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Abstract—Metamorphic testing (MT) has been growing in pop-
ularity, but it can still be quite challenging and time-consuming
to assess its performance. Typical approaches to performance
assessment can require a series of steps, and depend on a variety
of factors, often requiring serendipity. This can be a bottleneck
for some aspects of MT research. Central to MT, metamorphic
relations (MRs) represent necessary properties of the system
under test (SUT). In traditional software testing, simulations are
often employed to examine and compare the performance of dif-
ferent testing strategies. However, these simulations are typically
designed based on the assumed availability (and applicability) of
a test oracle — a mechanism to decide the correctness of the SUT
output or behaviour. A key reason for the popularity of MT is its
proven record of effective software testing, without the need for
a test oracle. This strength, however, also means that traditional
ways of using simulations to analyse software testing approaches
are not applicable for MT. This lack of cheap and fast ways to
conduct simulation analyses of MT is a hurdle for many aspects
of MT research, and may be an obstacle to its more widespread
adoption. To address this, in this paper we introduce the concept
of MR-violation regions (MRVRs), and show how they can be
used for a certain category of MRs, Deterministic MRs (DMRs),
to build simulation tools for MT. We analyse the differences
between MRVRs and traditional, oracle-defined failure regions;
and report on a preliminary case study exploring MRVRs in
numerical-input-domain systems from previous MT studies. We
anticipate that the proposed MT simulation framework may
facilitate more research into MT, and may help lead to its more
widespread adoption.

Index Terms—software quality assurance, oracle problem,
metamorphic relations (MRs), metamorphic relation violation
region (MRVR), metamorphic testing, simulations

I. INTRODUCTION

Computer software is becoming more complex and so-

phisticated, but, in many cases, the related software quality

assurance processes are not keeping pace, resulting in an

increasing number of challenges. One of the fundamental

challenges is the oracle problem [1]–[4]. In traditional software
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testing, the oracle is a mechanism for checking the correctness

of the output/behaviour of the system under test (SUT). If

the oracle is not available, or is too expensive to be used,

then this SUT is said to face the oracle problem [1], [4].

Traditional software testing methods are not applicable for

testing systems facing the oracle problem, but metamorphic

testing (MT) is a method that has a record of being able

to alleviate it [2], [3], [5]. MT detects software failures by

checking the metamorphic relations (MRs) among multiple

test cases, where MRs represent the necessary properties of

the SUT [2], [3], [6]. Given an MR, the relevant source test

cases (STCs) and follow-up test cases (FTCs) are referred to

as metamorphic groups (MGs) [3]. According to the number

of STCs and FTCs, the MRs generally can be divided into the

following four classes [3], [7]: (1) 1-1 MRs, where only one

STC is used to generate only one FTC; (2) 1-N MRs, where

only one STC is used to generate N FTCs (N > 1); (3) M-1

MRs, where M STCs (M > 1) are used to generate only one

FTC; and (4) M-N MRs, where M STCs (M > 1) are used

to generate N FTCs (N > 1).

The successful implementation of MT relies heavily on the

MRs and MGs used [2], [7], [8]. Furthermore, evaluation of

the MT performance can involve a number of steps, such as,

for example, the following:

1) Identify an SUT and create faulty copies (called mu-

tants) by inserting artificial faults into the system, man-

ually or with an automatic mutation tool [9].

2) Identify MRs for the SUT.

3) Generate the MGs (the STCs and FTCs).

4) Execute the generated test cases against the mutants.

5) Examine the outputs with reference to the given MRs,

checking for violations.

Obviously, this can be a difficult and time-consuming process.

In traditional software testing, the approach of simulation

is commonly used to examine the performance of the testing
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method [10], and can reduce much of the difficulty and time

overheads. The simulation approach typically uses artificial

failure regions, and can evaluate the performance by checking

whether or not the generated test cases are located inside

these failure regions [10]. In normal testing, failure regions

are those parts of the input domain that are failure-revealing

inputs: Their execution causes the SUT to produce unexpected

behaviour or output — and thus, the test case fails. In

simulations, SUT execution is not necessary, the location of

the test case is sufficient to determine whether or not it fails.

Because MT does not assume the existence of an oracle

[10], and checks for MR violations (not for test-case failures),

traditional approaches for using simulations are not readily

applicable. This lack of easy access to simulations can hinder

the fast development and exploration of some aspects of MT

research. This paper addresses this challenge by introducing

the concept of MR-violating regions (MRVRs), and using

them to support simulation analysis and testing for a particular

category of MRs. The simulation approach can reduce the time

required to evaluate the MT performance, and make it easier

for testers/researchers to set up MT-related experiments. As

reported in previous studies [7], [8], [11], the quality of MGs is

likely to impact the performance of MT. However, evaluation

of the MT test efficiency (the time required for generation

and execution of each test case [12]) and effectiveness (fault-

detection capability [12], [13]) is often a difficult and time-

consuming task [2]. Being able to simulate the MT process

should enable testers/researchers to more easily and quickly

achieve these aims, supporting faster and deeper investigation

into MT.

