

calculate the dissolution rate of each tablet, which shall meet the 

requirements. 

Limit 500mg Dose/Dissolution Rate 45min≥75% 

Dissolution curve 

from Japanese Orange 

Book 
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⚫ Chinese Pharmacopoeia 2015 Method [4] 

 

Table 4.9 The details of dissolution method in Chinese Pharmacopoeia 2015 

Test method Dissolution Method-1 (Basket Method) 

Dissolution 

medium 
HCl Solution (9~1000ml) or water (900ml) 

Rotation speed 100 rpm 

Dissolution 

method 

Take the product and determine its dissolution and release (method 1 of 

general rule 0931) with a hydrochloric acid solution (9~1000) or 900 ml 

water (plain tablets). The dissolution medium is 900 ml and the rotation 

speed is 100 rpm. Operate according to the law. After 30 min, take 10ml 

of the solution, filter it, accurately measure 2ml of the continuous 

filtrate, place it in a 100ml volumetric flask, dilute it with water to the 

scale, and shake it well. According to the UV-VIS spectrophotometry 

(general rule 0401), determine the absorbance at the wavelength of 317 

nm. Take another appropriate amount of tinidazole reference substance, 

weigh it accurately, and add 0.002 mol/L hydrochloric acid solution or 

water (plain tablets) to quantitatively dilute it to obtain a solution 

containing about 12% sample. Determine the dissolution rate of each 

tablet through the same method. 

Limit ≥80% 

 

Given the analysis of previous experimental data, tinidazole is a rapidly disintegrating 

tablet, whereas the disintegration speed of 100 rpm is too fast for tinidazole dissolution. 

Thus, the identification of product quality is insufficient. Consequently, the method of 

Japanese Pharmacopoeia is adopted for the dissolution experiment in this study. 

4.3.5 Stability Study 

The stability in different dissolution media is presented in Table 4.10. [4] 
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Table 4.10 The stability under different conditions 

Factors Details 

Water Indoor temperature: Stable in 24 hours. 

pH1.2, pH4.0, pH 6.8 

dissolution media 

Indoor temperature: Stable in 24 hours. 

Light Under the light intensity of 240,000 lm·h, the solid-state 

changed from light yellow to light yellow brown, but the 

content remained unchanged; the content of the aqueous 

solution decreased; in the dissolution media and aqueous 

solutions of pH 1.2, pH 4.0, and pH 6.8, the content 

decreased by 1.3%, 15.3%, 7.1%, and 6.1% respectively. 

 

4.3.6 Tinidazole Tablet Preparation Method 

 

Table 4.11 Composition of 500 mg Tinidazole Tablet [98] 

Ingredients Amount 

Tinidazole (TNZ) 500 mg 

Microcrystalline Cellulose PH 101 (PH101) 5.0%-20.0% w/w 

Starch 1%-20% w/w 

Croscarmellose sodium (CCNA) 0.5%-7% w/w 

Hydroxypropyl methyl cellulose (HPMC) 0.5%-2% w/w 

Magnesium stearate (MS) 0.5%-1.0% w/w 

Low-substituted hydroxypropyl cellulose (L-HPC) 2.5%-5% w/w 

 

The procedure of Tinidazole tablet preparation can be divided into 7 steps. 

Step 1: API treatment. Dry the tinidazole powder in a vacuum drying oven under 

reduced pressure of 1kpa at 60°C for 2 h. After natural cooling in a low-pressure 

environment of 1kpa, the API was taken out and put into a grinder for grinding and 
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screening. 

Step 2: Preparation of the adhesive. Weight the prescription amount of HPMC, add 

some boiling water, and use a glass rod to continuously stir the liquid till the HPMC 

completely disperses. Then, use ambient temperature water to make up the remaining 

prescription water, continue to stir it for 30 min, and then leave it to stand for 12 h. 

Step 3: Total mixing. The tinidazole API is mixed with inactive ingredients except for 

the binder and magnesium stearate and put into the V-type mixer for mixing for 30 min. 

Step 4: Granulation. Put the mixed sample into the granulator, turn on the shearing 

knife, and slowly add the binder. 

Step 5: Drying. After the granulation, the granules were put into the tray, which was 

then put into the oven to dry till the moisture content was qualified. 

Step 6: Granules. Put the dried granules into the finishing machine for granulation. 

Step 7: Compressing tablets. Add magnesium stearate to the granules and put them in 

a V-type mixer for mixing for 5 min. After adjusting the tablet press speed, pre-compression 

parameters, and tablet thickness parameters, start tablet compression. 

4.4 Computer Science Technologies 

4.4.1 Model Test Design 

First, a formulation experiment with different prescriptions and prescription volumes 

is designed to examine the model’s adaptability. The predicted results vary significantly 

due to the small amount of training data, thus affecting the prediction accuracy. Accordingly, 

the regression value was calculated to process the predicted value after multiple predictions. 

In addition, a gradient experiment is designed to verify the improvement of prediction 

accuracy when the amount of input data increased. A total of 21 sets of prescriptions and 

dissolution data with three different excipients are used in this test due to the limited 

experimental conditions. 
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Thus, the test is divided into three parts, i.e., testing the impact of training frequency 

on the stability of the results, testing the effect of the training dataset on the prediction 

accuracy, and making predictions based on 21 sets of data to test their experimental 

adaptability. 

4.4.2 Problem of Insufficient data leads to prediction errors 

As some external factors, such as the position of the tablet in the dissolution cup (the 

tablets always not drop in the middle of the cup then put in), the tablet weight (the allowable 

tablet weight error is ±10%), the hardness of the tablet (the hardness of the same thickness 

is always more significant when the tablet with higher weight) and the test results of tablets 

with the same prescription are always different. Accordingly, there will be an error between 

our test value and the expected value. When the input data is the test value, the experimental 

error will lead to the deviation of the practical prediction. The more significant the amount 

of input data, the smaller the prediction error caused by experimental error. It is why the 

model’s prediction accuracy is unstable when the data is insufficient. Thus, most ANN 

applications [19, 35-48] to predict formulations will use large amounts of data to train the 

model and make predictions. For instance, in Saman Sarraf‘s study [99], he used an ANN 

model to predict the Betamethasone release rate, and it prepared over 80 samples.  

However, the input layer neurons are only 5. The prediction effect can be proved 

academically, but 80 experiments are enough to complete a complete orthogonal 

experiment in practical applications. According to the orthogonal experiment design of 5 

factors and five levels, 25 experiments can result. Accordingly, using a large amount of 

data to train the model has no practical application significance. In this project，the model 

should be helpful to assist formulation research and development from the beginning of the 

formulation project. Thus, 21 samples with 7 influence factors were prepared. 
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4.4.3 Fully Connected Neural Network Model Design 

There are few information resources available for drug development, and the 

acquisition of information is expensive. Consequently, the primary issue this thesis seeks 

to address is how to use the version to achieve convergence and draw accurate conclusions 

with a limited dataset. 

As the range of model layers and internal parameters are significantly reduced, model 

convergence is facilitated. Accordingly, this chapter estimates the dissolution charge using 

a layer of an absolutely related neural network. 

The critical elements of this study are the prescription ratio, the dissolution time, and 

the dissolution rate (i.e., percentage of drug dissolution) at different time points. 

To establish connections among time points, the formulation ratio and the dissolution 

time were set as the input dataset and the dissolution rate at each time point was set as the 

output data. 

 

Figure 4.1 The structure of ANN 

 

In Figure 4.1, the X1-X8 means: X1, time value (minutes) of dissolution test.; X2, 
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percentage of Tinidazole,; X3, percentage of microcrystalline cellulose PH 101, X4, 

percentage of starch; X5, percentage of croscarmellose sodium; X6, percentage of 

hydroxypropyl methyl cellulose; X7, percentage of magnesium stearate; X8, percentage of 

low-substituted hydroxypropyl cellulose. H1-H9, neurons of Hidden Layer. Y is the output, 

which is the percentage of drug release in the time points of X1. 

