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Abstract 

Urbanization brings physical changes to land surfaces of Shanghai and 

consequently impacts its local climate. Studies of urbanization effect on urban climate 

for Shanghai area using numerical modelling is insufficient. The purpose of this 

research is to narrow the gap by coupling the Weather Research and Forecasting model 

with the NOAH land surface model and the Urban Canopy Model - WRF/NOAH/UCM 

to examine the urban climatology of Shanghai since 21st century. 

The model is first validated against a network of meteorological observations in the 

region to determine its suitability for urban climate investigations. Climatological 

variables (near-surface temperature, relative humidity, and wind speed) along with land 

use and land cover changes, planetary boundary layer height, and urban heat island 

intensity of the area are also investigated. The model evaluation shows good 

performance over the region. Land use and land cover change demonstrates strong 

influence in thermal climatology variations. 

The results shows that the average heat island intensity in Shanghai increased by 

1.08°C from 2000 to 2017, with the highest heat island intensity reaching 3.41°C. 

Torrid area (Thermohydrometric Index > 30) also improved by 11%. Other 

climatological variables varied accordingly with the urbanization processes. 

The simulation of climate prediction for Shanghai in 2030 shows that the 

development under representative concentration pathway 8.5 will face the worst 

thermal condition, and the intensity of heat island effect will be further increased by 

about 2°C compared with the current situation. Among them, 63% and 37% are from 

the background of global warming and urbanization, respectively.  
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1 Introduction 

1.1 Background 

Since the late 1970s, global climate change has undoubtedly been an environmental 

issue of great concern at home and abroad. The Intergovernmental Panel for Climate 

Change (IPCC) has conducted five assessments of the science, impacts, adaptation, and 

mitigation of global climate change, all of which have shown very clearly that human 

activities have a significant impact on global warming (IPCC, 2013). The fifth 

assessment report of the IPCC (IPCC AR5) has found clear evidence for the direct and 

indirect impact of anthropogenic activities on the climate system. As an important 

member of the climate system, human beings are influenced by various natural 

processes in the climate system on the one hand. On the other hand, with the progress 

of human society and economic development, the impact of human activities on climate 

change is becoming more and more significant. In the IPCC AR5, it was clearly stated 

that global warming due to human activities is continuing to increase and that there is 

a high degree of certainty (over 95% probability of occurrence) that human activities 

have contributed to climate change over the last 50 years, with global warming as the 

main feature (IPCC, 2019; Brasseur et al., 2012). 

There are three main ways in which human activity influence the climate. Firstly, 

the burning of fossil fuels from industrial production and greenhouse gases emission 

from agricultural activities, increases the atmospheric concentration of carbon dioxide 

and other greenhouse gases. Secondly, the smoke and industrial dust produced by 

human activities lead to changes in the concentration of aerosol particles in the 

atmosphere. Finally, human social and economic development and progress inevitably 

bring about changes in land use patterns and the nature of the subsurface (Brasseur et 
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al., 2012). All these activities directly or indirectly influence the Earth's radiation 

balance, and the climate system responds directly to the changes in the radiation balance, 

while amplifying or reducing them through feedback mechanisms (Li et al., 2010).  

The main impact of land use and land cover on climate change is that underlying 

surface directly cause the change of land surface physical characteristics, altering the 

surface albedo and the exchange of energy and materials between the land surface and 

the atmosphere, affecting the energy balance of the land surface and thus the regional 

climate characteristics. Besides, changes in vegetation type, density and soil 

characteristics also change the climate through other mechanisms. For instance, the 

terrestrial carbon storage and fluxes, which in turn cause changes in atmospheric 

greenhouse gas levels (Goldewijk et al., 2001). 

The rise and expansion of cities has replaced the natural surface with dense 

buildings and impervious surfaces. As a result, the surface roughness increases, while 

the surface wind speed and air humidity decrease correspondingly, thus speeding up 

the diameter. On the other hand, the decrease of surface albedo and the change of heat 

conduction and heat capacity lead to the increase of turbulence. All these alter the 

relative size of the heat and water budgets in the exchange of matter and energy between 

the surface and the atmosphere (Kalnay, 2003). 