This paper also briefly explores the relationship between

failure regions (from traditional, oracle-based software testing)

and MRVRs, and proposes three categories of MRVRs: block;

point; and strip. We also report on a preliminary investigation

into the presence of these MRVR types in systems with

numerical inputs, from previous MT-related studies.

The rest of this paper is structured as follows: Section II

introduces the background information for traditional software

testing and simulations. Section III introduces our proposed

simulation framework for MT. As part of our framework

presentation, we also introduce the concepts of Deterministic

MRs (Section III-A), and MR-violation regions (MRVRs)

(Section III-B). In Section III-C, we compare and contrast

MRVRs with traditional failure regions, explaining how they

are not expected to be the same. Section IV reports on a

case study exploring the potential MRVRs in systems with

numerical inputs. Finally, Section V offers a conclusion, and

discusses limitations and future work.

II. BACKGROUND

In software testing, when a program developer makes a

mistake, a fault in this program may be produced, and a

failure may be detected if this fault is encountered [14]. In

other words, after the execution of a test case tc, a failure

is revealed/detected if the output or behaviour of the SUT is

Fig. 1. Three kinds of failure regions in the 2-dimensional input domain [10]

different from expected. In this situation, tc is called a failure-
causing test case. The set of all failure-causing test cases for

a given SUT, as a proportion of all possible test cases in

the input domain, is called the failure rate [3], [10]. Random
testing (RT) is a popular black-box software testing technique,

producing random, independent test cases for the SUT [15],

[16]. It has been reported that failure-causing test cases tend

to cluster into contiguous regions called failure regions [17]–

[22]. The neighbours of a failure-causing test case should

have a high probability of also being failure-causing; and the

neighbours of a non-failure-causing test case should have a

high probability of being non-failure-causing. Therefore, if

new test cases are selected from the regions that are far away

from the non-failure-causing test cases, then these should be

more likely to be failure-causing. With these considerations,

a family of advanced test case generation methods called

adaptive random testing (ART) was proposed: ART aims to

achieve an even distribution of test cases across the entire input

domain [10], [23], [24], and thereby improves on RT across a

number of metrics [10].

Chan et al. [25] identified and summarized three common

types of failure regions: block; point; and strip. Typical exam-

ples of these three failure region types in a two-dimensional

input domain are shown in Fig. 1. Traditional simulation

analysis (e.g., for RT and ART) generally creates one type of

artificial failure region based on a pre-defined dimensionality

and failure rate, and a failure is detected if the new test case

is inside a failure region. The three broad categories of failure

regions can be summarized as follows [10], [25]:

• Block failure region: The failure-causing test cases cluster

in at least one contiguous area.

• Strip failure region: The failure-causing test cases cluster

in a narrow and contiguous linear area.

• Point failure region: The failure-causing test cases are

spread in the input domain, individually or in small

groups.

Simulations have been used extensively in the development of

many software testing techniques [10]. However, to the best

of our knowledge, no simulation framework for MT exists.

This lack of an applicable framework for MT test simulation

motivated some of the work in this paper.



III. A SIMULATION FRAMEWORK FOR MT

A. Deterministic Metamorphic Relations

Suppose we are testing a system that is used to calculate

the square of a number, square(x). Two possible examples

of 1-1 MRs for this system are: (1) MRsquare−a: If a specific

positive integer P (P = 1) is added to the source input to

generate the follow-up input, then the follow-up output should

be larger than the source output; and (2) MRsquare−b: If a

positive integer Q (Q > 0) is added to the source input to

generate the follow-up input, then the follow-up output should

be larger than the source output. Obviously, for the first kind of

1-1 MR, one STC can generate one and only one FTC, while

for the second type of 1-1 MR, given an STC, we can generate

different FTCs when using different values for Q. We refer to

an MR for which one specific STC generates one (and only)

specific FTC as a Deterministic 1-1 MR (DMR[1-1]). Using

this notation, the first MR example above may be written as

DMR[1-1]square−a. We generalise this concept to define a

Deterministic M-N MR (DMR[M-N]) as an M-N MR such that

for any series of M STCs (< STC1, STC2, . . . STCM >)

in a given valid MG, there is only one unique series of N
corresponding FTCs (< FTC1, FTC2, . . . FTCN >).