As depicted in Figure 4.1, a three-layer fully connected neural network combines eight 

independent variables in the input layer and one response variable in the output layer. The 

output of the node to the next layer is calculated by summing the input of the previous layer 

and calculating the activation function. The activation function employed in this project is 

the sigmoid function described as: 

 𝑆(𝑦𝑗) =  
1

1+𝑒
−𝑦𝑗

 (4.1) 

Where 𝑆(𝑦𝑗)  denotes the output from the j-th node, in which 𝑦𝑗  is defined as 

follows: 

 𝑦𝑗 =  ∑ 𝑊𝑖𝑗𝑥𝑖 + 𝐵𝑗
𝑛
𝑖=1  (4.2) 

Herein, 𝑥𝑖 denotes the input of the i-th node in the previous layer, n represents the 

total number of nodes, 𝑊𝑖𝑗 signifies the corresponding weight, and 𝑏𝑗 implies the bias. 

The ANN was iteratively trained to minimise the mean square error (MSE). The gradient 

of the MSE performance function was used to adjust the network weights and biases till 

the MSE reached 10−5 . This paper used MATLAB R2020b version (Mathworks Inc., 

Natick, MA, USA) to develop and train ANN, which could automatically generate the 

initial weights and deviations of the network. 

4.4.4 Two novel regression methods  

⚫ Effective Data Regression Method (EDRM) 

The model is trained using multiple sets of logical data, such that the predicted data 

primarily fluctuates around the practical value as long as the model is valid. First, multiple 
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predicted results of the same input dataset are obtained through multiple training and 

prediction of the probability and statistics method. Subsequently, the prediction result is 

obtained after the respective training serves as a decision tree. If it conforms to the 

requirements, it will be retained; otherwise, it will be deleted. Using statistical methods, 

the model calculates the standard deviation and the average of all predicted data. If the 

absolute difference between the predicted value and the average value exceeds the standard 

deviation, the data will be automatically deleted. On that basis, the model is capable of 

eliminating the abnormal data generated when the predicted data converges toward the 

optimal local solution. Lastly, an average curve is generated by determining the average of 

all the data. The stability of the predicted value is generally determined by the training 

frequency and prediction time. Figure 4.2 shows the flow chart of EDRM in program. 
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Figure 4.2 The flow chart of EDRM 
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4.4.5 Reference Line Regression Method (RLRM) 

Based on the first method, the second method changes the screening method for 

abnormal data generated when the predicted data converges toward the optimal local 

solution. First, one or more sets of experimental data from the training are set as the 

reference data. According to the amount of experimental data, only one dataset is selected 

for testing. The reference data should also be tested by the program data screening system 

(see the data screening model). After each model training, the model creates predictions 

based on the dataset, compares the predicted results with the data, and calculates the F2 

value. When F2 is below the set value, which is initially 65 and can be customised 

according to the project, the model is considered to converge toward the optimal local 

solution. Then, the program automatically recognises it as an abnormal model and deletes 

it. When the number of models that meet the requirements reaches the set value, which is 

initially 50 and customisable, the filtered data is averaged to obtain the regression line. 

Similar to EDRM, the value of the curve tends to stabilise when the training frequency 

predictions increases. 

The progress and prediction results of Formulation 3 of RLRM in the program are 

presented as follows: 
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Figure 4.3 The flow chart of RLRM in the program 
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4.5 Results and Discussion 

4.5.1 Result of Formulation Experiment 

The percentage of ingredients in each formulation experiment is presented in Table 

4.12. The experimental method is described in the section of Materials and Methods. 

 

Table 4.12 The percentage of seven ingredients 

Sample Number Tinidazole% 
PH101 

% 

Starch 

% 

CCNA 

% 

HPMC 

% 

MS 

% 

L-HPC 

% 

1 76.92 9.54 9.54 3.00 0.71 1.00 0.00 

2 76.92 13.39 6.69 1.00 1.00 1.00 0.00 

3 76.92 10.04 10.04 1.00 1.00 1.00 0.00 

4 76.92 6.86 13.72 0.50 1.00 1.00 0.00 

5 76.92 6.96 13.92 0.50 0.80 1.00 0.00 

6 69.44 14.03 14.03 0.50 1.70 1.00 0.00 

7 69.44 9.12 18.24 0.50 1.70 1.00 0.00 

8 71.43 19.64 4.91 3.00 0.55 1.00 0.00 

9 71.43 19.10 4.77 3.00 0.70 1.00 0.00 

10 71.43 19.89 3.98 3.00 0.70 1.00 0.00 

11 71.43 19.10 4.77 3.00 0.77 1.00 0.00 

12 71.43 18.30 4.57 4.00 0.77 1.00 0.00 

13 71.43 19.83 3.97 3.00 0.77 1.00 0.00 

14 88.62 5.32 2.66 0.00 0.53 0.30 2.66 

15 88.62 3.70 1.85 0.00 0.53 0.30 5.00 

16 88.62 6.31 1.58 0.00 0.53 0.30 2.66 

17 71.50 17.40 5.10 5.0 0.00 1.00 0.00 
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18 71.50 16.50 5.0 6.0 0.00 1.00 0.00 

19 71.50 16.40 5.10 6.0 0.00 1.00 0.00 

20 71.50 15.40 5.10 7.0 0.00 1.00 0.00 

21 71.50 17.40 5.10 5.0 0.00 1.00 0.00 

Note: The first column is the number of formulation compositions 

 

The dissolution test results of these formulations at 37℃ in water are presented in 

Table 4.13 as follows. 

 

Table 4.13 The percentage of drug release in dissolution test at different time Points 

Sample 

number 
0 min 5 min 10 min 15 min 30 min 45 min 60 min 

1 0% 33.54% 82.84% 91.43% 94.22% 94.84% 92.59% 

2 0% 31.32% 78.00% 95.27% 99.27% 100.04% 98.91% 

3 0% 19.26% 48.30% 78.00% 98.55% 99.11% 98.29% 

4 0% 7.31% 20.22% 34.25% 70.32% 90.82% 95.41% 

5 0% 22.02% 54.07% 78.45% 94.96% 96.34% 95.49% 

6 0% 13.64% 30.97% 45.14% 78.20% 95.56% 95.47% 

7 0% 9.74% 21.53% 32.88% 62.05% 83.21% 93.92% 

8 0% 68.55% 83.08% 87.39% 90.57% 92.31% 92.71% 

9 0% 64.77% 90.53% 93.61% 95.86% 96.00% 95.21% 

10 0% 70.54% 85.85% 89.07% 92.00% 91.18% 90.56% 

11 0% 57.90% 85.99% 91.64% 93.81% 94.09% 96.60% 

12 0% 53.23% 83.70% 88.98% 95.80% 95.66% 96.61% 

13 0% 62.77% 74.11% 81.47% 86.66% 88.77% 88.26% 
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14 0% 68.63% 78.65% 85.52% 92.67% 92.54% 93.73% 

15 0% 69.19% 80.81% 86.37% 89.55% 90.81% 92.10% 

16 0% 47.79% 66.95% 77.02% 86.66% 90.64% 92.93% 

17 0% 48.40% 69.66% 81.59% 90.64% 96.05% 99.03% 

18 0% 55.27% 68.13% 76.18% 88.44% 95.54% 99.41% 

19 0% 45.91% 58.46% 69.19% 80.30% 86.73% 92.12% 

20 0% 26.98% 49.31% 67.57% 81.26% 88.85% 92.40% 

21 0% 62.75% 78.55% 84.81% 91.29% 94.03% 95.35% 

Note: The first column is the number of formulation compositions. 