With the acceleration of urbanization, urban surface and structural layout have 

become more comprehensive, complex, and diversified, especially in megacities where 

there are many high-density living areas. This special underlying surface has a 

significant impact on local climate. In addition, industrial production and residential 

life in the city release a large amount of anthropogenic heat and exhaust gas, resulting 

in the city temperature being significantly higher than the surrounding suburbs: a 

phenomenon often referred to as the "urban heat island effect. “Urban heat island” is 
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one of the most typical features of urban climate. Investigation of the urban climate of 

large and medium-sized cities such as Beijing, Shanghai, and other coastal cities, found 

that both the winter and annual average temperature of urban areas is significantly 

higher than that of surrounding suburban and rural areas, and the intensity of the urban 

heat island correlates with the city scale (Peng et al., 2012). 

Ever since 1978, China's urbanization process has progressed rapidly, leading to 

the formation of three large urban agglomerations: the Yangtze River Delta, the Pearl 

River Delta, and Beijing-Tianjin-Hebei region. As one of the world's six major urban 

agglomerations - the Yangtze River Delta region is the most representative area, with a 

total area of 11.31 x 10 km2. Its population density is more than 800 people/km2, six 

times the national average, and its GDP per capita is about $4,000, which is three times 

the national average (National Statistics Bureau, 2020). As the economic centre of the 

Yangtze River Delta region, Shanghai covers an administrative area of about 6341 km2, 

with a population of 24.9 million and a GDP of 387 million yuan.  

With the rapid urbanization and economic development of Shanghai, its land 

coverage is also undergoing great changes, especially urban expansion. The high 

intensity human of activities aggravates the contradiction between natural environment 

protection and human development, also restricts the sustainable economic 

development of the city. Therefore, an in-depth study of the impact of Shanghai's urban 

expansion on its atmospheric environment and a scientific assessment of the degree of 

the impact is of great significance. Such study can help reduce the negative effects of 

urbanization, coordinate the sustainable development of human and natural 

environment, and ensure the sustainable development of urban society and economy. 
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1.2 Objectives 

To computationally investigate the urban climatology of Shanghai, its urbanization, 

and its consequent impact on regional climate. 

1. To examine the performance of Weather Research and Forecasting (WRF) 

model coupled with Noah land surface model and urban canopy model  

2. To study the urban climate of Shanghai using WRF 

3. To investigate environmental changes accompanying the Shanghai's 

urbanization since 21st century and its impact on local climate. 

4. To study the microclimate of Shanghai and investigate the sensitivity of urban 

heat island and human comfort 

5. To explore the future urban climate of Shanghai with different RCP scenarios 

under the background of continued urbanization in the future. 

6. To evaluate possible ways to mitigate thermal conditions associated with 

urbanization of Shanghai in the future context. 

 

1.3 Significance of the study 

1. Compared with statistical data and statistical analysis at observation sites that 

has the inherent limitation of its discrete distribution, using WRF/UCM can 

reduce research costs and design ideal experiments with different 

parameterizations to meet more customized research needs. 

2. The results of this research will help urban planners, designers, ecologists, 

environmental scientists, government, and non-governmental organizations to 

make appropriate plans, update existing guidelines and design methods to build 

sustainable and liveable city. 

3. Knowledge of the distribution of heat island intensity in Shanghai has a 
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predictive effect on urban construction. 

4. The results can be used as a platform for future climate simulation in Shanghai, 

or even other cities. 

5. Although this research mainly discusses meteorological factors, spatial and 

temporal variations of temperature distribution, planetary boundary layer height 

and wind field have a huge impact on pollution dispersion. The research 

conclusions are able to provide a theoretical basis for the subsequent study of 

air pollutant distribution in Shanghai. 