B. Metamorphic Relation Violation Regions

Suppose we are conducting MT on an SUT using a Deter-

ministic 1-1 MR (DMR[1-1]): We can use all possible STCs

in the input domain, automatically generate the relevant FTCs,

and identify the set of those STCs (with their relevant FTCs)

that violate the given MR. If we later select an STC from this

test set, then this MR will be violated. In this example, we do

not need to consider FTCs any further — because the FTCs

are fully determined by the STC (and the (D)MR), only the

STCs are of interest. The FTC cannot be changed once the

STC and the DMR have been decided. At this point, an MT

simulation can be created (for this category of MR) where,

without any execution of the SUT, violation of this MR can

be identified by finding any STC that causes a violation: These

STCs are called (D)MR-violating STCs. The MR-violation

rate is the number of MR-violating STCs as a proportion of

all possible STCs. The MR-violation region (MRVR) refers to

the regions of MR-violating STCs and MR-violating FTCs. We

can further refer to the MRVR-S as the STC-only component

of the MRVR — the regions of the input domain from which

any STC drawn and used with this MR will result in an MR

violation. Similarly, the MRVR-F is the FTC-only component

of the MRVR. In this context, determination of whether or not

the MR is violated only requires checking if the selected STC

is one of the MR-violating STCs (is inside the MRVR-S).

Obviously, the MRVRs will change for different MRs.

For the second type of 1-1 MR, like MRsquare−b, identi-

fication of the MRVR-S requires that the value of Q first be

set. For instance, when Q = 1, we can get one MRVR-S (the

same as for MRsquare−a); when Q = 2, we may get a new

MRVR-S; and so on. These different values of Q can each be

considered to create an input domain; or the entire SUT could

be considered to have an additional input domain dimension,

identified by the different values of P . Further discussion of

MRVR identification for other MR types (non-DMR[1-1]) is

beyond the scope of the present paper, but is part of our

ongoing and future work.

A process using DMRs and MRVRs for MT simulations

can be summarized as follows:

1) Select a suitable (processed) SUT for which the identi-

fied DMR-violation rate and regions are appropriate.

2) If a stopping condition is not triggered, do:

a) Execute the given (metamorphic) test case genera-

tion strategy to get a new STC.

b) A violation is detected if this new STC is inside

an MRVR-S.

C. Relationship between MRVRs and Failure Regions

It is important to emphasise that, for a given faulty SUT, the

failure regions and the MRVRs are expected to be different to

each other. Obviously, in situations where the SUT faces the

oracle problem, there can be no determination of the failure

region locations. However, even assuming an oracle, as already

noted, MRVRs are specific to a particular MR, with different

MRs expected to have different MRVRs, even for the same

SUT. Similarly, failure regions are comprised of test cases

that reveal a failure, as determined by the oracle. As has been

discussed elsewhere [26], many successful testing experiences

have included MR violations that revealed faults that could

not be identified through traditional oracle-based testing.

For a given faulty SUT with an available oracle and a 1-1

MR, if either the STC or the FTC is in the failure region, then

their execution will result in the oracle identifying a failure-

causing input (or two, if both the STC and the FTC are in

the failure region). However, there is no guarantee that MGs

comprising such failure-causing STCs or FTCs would also

result in a violation of the MR.

As has been noted in previous studies [2], [27], [28],

effective MT often includes the use of several diverse [29]

MRs, with their combined ability being able to outperform any

individual MR [29], [30]. Although this is perhaps desirable

in real testing, the scope of the current paper relates to the

provision of simulation tools for specific individual MRs (in

particular, Deterministic 1-1 MRs). In this context, the user

may prefer to create simulations where MR-violating STCs

(MRVR-S) or MR-violating FTCs (MRVR-F) are also failure-

revealing (i.e. the MRVR and the failure region are identical).

This is, for the MT simulation framework in this paper, a trivial

extension.

Related to the failure regions in traditional oracle-based

testing or simulations [25], it is reasonable to postulate the

existence of similar, MT-oriented, categories of block, point

and strip shapes for MRVRs (including at the level of MRVR-

S and MRVR-F). For SUTs (in reality or simulations) with

Deterministic 1-1 MRs, for example, we can identify: (1)

Block MRVRs, where the MR-violating STCs/FTCs cluster in

at least one contiguous area; (2) Strip MRVRs, where the MR-

violating STCs/FTCs cluster in a narrow linear area; and (3)



TABLE I
PRELIMINARY CASE STUDY SUTS AND MRS

SUT: Sin Bessjy TriSquarePlus
Dimension of Inputs: 1 2 3

Input Domain:
(-1000, 1000),

(0, 1000)
((1, 1),

(100, 100))
((0, 0, 0),

(100, 100, 100))

MR:
MRSin1,
MRSin2

MRBessjy MRTriSquarePlus

Type of MR: 1-1 MR 1-2 MR 1-1 MR

DMR Notation:
DMR[1-1]Sin1,
DMR[1-1]Sin2

DMR[1-2]Bessj DMR[1-1]TriSquarePlus

Number of Mutants: 10 10 10

Fig. 2. Details of the Case Study MRs [7], [11], [31], [32]

Point MRVRs, where the MR-violating STCs/FTCs are spread

throughout the input domain, individually or in small groups.