 

4.5.2 Prediction Result of EDRM versus RLRM 

First, the first 20 sets of data were selected among the 21 sets of data to train the model. 

Then, the predicted value of the 21st dataset was obtained. The model was trained 50 times 

and the predicted values were compared. The test results are presented as follows. 

 

 

Figure 4.4 The x-axis is the dissolution time while the y-axis is the dissolution rate at 

different dissolution time points. 
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After 50 predictions of Formulation 21, it is found that the results of each test vary 

significantly. According to theoretical analysis, this can be attributed to the following two 

reasons： 

(1) After the neural network model was trained, the model did not fully converge due 

to insufficient training data. Thus, the value predicted by the model would be larger or 

smaller than the practical value, but it remains within the usual error range. 

(2) The prediction data for the model would occasionally converge toward a locally 

optimal solution. In this case, the model's predicted value would significantly diverge from 

the practical value, thus resulting in abnormal data. 

To address the above-described two problems, this study combines statistics and 

random forest methods to propose two methods, i.e., EDRM and RLRM. 

（a）EDRM 

The progress and the prediction results of Formulation 3 through EDRM in the project 

are presented in Figure 4.5. 

 

Figure 4.5 The prediction output of EDRM 
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In Figure 4.5, the blue line denotes the practical value obtained from the experiment 

while the red line represents the predicted value. After the two values were substituted into 

the F2 calculation formula, the F2 was 54.48, which indicates that the two curves are similar. 

This demonstrates that this method can address the problem. 

(b) RLRM 

After substituting the RLRM for EDRM in the last test, the model generates the 

following results, 

 

Figure 4.6 The prediction output of RLRM 
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Figure 4.7 Comparison of EDRM and RLRM. 

 

As depicted in Figure 4.6, the blue line represents the practical value obtained in the 

experiment, while the red line denotes the predicted value of the model. After the two 

values are substituted into the F2 calculation formula, F2 is 62.94, suggesting that the 

RLRM generates better results compared with EDRM. 

In RLRM, the choice of the reference line takes on critical significance. The predicted 

value changes with the change of the reference line, such that choosing an appropriate 

reference line will increase the prediction accuracy. The prediction accuracy of the model 

is tested on the reference line, i.e., Formulation 13, Formulation 16, and Formulation 21, 

to predict Formulation 2. The 19 datasets other than prediction data and reference line are 

regarded as input data. The results are listed in Table 4.14 and Figure 4.8. 
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Table 4.14 The prediction results of Formulation 3 with Formulations 13, 16, and 21 as 

reference line. 

Time Formulation 13 Formulation 16 Formulation 21 Experimental data 

0 0 0 0 0 

5 44.39 42.20 44.42 31.32 

10 63.76 68.55 69.26 78.00 

15 79.06 86.00 84.74 95.27 

30 97.26 103.17 100.99 99.27 

45 98.62 100.62 100.04 100.04 

60 97.28 97.92 98.09 98.91 

F2 49.11 56.96 55.30 N/A 

 

 

Figure 4.8 The contrast curve of the results 

 

Given the above analysis of the two methods, the algorithm of EDRM is more stable 

and can conform to the model requirements, whereas that of RLRM requires higher 

accuracy of reference data. When there is sufficient standard reference data, RLRM will 

outperform EDRM. 

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70

P
er

ce
n

ta
g

e 
o

f 
D

is
so

lu
ti
o

n
 R

at
e

Dissolution Time

Formulation 2

Formulation 13 Formulation 16

Formulation 21 Experimental Data



82 

4.5.3 Related Data Reuse 

In the practical formulation experiment, the types of excipients in the prescription tend 

to be fine-tuned. The existing articles that predict the results of formulation experiments 

through neural networks only predict a single prescription by screening the prescription 

ratio. If the types of excipients in the prescription are changed during its optimization 

process, new data and training will be required for the model, such that the previous 

experimental data will be wasted. The preliminary data remains available for a method 

designed to conform to the requirements for changing the types of excipients. First, the 

auxiliary materials in all samples are set as input parameters, the amount of unadded 

auxiliary materials is set as 0, and the above data are input into the ANN model for training 

with other input data. In the experiment, a total of three prescriptions are designed. To test 

the feasibility of the proposed method, each of them has one excipient that differs from the 

excipients of the other two prescriptions. 

The second formulation composition has only three groups of samples, but it has five 

variables. Mathematically, no solution for this problem. Nonetheless, it has been perfectly 

addressed through the method of the project. 

In the test, Formulation 15 is selected as under test data, which is the second 

formulation composition. In EDRM, the data of the other 20 formulations is set as input 

data, and the training times reach 100. In RLRM, Formulation 21 is set as the reference 

line, while the data of the other 19 formulations is set as input data to train the model. 

EDRM is adopted to predict Formulation 15 and determine the F2 value. 

 

  



83 

Table 4.15 The Formulation 15 prediction results through EDRM and RLRM (second and 

third column) and the experimental results of Formulation 15 (fourth column) 

 

Time EDRM RLRM Experimental Data 

0 0 0 0 

5 61.53 57.98 69.19 

10 72.01 64.26 80.81 

15 78.34 73.65 86.37 

30 90.90 86.58 89.55 

45 99.97 91.52 90.81 

60 98.64 93.89 92.10 

F2 56.33 50.37 N/A 

 

 

Figure 4.9 The contrast curve of Formulation 15 

 

In summary, observed from the prediction results, the F2 value exceeds 50, implying 

that the similarity rate between the predicted curve and the practical experimental value 
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exceeds 90%. This demonstrates that our method effectively solved the problem that data 

could not continue the training after the types of prescription excipients were fine-tuned. 

4.5.4 The Relationship between Prediction Times and Prediction Stability 

Observed from the above two methods, the number of predictions is particularly 

important. The gradient experiment was designed to investigate the relationship between 

the frequency of predictions and the accuracy of the model. A dataset was selected for each 

of the three prescriptions for testing with Formulation 13, Formulation 16, and Formulation 

21 as the target prediction data values. Then, the model was trained and predicted twice, 

10 times, and 50 times for each dataset values. The respective training is repeated 10 times, 

in which the predicted results are analyzed to determine RSD. The experimental results are 

presented as follows. 

 

Table 4.16 10 prediction results of Formulation 21 under two trainings 

 1 2 3 4 5 6 7 8 9 10 RSD 

5 52.89 51.25 55.98 52.50 56.41 60.51 49.60 58.88 54.38 56.27 3.40 

10 68.65 67.20 71.00 69.38 69.71 70.70 62.31 71.16 71.46 68.28 2.73 

15 79.40 76.43 78.58 79.62 77.35 77.15 71.18 78.09 81.12 76.80 2.67 

30 92.34 89.08 87.62 88.25 85.69 88.81 83.21 85.57 90.19 89.60 2.63 

45 95.64 93.76 91.90 92.84 91.04 98.40 89.05 92.13 93.82 93.11 2.55 

60 101.2 95.59 95.15 96.94 96.91 99.15 93.09 96.51 96.46 93.76 2.39 

F2 58.75 56.10 63.98 60.17 60.76 63.63 47.96 64.46 65.62 60.70 5.19 

Sum of RSD 16.37 
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Figure 4.10 The comparison of 10 predictions of Formulation 21 under two trainings 

 

Note: Formulation 21 was predicted 10 times. 