6. Findings of this study will help in filling the research gap about the development 

paths and corresponding urban climate projections of Shanghai in the future. 

and provides an analysis basis for policy makers in response to sustainable 

development and mitigation of urbanization induced problems. 
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1.4 Thesis Outline 

 

This thesis is divided into seven independent yet interwoven chapters, in which the 

first chapter introduces the research background and objectives, followed by the second 

chapter summarizes the latest research progress in the current academic circle, and the 

third chapter introduces the research tools needed throughout the whole thesis. Chapter 

4, Chapter 5 and Chapter 6 answer the research questions raised at the beginning of 

chapter1, with an introduction the research methodologies independently in each 

chapter (chapter 4 5 6). Finally, chapter 7 summarizes and reviews the whole thesis, 

and puts forward the prospect of future research direction (Figure 1.1). 

 

Figure 1.1 Thesis flowchart 
 

The first two chapters introduce the background of the research and summarize 

relevant literature in the field. Starting from the concept of urbanization, chapter 2 

reviews the urbanization world widely and the impact of urbanization on the local 

climate. And narrows down to the area of interests in this thesis – Shanghai. 

Chapter 3 introduces the different numerical models (WRF/Noah LSM/UCM) that 
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are studied in combination. In addition, statistical and other tools used in this study are 

introduced. Chapter 3 summarizes a brief description of the research materials and input 

data. 

In chapter 4, the setup of coupled WRF/Noah/UCM is introduced in detail, and the 

reliability of the coupled model after replacing the underlying surface data set and other 

simulation parameters is verified by comparing the experimental and observation data. 

Furthermore, the climate of Shanghai is analysed according to the simulation results. 

This chapter is concluded by summarising the different investigation conducted herein. 

In chapter 5, four ideal simulation experiments are designed with 4 different urban 

underlying surface datasets in different year to represent the urbanization process of 

Shanghai. The influence of urbanization on local climate of Shanghai is comparatively 

analysed, and the sensitivity of heat island effect and residents' comfort to urbanization 

is also analysed. 

Based on chapter 5, the sixth chapter simulates the urban environment of Shanghai 

in 2030. Different scenarios are proposed by predicting the future development of 

Shanghai and through two different RCP development scenarios identified by IPCC. 

By comparing the simulation results, the influence of urbanization and global warming 

on local climate in Shanghai is analysed, and effective countermeasures are proposed. 

Finally, Chapter 7 concludes the different conclusions of each chapter and proposes 

some suggestions on possible future studies. 
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2 Literature review: Impact of Urbanization on Urban Climatology 

To gain a comprehensive background on the impact of urbanization as well as its 

interaction with global-scale climate change on the urban climate, this chapter starts by 

reviewing the concept of urbanization and trends of urbanization in China were 

discussed in section 2.1. Section 2.2 discusses the impact of urbanization on urban 

climatology with a focus on urban heat island (UHI), anthropogenic heat flux, air 

quality, precipitation, and human comfort. Section 2.2.5 discusses the relationship 

between urban climate and global-scale climate change while section 2.2.6 presents 

mitigation and adaptation strategies to address the heat stress and health related impact 

of urbanization now and in the future. As Shanghai is the focus and study area of this 

Ph.D. thesis, section 2.3 discusses previous studies on the effect of urbanization of 

Shanghai’s climate. Section 2.4 presents the challenges of observation-based approach 

based meteorological data for studying the impact of urbanization and discusses the 

advantages of numerical modelling approach not only for studying historical impacts 

of urbanization but also for predicting future occurrence of extreme events and 

providing strategies for mitigation and adaptation. 

2.1 Urbanization 

Urbanization is a developmental process, which is usually characterized by an 

increase in the built-up areas and human population and the growth of rural 

communities into cities and urban centres (Ren, 2015; Mark, 2014). The earliest history 

of urbanization could be arguably traced to the ancient Mesopotamia in the Uruk region 

between the period 4300 – 3100 BCE (Mark, 2014). The world has witnessed a rapid 

rate of urbanization over the past decades. From less than one third urban settlers in the 

1950s, for the first time in 2007, the world’s urban population exceeded its rural 

population, and has predominantly remained urban ever since (United Nations, 2014). 
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By 2015, an estimated 54% of the global population lived in urban cities and this 

number is projected to reach 60% by 2030 and 66% by 2050 (United Nations, 2014; 

Onyango, 2018).  