IV. A PRELIMINARY CASE STUDY IDENTIFYING MRVRS

FOR DMRS

We conducted a preliminary investigation into the presence

of the different types of MRVRs. In the interests of simplicity,

and for ease of visualisation and representation, systems with

numerical input domains and low dimensionality were se-

lected. The investigation involved examination of four DMRs

identified for three pieces of software, all of which have been

previously studied and published [7], [11], [31], [32]:

• DMR[1-1]Sin1 and DMR[1-1]Sin2 are 1-1 Deterministic

MRs for an implementation of the sine function, Sin(x)
[11], [31], [32].

• DMR[1-2]Bessj is a 1-2 Deterministic MR for an im-

plementation of the Bessel function, Bessjy(x, y) [11],

[32].

Fig. 3. Block MRVR-S for Bessjy with DMR[1-2]Bessj

Fig. 4. Strip MRVR-S for Bessjy with DMR[1-2]Bessj

Fig. 5. Point MRVR-S for Bessjy with DMR[1-2]Bessj

• DMR[1-1]TriSquareP lus is a 1-1 Deterministic MR for

an implementation of a program that calculates the type

and square of a triangle, TriSquareP lus(x, y, z) [7].

Table I summarises the details of the three SUTs and related

(D)MRs; and Fig. 2 presents the MR details.

Ten mutants were created for each SUT. Execution of

the STCs (and FTCs) for each mutant SUT allowed for the

mapping of the relevant MRVRs. These MRVRs were then

manually examined and categorised as one of the three MRVR

types. Examples of the three MRVR-S (MRVR for the STCs)

types in a 2-dimensional input domain, for the Bessjy(x, y)
function, are shown in Figs. 3, 4 and 5:

• The MR-violating STCs in the MRVR-S in Fig. 3 approx-

imately cluster in a contiguous jagged rectangular region,



which we classified as a block MRVR (MRVR-S).

• The MR-violating STCs in the MRVR-S in Fig. 4 ap-

proximately cluster in a narrow line connecting adjacent

edges, which we classified as a strip MRVR (MRVR-S).

• The MR-violating STCs in the MRVR-S in Fig. 5 are

less obviously clustered, and are more diversely spread

throughout the input domain, which we classified as a

point MRVR (MRVR-S).

Although this was only a preliminary attempt to investigate

the possible MRVR types, the results support their presence,

and their identification and classification. A more comprehen-

sive and in-depth investigation of this will form part of our

future work.

V. CONCLUSION

As MT has been increasing in popularity, the question

of how to (quickly) evaluate its performance, including its

efficiency and effectiveness, has become more pressing. Other

testing approaches have often benefitted from the use of

simulations to enable fast evaluation of testing parameter

or configuration settings. The lack of a similar simulation

framework for MT has impeded some experimentation and

study. In this paper, we have presented a framework to support

simulating the MT process. To the best of our knowledge, this

is the first such framework in the literature.

Because MT alleviates the need for an oracle, our simulation

framework makes use of the concept of MR-violation regions

(MRVRs), which can be used for a type of MRs that we have

labelled Deterministic MRs (DMRs). For 1-1 DMRs (MRs

which have one source test case, and generate exactly one,

determined, follow-up test case), the use of the MRVR-S

(the MRVR comprising only STCs) allows a simulation to

be created where generation of the test case in the MRVR-S

can be considered to result in a violation of the MR, without

further exploration of the FTC or execution of the SUT.

We discussed the relationship between the oracle-based

testing failure regions and MRVRs, noting that they are not

expected to be the same regions. Similar to the three categories

of failure regions identified in traditional testing [25], we

proposed three MRVR shapes/types: block, strip, and point.

We also reported on a preliminary case study examining the

MRVRs (MRVR-Ss) for some SUTs and MRs from some

previous studies, showing the potential to identify these three

MRVR types.

A limitation of this paper has been the focus on just one

type of DMR. Our future work will involve further MR

classifications, and examination of how to prepare related

simulations. Other MRVR categories will also be explored. We

anticipate that this research direction will enable testers and

researchers to more quickly and efficiently explore different

MT settings and configurations, leading to insights, and better,

and more widespread, use of MT.
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