 

Table 4.17 10 prediction results of Formulation 21 under ten trainings 

 1 2 3 4 5 6 7 8 9 10 RSD 

5 55.03 56.48 57.92 57.22 53.71 55.86 56.25 55.08 55.38 54.05 1.32 

10 70.00 69.32 71.82 71.26 70.22 70.50 69.72 68.63 70.94 70.25 0.93 

15 78.20 78.29 79.46 80.15 79.08 78.57 79.16 77.67 79.51 78.66 0.74 

30 89.92 88.78 90.57 88.80 89.85 89.69 90.04 90.44 90.17 88.39 0.75 

45 95.08 93.63 94.84 93.22 95.59 93.86 93.46 94.69 92.70 93.05 0.97 

60 98.24 96.05 98.22 96.90 98.23 97.14 97.00 98.68 96.19 98.44 0.97 

F2 62.27 63.07 68.16 67.41 61.78 64.15 64.17 60.58 65.05 61.54 2.50 

Sum of RSD 5.69 
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Figure 4.11 The comparison of 10 predictions of Formulation 21 under ten trainings 

 

Note: Formulation 21 was predicted 50 times. 

Table 4.18 10 prediction results of Formulation 21 under 50 trainings 

 1 2 3 4 5 6 7 8 9 10 RSD 

5 57.70 55.69 56.26 55.94 56.54 56.32 56.55 56.13 56.19 55.33 0.63 

10 70.97 69.54 70.46 70.24 70.97 70.94 70.89 70.27 70.68 69.56 0.55 

15 79.30 78.53 79.02 78.72 79.87 79.96 80.13 79.26 79.79 78.16 0.67 

30 89.83 89.54 89.41 88.98 89.88 89.62 90.28 89.61 89.11 89.07 0.41 

45 94.50 93.54 94.38 93.93 93.95 93.80 94.33 94.08 94.51 93.86 0.33 

60 97.29 96.65 96.78 97.45 97.11 97.20 97.93 97.00 98.04 97.01 0.45 

F2 66.99 62.99 64.85 63.81 66.48 66.18 66.36 64.71 65.17 62.27 1.58 

Sum of RSD 3.03 
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Figure 4.12 The comparison of 10 predictions of Formulation 21 under 50 trainings 

 

In brief, when the number of predictions is 2, 10, and 50, the RSD values of the 10 

tests data reach 16.37, 5.69, and 3.03, respectively. Moreover, the RSD of F2 reaches 5.19, 

2.50, and 1.58. When the number of predictions only reaches 2, there is a case where F2 is 

only 47.96. The above result confirms that at least one data of this test converges toward 

the optimal local solution. As revealed by the test results, more prediction times can reduce 

the amount of abnormal data and prediction errors of the results. 

4.5.5 Comparison with others work 

An ANN model is designed by Arthur Manda in 2019 to predict the dissolution release 

of formulation. This model is tested through the experiment of prednisone pellets with 

seven factors. Table 4.19 lists the experimental data. 
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Table 4.19 Experimental dataset of Arthur Manda’s work[32] 

No. X1 X2 X3 X4 X5 X6 X7 Y1 Y2 Y3 Y4 

1 60 2 1 30 12.8 6.4 12.8 75.3 88.2 100.1 100.3 

2 60 1 2 25 13.2 6.6 13.2 31.1 53.3 66.8 84.6 

3 60 1 1 30 13.2 6.6 13.2 37.1 56 65 75.2 

4 70 1 2 30 9.2 4.6 9.2 24.6 39.8 51.3 59.4 

5 70 1.5 2 25 9 4.5 9 32.8 51.8 66.5 74.6 

6 50 1.5 1 30 17 8.5 17 80.4 89.7 90.7 90.2 

7 60 2 3 30 12.8 6.4 12.8 71.5 82.8 86.2 90.5 

8 60 2 2 25 12.8 6.4 12.8 77.5 88.2 95.1 99.1 

9 60 1.5 2 30 13 6.5 13 63.4 78.8 85.2 87.9 

10 60 1.5 2 30 13 6.5 13 47.2 62.3 71.9 77.6 

11 70 1.5 3 30 9 4.5 9 18.5 32.8 43.3 51.1 

12 50 2 2 30 16.8 8.4 16.8 80.2 82 91.3 80.9 

13 60 1.5 2 30 13 6.5 13 64 76.7 82.8 84.8 

14 60 1.5 1 35 13 6.5 13 68.7 83.5 86.2 86.7 

15 60 1.5 2 30 13 6.5 13 72.6 82.6 86.6 86.5 

16 60 1.5 3 35 13 6.5 13 50.8 67.1 73.9 80.8 

17 60 2 2 35 12.8 6.4 12.8 64.1 80 85.3 90.5 

18 60 1 3 30 13.2 6.6 13.2 25.1 46.4 61.4 71.7 

19 50 1 2 30 17.2 8.6 17.2 63.7 79.9 85.3 84 

20 50 1.5 2 25 17 8.5 17 58.9 77.1 80.9 81.5 

21 50 1.5 2 35 17 8.5 17 67.3 72.3 77.1 77.2 

22 50 1.5 3 30 17 8.5 17 55.6 72.1 76.6 75.4 

23 50 1.5 2 35 9 4.5 9 17.8 33 44.4 53.9 
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24 70 1.5 1 30 9 4.5 9 24.7 43.2 55.8 65.2 

25 60 1.5 3 25 13 6.5 13 70.7 82.3 85.4 87 

26 70 2 2 30 8.8 4.4 8.8 46.4 75.7 91.5 99 

27 60 1.5 1 25 13 6.5 13 57.9 74.8 81 83.2 

28 60 1 2 35 13.2 6.6 13.2 43.2 68.7 91.2 99.3 

29 60 1.5 2 30 13 6.5 13 61.6 74.6 77.7 85.9 

 

In Table 4.19, No. represents the mark of formulation component. The percentage of 

microcrystalline cellulose of the formulation(X1), the percentage of sodium starch 

glycolate(X2), the minute of spherization time(X3), the rap per minute of extrusion 

speed(X4), the percentage of tween 80(X5), the percentage of PEG 400(X6) and the 

percentage of Eudragit RL 30 D(X7) of the above-mentioned 29 formulations are 

demonstrated. Furthermore, the prednisone release at 15min(Y1), 30min(Y2), 45min(Y3) 

and 60min(Y6) of the above-described 29 formulations are presented. 

This study can be designed as a 7-factor and 3-level orthogonal experiment based on 

the design method of orthogonal experiments, which can be completed using 18 groups of 

experiments. However, 29 groups of experiments were adopted in Arthur Manda’s project 

to train the model, with nearly 60% more experimental groups than that of the orthogonal 

design. In contrast, RLRM and EDRM methods are promising in reducing the requirement 

for input data. 

The experimental data are screened under the condition that for the respective factor 

based on the distribution of the dataset, and there are at least three horizontal values. In 

accordance with the gradient experimental design, the datasets with 29 groups of 

formulation, 14 groups of formulation, and six groups of formulation are designed, RLRM 

and EDRM are adopted to predict the results, and then F2 values are determined. The ANN 
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model prediction time is set as 100 to reduce the error of the prediction value. The 

prediction results are listed in Table 4.20. 

Table 4.20a The prediction result using 29 groups of formulation 

No. R15 R30 R45 R60 R-F2 E15 E30 E45 E60 E-F2 

1 76.38  91.36  97.48  97.18  77.53  75.82  91.45  98.41  97.31  79.42  

2 35.93  50.83  64.40  78.96  68.77  36.32  50.12  63.35  80.34  68.71  

3 38.59  63.08  72.78  80.01  61.40  39.73  64.48  70.62  78.43  62.64  

4 20.06  33.80  52.30  60.01  70.24  21.88  34.36  51.66  60.19  74.54  

5 28.14  48.72  54.23  72.31  58.03  28.10  50.24  54.38  73.24  58.84  

6 74.21  80.35  95.21  96.25  58.27  74.97  81.40  94.76  98.61  58.11  

7 71.52  78.21  88.65  90.51  77.76  69.59  79.47  90.69  90.00  75.24  

8 68.97  83.26  92.35  95.21  62.73  66.96  83.63  94.63  96.52  61.18  

9 61.24  77.22  80.12  85.88  74.73  60.82  76.58  80.64  84.15  72.50  

10 31.44  58.13  78.11  78.21  52.82  30.16  58.39  79.22  78.07  51.04  

11 33.18  41.25  45.35  53.54  53.09  34.68  38.77  43.65  53.82  52.80  

12 74.13  75.13  80.11  83.12  56.58  72.80  75.58  78.18  82.23  54.11  

13 61.22  73.30  89.12  95.16  59.26  60.60  74.28  87.13  94.33  62.12  

14 63.75  79.88  83.14  91.25  68.67  63.03  82.33  80.95  90.54  67.49  

15 68.91  77.13  83.14  89.26  69.38  67.09  76.80  81.94  86.78  66.21  

16 52.33  67.11  79.13  81.82  76.54  51.00  65.62  79.60  82.45  74.61  

17 61.24  77.12  88.99  95.51  70.75  62.79  76.64  87.13  97.95  68.06  

18 33.20  45.11  61.28  77.11  64.99  33.84  46.27  60.63  77.22  63.87  

19 65.12  81.18  85.32  84.12  92.91  63.21  83.36  84.37  83.63  84.16  

20 51.92  72.14  84.94  81.52  65.77  53.05  72.53  82.48  79.44  69.59  

21 63.12  73.31  74.12  74.51  75.40  63.47  73.01  76.16  75.95  81.67  
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22 66.12  75.11  80.61  87.41  53.71  67.72  72.94  78.38  88.27  52.41  

23 14.01  31.90  43.75  53.31  82.33  11.92  31.71  45.37  51.14  72.84  

24 25.16  44.75  63.76  64.65  68.88  27.55  44.16  65.94  65.83  63.41  

25 75.27  79.42  82.91  89.76  73.25  73.40  80.45  83.13  91.35  75.34  

26 45.33  76.97  93.52  97.53  87.22  46.28  75.66  91.19  97.91  96.97  

27 53.80  70.30  84.46  89.62  65.69  51.45  72.23  86.81  87.54  64.54  

28 40.71  67.68  90.32  101.01  85.69  38.82  65.38  91.47  99.22  76.67  

29 60.60  67.21  75.25  85.17  69.54  58.26  69.24  73.25  85.53  69.93  

 

Table 4.20b The prediction result using 14 groups of formulation 

No. R15 R30 R45 R60 R-F2 E15 E30 E45 E60 E-F2 

1 70.12  75.53  97.92  98.84  57.62  70.22  75.90  96.62  98.27  57.67  

2 36.02  51.08  64.54  77.74  66.79  36.80  51.37  65.29  77.74  66.25  

3 38.73  62.02  73.26  78.55  62.86  38.55  60.85  74.39  79.59  61.63  

4 20.18  33.17  51.65  60.59  69.07  18.77  32.16  52.29  60.24  65.26  

5 29.19  47.78  53.24  71.01  56.39  29.77  48.96  54.47  71.60  58.97  

6 75.71  79.48  95.66  95.90  58.22  75.84  78.20  95.25  96.60  56.56  

11 32.83  42.18  44.08  53.26  53.03  31.75  41.20  42.77  52.09  55.05  

12 67.70  82.78  93.59  94.74  51.21  66.92  82.70  94.33  94.55  50.67  

14 62.21  78.43  81.09  85.76  65.18  61.93  78.14  81.91  85.81  65.30  

16 52.42  66.63  78.31  80.69  79.53  52.33  65.78  79.58  82.18  74.41  

17 62.09  77.10  89.35  94.79  72.31  62.24  78.35  88.99  93.76  76.61  

20 75.25  73.78  78.97  84.58  53.29  73.97  72.47  77.88  84.64  54.21  

21 61.75  72.68  74.55  75.32  73.72  62.57  73.58  75.90  76.44  78.09  

25 62.45  80.49  82.02  91.31  64.50  62.21  81.31  82.73  89.81  65.96  
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Table 4.20c The prediction result using 6 groups of formulation 

No. R15 R30 R45 R60 R-F2 E15 E30 E45 E60 E-F2 

1 67.43  77.39  99.46  95.54  57.22  68.55  77.99  99.67  93.77  57.71  

2 34.49  56.14  54.96  74.75  54.65  32.80  57.15  56.77  71.72  53.56  

4 25.74  46.45  64.06  67.28  54.09  26.31  45.78  65.47  64.41  54.33  

5 31.98  55.17  49.32  68.19  51.38  32.62  58.55  48.42  70.64  50.21  

16 51.60  56.84  63.80  75.55  55.57  48.26  59.83  63.99  73.65  56.86  

21 65.71  79.48  85.66  90.90  52.45  63.40  78.55  84.09  88.32  55.97  

 

In Table 4.20, No. represents the mark of formulation. The prediction results of 

prednisone release at 15min(R15), 30min(R30), 45min(R45), 60min(R60) by RLRM and 

15min(E15), 30min(E30), 45min(E45), 60min(E60) by EDRM are set. Furthermore, the 

F2 similarity of RLRM(R-F2) and the F2 similarity of EDRM(E-F2) are presented. 

 

 

Figure 4.13 Data bulk requirement comparison between Arthur’s model and our model 

 

As depicted in Table 4.20 and Figure 4.13, F2 similarities in RLRM and EDRM 
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prediction results exceed 50. Compared with Arthur Manda’s model, RLRM and EDRM 

can use a dataset with only six groups of formulation to predict the formulation dissolution 

curve with high accuracy instead 29 groups. In brief, the model of this study can reduce the 

database requirement less than orthogonal design data volume. 

4.5.6 Input Data Screen 

In practical application, large deviations of data often occur due to improper or 

incorrect operation of formulations by analysts during the experiment. In this study, data 

screening is of great importance. In this model, an initial predicted by the model was set as 

a training number. The program will predict the input data after the initial input data, 

compare it with the practical input data, and calculate the F2 value. The F2 value can be 

calculated by setting an appropriate F2 interval as the allowable error range. When F2 is 

beyond this interval, a prompt will pop up, hence researchers can manually delete the data. 

In addition, when the amount of data is large, it may take more time to conduct manual 

screening. At this time, it can be automatically filtered based on the F2 value. The program 

will automatically delete the suspected error data without asking whether to keep it. 

4.6 Chapter Summary 

In conclusion, the designed model is a data prediction model that can be applied in the 

early stage of formulation experiments or when the amount of data is small. When the data 

is abundant, the effect of noise is reduced due to the correction of a large amount of data, 

hence the prediction accuracy of the model will be improved. Moreover, when the 

prescription is changed, the data of the previous similar prescription can still be used to 

train the new prescription model. This method also tackles the problem that the preliminary 

research results cannot be referred to after the composition of the prescription excipients is 

fine-tuned. Furthermore, the designed model has the input data screening function that 
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immediately affects the input of abnormal data under the condition of a small amount of 

data, which lays a solid foundation for future high-throughput data training. 

The uncontrollable noise will affect the prediction data during the experiment. The 

cause of the error may lie in the poor loading of tablets, whereas the prediction accuracy 

remains F2>50. The algorithm of EDRM is more stable and efficient than RLRM. The 

prediction accuracy of RLRM is affected by the reference line. Thus, an optimal curve 

should be selected first, and then it should be employed as a reference line when RLRM is 

adopted, thus increasing the prediction accuracy. 

In contrast to previous research using the same database, RLRM and EDRM reduce 

the requirement of input data from 29 to 6 at high accuracy. With high prediction accuracy 

and low input data requirement, these two methods can be applicated in the real 

pharmaceutical research and development project. 
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Chapter 5 Monitoring and Analyzing Solid 

Formulation Dissolution Phenomenon with Image 

Recognition Technologies 

 

5.1 Chapter Introduction 

Dissolution test is considered the critical quality index in the research and 

development of solid formulation, especially the evaluation of drug bioequivalence. 

However, it exhibits a low-level operability, and it is tedious, making it always overlooked. 

Existing research required fixed tablet and analyzed the recorded video using disso 

GUARO PRO and Microsoft PaintTM. To this end, a novel image recognition system is 

developed to automatically track the moving tablet and simultaneously analyze the volume 

change. Besides, image recognition technology has been generally adopted to monitor the 

dissolution process, and the camera system with visible light and infrared camera functions 

are placed on the dissolution tester. The system is capable of collecting the plate image for 

binary processing, and then recording and calculating its pixel area, which can 

automatically record the volume change of tablets in the dissolution test, either the 

disintegration or the corrosion[100, 101]. 

5.2 Materials and Methods 

5.2.1 Materials 

Albendazole Tablets 200mg/Tablet (Sino-American Tianjin Skincare Pharmaceutical 

Co., LTD.), Famotidine Tablets 20mg/Tablet (Guangdong Bidi Pharmaceutical Co., LTD.), 

Lemon mints. 

5.2.2 Sampling 

There are two kinds of sampling, namely automatic sampling and manual sampling. 
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The automatic sampling system can automatically pump the sample within the required 

period. In contrast, manual sampling requires an experimenter to draw the sample using a 

special syringe [102]. 

5.2.3 Shading 

There are two methods to shading, i.e., making the bath box with LED glass and 

applying shade cloth or masks when a shading experiment is required. When necessary, the 

mask is placed on the dissolution meter to isolate the external light source. 

5.2.4 Camera and Infrared Light Source 

An IR-CUT camera with the function of both infrared camera and visible light camera 

by automatic switch was used to record the image in both day and night. Six IR lights were 

installed on that camera to achieve a dark environment light source. Furthermore, a light-

dependent resistor (LDR) was installed on the camera to switch the IR and visible light 

modes. Figure 5.1 presents the photo of the IR-CUT camera and the structure of the IR-

CUT camera system. 

 

 

Figure 5.1 The photo of IR-CUT camera module  
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As shown in Figure 5.1, 6 infrared light sources are posited on both left and right of 

the camera. A blue element besides of the camera is the LDR. 

 

Figure 5.2 An IR-CUT camera system structure chart  

 

As shown in Figure 5.2, the system is with image analysis system (include hardware 

and software), infrared light source, camera, circuit board and LDR. 

5.2.5 Instrument Design 

  

Figure 5.3 The whole instrument system structure chart 
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Figure 5.3 is the whole instrument system structure chart with both software and 

hardware for the dissolution test. The instrument system contains an image analysis 

program, a computer, a dissolution tester, visible/infrared light sources and an IR-CUT 

camera/normal camera. The image would be transferred into the image analysis program 

from the camera and the scatter diagram would be output as a result after analysis. 

5.2.6 Program Modeling 

Four steps showed below are used to achieve the image recognition in the image 

analysis program. 

Step 1: Get the original image 

The first step is starting the program to call the camera and then get a frame of image. 

Step 2: Image preprocessing 

The original image is resized to increase the speed of image processing. Afterward, 

box blur is adopted to remove the noise to achieve the condition of image contour 

connection. 

Step 3: Image segmentation 

Image binarization based on the threshold method sets tablet as white while setting 

the background as black. Subsequently, the white hole is removed using morphological 

transformation, and the white area contour is found to calculate the relative area. In 

accordance with the size of the white area, whether it is a tablet can be determined. A 

“central point” of this contour is determined using the average method (the average method 

refers to setting the average x-axis of top point and bottom point as “central point” x-axis 

and setting the average y-axis of left point and right point as “central point” y-axis) when 

the contour is determined as target tablet. Lastly, the tablet’s position is confirmed after the 

region grows based on the “central point.”. 

Step 4: Data visualization 
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The relative area of the tablet is determined in accordance with the pixel of region 

growth image. A scatter diagram with trend line is plotted in real time. 

The diagram below presents the whole process of this program. 

 

 

Figure 5.4 The process of program 

 

5.3 Result and Discussion 

In this project, the problem of capturing the moving tablet is settled. Moreover, this 

model solves the problem of the real-time monitoring of the moving tablet while 

completing the application testing. Previous projects only listed several limited examples 
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of specific tablets, whereas they failed to prove their capability of performing image 

recognition on tablets in all cases. Thus, real-time monitoring of tablets of different 

volumes, different colors, and different dissolution behaviors are performed to demonstrate 

the broad adaptability and application potential of the model. 

5.3.1 Disintegration Tablets Image Recognition Test 

The program suitability tests for disintegrating tablets fall into large-size tablets and 

small volume tablets. 

Large-Size tablets: Since the inactive ingredients in large-size tablets are insoluble 

in water, they will suspend in the liquid under the action of the paddle. The dissolution 

medium will become cloudy till it is invisible to the naked eye in the disintegration process 

due to the overmuch insoluble ingredients of large-size tablets. Consequently, the 

resolution ability of the program in the case of noise interference needs to be tested with 

large-size tablets as the test standard. If the high-dose tablets are successful, the system 

could meet most of the experimental requirements. 

Small-volume tablets: Small-volume tablets are the limit test for the resolution of the 

system. Since the recognition of tablets in the system is based on area, the system may 

ignore small volume tablets. This experiment uses small-volume tablets for limit testing. If 

there is a good result of the test, it means that the system's adaptability to tablet volume can 

meet the needs of routine experiments. 

5.3.2 Large-Size Disintegration Tablets 

Sample: Albendazole Tablets 200mg/Tablet (Sino-American Tianjin Skincare 

Pharmaceutical Co., LTD.) 

Appearance: White coated round medicine, white or similar white after removing the 

coating 
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Prescription composition:  

(a)Active ingredient: Abendazole 

(b)Inactive ingredients include lactose, starch, polyvinylpyrrolidone, sodium 

carboxymethyl starch, sodium saccharin, magnesium stearate, microcrystalline cellulose, 

sodium dodecyl sulfate, hydroxypropyl methylcellulose, low substituted hydroxypropyl 

cellulose, and cassava starch. Lactose and cassava starch were used as the fillers, 

hydroxypropyl cellulose and sodium carboxymethyl starch were disintegrators, and 

magnesium stearate was the glidant. 

Lactose acts as the filling agent of the tablet, starch acts as the binder and 

disintegrating agent of the tablet, magnesium stearate and sodium dodecyl sulfate serve as 

the lubricant of the tablet, hydroxypropyl methylcellulose serves as the binder of the tablet, 

and sodium saccharin serves as the flavouring agent to make the tablet taste better. 

Polyvinylpyrrolidone acts as the solubiliser to strengthen the solubility after the dissolution 

of benznidazole. Sodium carboxymethyl starch is the disintegrating agent. The 

disintegration promotion function of many disintegrants is affected by hydrophobic 

excipients (e.g. magnesium stearate and sodium dodecyl sulfate in this prescription), but 

sodium carboxymethyl starch is less affected by them. The excipients, which play a 

functional disintegration role, achieve rapid and significant swelling through rapid water 

absorption. Disintegration rate and phenomenon are the key factors of tablet dissolution 

rate. 

The analysis of its prescription reveals that this formulation conforms to the 

characteristics of the samples required in this experiment. The experimental results are 

presented in Figure 5.5, 5.6 and 5.7. The respective group of figures comprises three figures. 

The first image is a scatter diagram of volume changes over time and a real-time trend line. 

The unit of the horizontal axis is second, and the vertical axis is in pixels. A screenshot of 
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the practical tablet is illustrated in the second figure, and the image after binarization is 

presented in the third figure. 

 

  

Figure 5.5 The experimental results of Large Size Disintegration Tablets (a)  

 

As depicted in Figure 5.5, after the tablets are put in, the system starts to identify the 

tablets, draw a scatter diagram of the area of the respective period in accordance with the 

pixel area, and dynamically adds a trend line to guide the observation based on the trend 
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scatter. 

 

  

Figure 5.6 The experimental results of Large Size Disintegration Tablets (b)  

 

As depicted in Figure 5.6, the tablets start to absorb water and get imbibition, 

appearing like a cake shape. Furthermore, the disintegration begins. The trend of the 

volume can be judged following the curve and scatter diagram. 
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Figure 5.7 The experimental results of Large Size Disintegration Tablets (c)  

 

As depicted in Figure 5.7, consistent with the trend line, it can be found that its volume 

becomes stable after 200 sec, indicating the disintegration phenomenon completed at the 

same time. The remaining identification images are all conical precipitates formed by 

water-insoluble inactive ingredients. 

Summary 

As depicted in Figure 5.5, 5.6, and 5.7, the liquid in the dissolution cup at the end of 

the disintegration is significantly turbid, i.e., almost indistinguishable by the naked eye. 
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However, the system can still effectively identify the aggregated objects, suggesting that it 

can be employed in practical applications. In brief, it is capable of replacing the 

experimenter to observe the dissolution behavior of large-size tablets. 

5.3.3 Small Size Disintegration Tablets 

Sample: Famotidine Tablets 20mg/Tablet (Guangdong Bidi Pharmaceutical Co., LTD.) 

Appearance: White and round tablet 

Prescription composition: 

(a)Active ingredient: Famotidine 

(b)Inactive ingredients: Lactose, low substituted hydroxypropyl cellulose, cassava 

starch, sodium carboxymethyl starch, magnesium stearate. Lactose and cassava starch are 

the fillers, hydroxypropyl cellulose and sodium carboxymethyl starch are using as 

disintegrator, and magnesium stearate is the glidants. 

Figure 5.8, 5.9, and 5.10 present the experimental results. The respective group of 

figures comprises three figures. The first image is a scatter diagram of volume changes 

over time and a real-time trend line. The horizontal axis is in second, and the vertical axis 

is in pixels. A screenshot of the practical tablet is presented in the second figure, and a 

binarized image is illustrated in the third figure. 
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Figure 5.8 The experimental results of Small Size Disintegration Tablets(a)  

 

As depicted in Figure 5.8, after the small tablet is placed into the dissolution cup, the 

image recognition program successfully recognizes them and starts to generate a scatter 

diagram of area changes. 
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Figure 5.9 The experimental results of Small Size Disintegration Tablets(b)  

 

As depicted in Figure 5.9, the small tablet starts to absorb water and get imbibition. 

Subsequently, particles spread in the respective part of the dissolution medium, whereas 

the image recognition program still clearly recognizes the tablet and paints an exemplary 

scatter diagram. 
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Figure 5.10 The experimental results of Small Size Disintegration Tablets(c)  

 

Figure 5.10 presents the completion of small volume tablet disintegration, and most 

of the insoluble particles are suspended in the cup. Since the particles are smaller than the 

set limit value, they are no longer recognized. The area change of the whole dissolution 

process can be observed easily in accordance with the final curve. 

This experiment examines the system's ability to recognize small-volume tablets, such 

that the needs of typical experiments can be met. 
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5.3.4 Erosion Tablets 

Identification test of corrosion phenomena 

The erosion phenomenon usually occurs in the dissolution experiments of standard 

formulations and sustained-release formulations with dissolution skeletons. Among them, 

two widely recognized soluble formulations are candy and lozenges. The sample use here 

is Lemon mints tablet with yellow color and double layer structure. 

Sample: Lemon mints 

Appearance: Yellow and white double layer oval tablet 

Prescription composition: Sorbitol, DL-malic acid, magnesium stearate, sucralose, 

natural menthol, tartrazine, vitamin C, in which except magnesium stearate as a flow aid, 

all are flavor correction agent, dye or preservative. 

Figure 5.11 presents the experimental results. The respective group of figures 

comprises three figures. A scatter diagram of volume changes over time and a real-time 

trend line are presented in the first figure. The horizontal axis is illustrated in the second 

figure, and the vertical axis is in pixels. A screenshot of the practical tablet is presented in 

the second figure, and the image after binarization is illustrated in the third figure. 
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Figure 5.11 The experimental results of Erosion Tablets (a) 

 

As depicted in Figure 5.11, the tablets are placed at the bottom of the dissolution cup, 

the image recognition program starts to identify them effectively, records the scatter 

diagram of volume changes while adding the real-time trend line. 
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Figure 5.12 The experimental results of Erosion Tablets (b)  

 

As depicted in Figure 5.12, the tablet gradually dissolved and became a smaller size. 

The image recognition program is also operating normally, and the scatter diagram is 

plotted well, and the real-time trend line goes well. 
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Figure 5.13 The experimental results of Erosion Tablets (c) 

 

As depicted in Figure 5.13, due to the fragmentation phenomenon of the tablet during 

the dissolution process, resulting from the data and the scatter diagram anomaly, but as the 

fragments continue to become smaller, the data returns to the trustworthy interval. 
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Figure 5.14 The experimental results of Erosion Tablets (d) 

 

As depicted in Figure 5.14, the tablet is completely dissolved. The volume 

(recognition area) changes during the eroding period can be accurately analyzed in 

accordance with the scatter diagram. 

Summary 

In this dissolution experiment, unexpected situations (e.g., tablet debris) may cause 

short-term analysis errors. However, with the gradual decrease of the large pieces of debris, 

the system returns to normal, accurately depicts the scattered points of the identified area 
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image while reasonably adding real-time trend lines. 

5.3.5 Different Color Tablets 

The coating of tablets has a variety of colors. Figure 5.15 presents the coating color 

card provided by Shanghai Colorcon Coating Technology Co., LTD. There are 200 colors 

from dark to light, thus posing a significant challenge to the sensitivity of image recognition 

in the dissolution experiment. 

 

 

Figure 5.15 General Color Wheel from Shanghai Colorcon Coating Technology Co.LTD 

 

White, yellow, bright red, bright blue, deep blue, dark red, green and purple small 

round plastic plates are selected to test the recognition ability of the system to increase and 

test the adaptability of the system. Eight groups of figures are presented in Figure 5.16(a-

h). 
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The first figure presents a practical photo of the respective set of plastic sheets. 

Moreover, second figure represents the photo of the plastic plates at the bottom of the 

dissolution cup. Image after binarization is presented in the third figure. The fourth figure 

illustrates the photo after noise cancellation. 

 

 

Figure 5.16a White small round plastic plate 

 

Figure 5.16b Yellow small round plastic plate 

 

Figure 5.16c Bright red small round plastic plate 
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Figure 5.16d Bright blue small round plastic plate 

 

Figure 5.16e Deep blue small round plastic plate 

 

Figure 5.16f Dark red small round plastic plate 

 

Figure 5.16g Green small round plastic plate 
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Figure 5.16h Purple small round plastic plate 

Summary 

In this test, eight colors cover the spectrum from long optical to short optical 

wavelength while receiving a good result that the image recognition program can 

successfully recognize the above-mentioned color plates. As revealed by the above result, 

the program exhibits high suitability in tablets with standard colors. 

5.3.6 Infrared Condition 

For some photosensitive drugs, shading treatment should be performed for the 

dissolution experiment. Since the water bath completely blocks light, visible light cameras 

cannot be employed, resulting in the necessity of adopting the infrared camera to overcome 

the deficiency. Moreover, the image recognition of the infrared camera is optimized. The 

advantage of infrared cameras is not just their applicability to the situation without visible 

light. In general, the images are black and white, such that the color of the tablet is ignored 

in this experiment. The IR-CUT camera module is adopted using this system, in which the 

main structure serves as an LDR to control the switch between infrared camera and visible 

camera. Six infrared light sources automatically turn on when the camera is switched into 

infrared camera mode, infrared mode, and visible light mode. Figure 5.17(a-c) present the 

system practicability test of the infrared camera under infrared light source. The sample 

applied is consistent with those employed in the small volume tablet experiment. 

The first image depicts a scatter diagram of volume changes over time and a real-time 

trend line. The unit of the horizontal axis is the second, and the vertical axis is in pixels. A 
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screenshot of the practical tablet is presented in the second figure, while the image after 

binarization is presented in the third figure. 

 

 

Figure 5.17a System practicability test(a)  

 

As depicted in Figure 5.17a, when the tablet is located at the bottom of the dissolution 

cup, the infrared camera successfully captures the tablet, and the image recognition 

program successfully recognizes it. 



119 

 

Figure 5.17b System practicability test(b)  

 

As depicted in Figure 5.17b, the tablet begins to absorb water and expand. Moreover, 

the reflection of the stirring paddle in the second figure does not interfere with the image 

recognition presented in the third figure. The program runs well and plots the ideal scatter 

diagram, and real-time trend lines are introduced. 
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Figure 5.17c System practicability test(c) 

 

As depicted in Figure 5.17c, the disintegration of the tablet is completed, and the 

water-insoluble inactive ingredients precipitate and accumulate. The scatter diagram in the 

first figure indicates that the area tends to be constant after nearly 300 sec. As a result, the 

total disintegration time can be judged at nearly 300 sec based on the scatter diagram and 

the trend line. 

Summary 

The light source is closer to idealization since there is no external light interference, 

such that infrared imaging has less environmental noise. 
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5.4 Chapter Summary 

In result, a summarize table was shown in Table 5.1 below. 

Table 5.1 A summarize table of experimental result and discussion 

Experiment Results Comment 

Large-size Tablets 

Disintegration 

According to the change of 

measured area, the dissolution 

behavior was recorded by the 

scatter diagram clearly. 

N/A 

 

Small Volume Tablets 

Disintegration 

The program successfully 

recognizes the small volume 

tablets from the beginning till 

the end. 

N/A 

Erosion The output of scatter diagram 

gives a trend of tablet volume 

reduce. 

A short noise result from a 

small tablet debris can 

influence the scatter diagram 

plotting, but it has no effect 

on the trend line. 

Different Color White, yellow, bright red, 

bright blue, deep blue, dark 

red, green and purple small 

round plastic were used to test 

the program suitability and 

received a good result. 

N/A 

Infrared Condition Because of the stable light 

environment, the infrared 

condition experiment showed a 

good result. 

N/A 

 

This project shows that the real-time dissolution phenomenon monitoring (RTDPM) 

system provides solution to capture the moving tablets and provide a camera system to 

reduce the risk of light unstable tablets. This has been proven in the tests where it can satisfy 

the disintegration phenomenon of both small and regular size tablets. Besides, the volume 
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change curve of the corrosion plate can also be recorded. For some tablets that are less 

stable in visible light, IR method can give a perfect solution (all substances above absolute 

zero emit infrared light. The infrared light source of the IR camera can slightly enhance the 

illumination intensity but not luminous energy). To sum up, this system can solve most 

dissolution test image recognition problems. 

However, the color of the tablets and the light jam of the environment in this system 

still affect the test result, which should be noted in future research. 

 



123 

Chapter 6 Conclusions and Future Works 

 

6.1 Concluding Remarks 

In Chapter 3, an ANN prediction model based on BPNN and RBFN is adopted to 

predict the dynamic solubility of Indometacin powder in water. In accordance with the 

database of five experiments, the model completes the training and provides a prediction 

result under different conditions with high accuracy. The F2 similarity between the 

experiment result and the prediction result range from 83.29 to 93.5 for the BPNN model, 

as well as between 67.23 and 91.46 for the RBFN model. Besides, a data optimization 

module is also presented in this chapter based on the relative standard deviation of 

experiment data groups. Moreover, the theory trend of the dynamic solubility curve is 

determined using a core equation derived from Hixson-Crowell cube-root and Nernst-

Brunner expression. The application of this method limits the frequency of dynamic 

solubility experiment as 5. Compared with DDD Plus, the ANN model required less input 

elements and provided an easier operating mode. 

A model is proposed based on ANN and non-linear regressions in Chapter 4 to predict 

the dissolution result of different prescriptions tablets. The research on Tinidazole tablet is 

adopted to test the prediction model, while the result of dissolution test is predicted using 

ANN, and two novel non-linear regression methods (i.e., EDRM and RLRM) are adopted 

to calculate the final value of prediction output. As indicated in the test results, the 

prediction results over 50 of EDRM and RLRM meet the guidance of F2 similarity. 

Compared with Arthur Manda’s work[32], EDRM and RLRM can reduce the requirement 

of input data from 29 to 6 with over 50 F2 value. In contrast, EDRM provides more stable 

prediction accuracy, whereas the RLRM method can offer a high prediction accuracy under 

the premise of highly accurate reference data. Besides, an input data screening function is 
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achieved by the decision tree in accordance with the value of F2 similarity, such that the 

frequency of tablet experiment can be limited in a designed number. As a result, the time 

is saved to perform at least half the experiments.  

Chapter 5 offers an image recognition system consisting of an IR camera module and 

image recognition program to monitor the phenomenon of tablet dissolution. In this system, 

an IR camera with infrared light source was adopted to record the image of tablets in visible 

light and dark conditions. Based on the region growth and HSV, the system can recognize 

and calculate the pixel areas of different colors tablets. The camera can also automatically 

capture the moving tablet image using the image segmentation method, thereby saving at 

least 8-72 h of working time for a single experiment. 

6.2 Future Works 

The proposed model can accurately predict the dynamic solubility of the API and 

dissolution of tablets, but its function still needs to be optimized. First, although the demand 

for input data is significantly reduced in the model, the required training data should still 

be obtained through experiments. The optimal method to tackle down the above-mentioned 

problem is to build a large database of formulation dissolution in cooperation with 

pharmaceutical companies. On that basis, relevant data will serve as the inputs to train the 

model, such that the experimental results can be predicted without experimental data. This 

method exhibits high prediction accuracy, whereas the data leakage should be strictly 

avoided in the establishment of the database since most of the experimental data are 

confidential information originating from a company. Moreover, the properties of all 

excipients can be digitally modeled to develop a database. When a novel formulation 

process is substituted into the model, predictions are generated based on the dynamic 

solubility of the drug substance, the physicochemical properties of the excipients, as well 

as the process parameters. The advantage of the above-described model lies in that it does 
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not require a large dissolution database. Given the absence of practical experimental data, 

the predicted results may not be always accurate, whereas they still take on guiding 

significance to a certain extent. 

Nonetheless, the image recognition function of the model still has a lot of room for 

improvement. First, image recognition utilizing neural network techniques (e.g., 

convolutional neural networks) may work more efficiently under the sufficient database 

available. Second, the tablet volume in this model is presented by a 2D pixel image, thus 

revealing the tablet volume changes, whereas the calculating accuracy cannot be ensured. 

In future research, multiple cameras can be used to monitor the pills and draw the 3D 

images to accurately calculate the volume changes. Third, with the development of mobile 

technologies like the 5G technology, the internet of everything (IoE) will also be realised 

among dissolution equipment. The images and analysis results should be shared on mobile 

devices like mobile phones through the IoE to achieve real-time experimental monitoring. 
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