Not only would the increasing trend in urbanization continue but also the number 

of mega-cities accommodating more than 10 million dwellers is projected to increase.  

For instance, in 1990, the world has only 10 mega-cities and the number significantly 

increased to 28 in 2014 and by 2030 the number of mega-cities accommodating more 

than 10 million inhabitants is projected to be 41(United Nations, 2014). Since the 

highest percentage of the global population is projected to live in urban cities, it is 

important to understand how the process of urbanization affect urban climates, and how 

previous and future urbanization would affect urban climate both at local and regional 

levels. In addition, this would provide policymakers and urban planners with invaluable 

information on how to plan future urbanization and urban cities to improve the quality 

of life of urban dwellers. 

 

2.1.1 Urbanization in China 

Although the history of China spans dynasties over a millennia, the history of 

modern China can be divided into the pre-reform era (1949 – 1978) and the post-reform 

era (1978 – date) (Farrell and Westlund, 2018).  Since 1978, China has experienced a 

remarkable and unprecedented urbanization, which is attributed to rapid economic 

growth occasioned by the Chinese economic reform (Zhang and Song, 2003). A 

distinguishing feature of China’s urbanization is in its pace and scale. From 11.8% in 

1950, the level of urbanization in China dramatically increased to a staggering 49.2% 

in 2010, which corresponds to addition of over 605 million urban dwellers. This number 

is projected to reach 75.8% by 2050, corresponding to an addition of 380 million urban 
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inhabitants compared to the 2010 level (United Nations, 2014). It is noteworthy to state 

that, in China, the process of land urbanization has been faster than population 

urbanization, leading to rapid urban spatial expansion (Yao and Zhen, 2012). This 

provides an indication of the rapid impact of urbanization on change of land-use 

structures. Although there is spatial rate of urbanization and differences in land-use 

structure across China, it was demonstrated that, at national level, residential and 

industrial land accounted for the highest proportion of urban land use followed by 

public facilities and roads. However, in large-scale urban cities, the proportion of 

industrial land exceeds that of residential land and the land-use for roads and squares 

surpassed the proportion of green lands (Lin et al., 2015). This goes to indicate that 

industrialization, real estate development and traffic construction are main drivers of 

land urbanization process in China. This is relevant to this study as the type of land 

use/land cover (LULC) changes significantly contribute to the impact of urbanization 

on the urban climate.  

Based on the statistics from the United Nations data booklet (United Nations, 2019), 

as of 2018, China alone accounts for six of the world’s thirty-three mega-cities (cities 

with a population of ten million above) and has ten large cities with a population 

between five to ten million. Of all the cities in China, Shanghai, according to the 

recently concluded 2021 census (Xinhua, 2021), is the most populated urban city with 

a population of more than 24.87 million, of which 89.3% live in the urban area. Over 

the past two decades, Shanghai has witnessed a rapid economic growth and an 

unrivalled degree of urbanization, since the decision of the Chinese authorities to 

transform Shanghai into a global centre for finance, trade, and economy (J. Li et al., 

2013). The rapid pace and scale of the urbanization intensity and spatial spread of 

Shanghai makes it an ideal case-study for examining the impact of urbanization on 
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urban climate.   

 

2.2 Effect of Urbanization on Urban Climatology 

Global environmental and climate change is mostly driven by the rapid growth in 

human population and the disproportionate share of resources consumed by urban 

residents (Grimmond, 2007). The key focus here is not on global-scale climate but the 

impact of urban cities on local and regional-scale climate. It is obvious that the surface 

climate within an urban city is different from that of surrounding suburban and rural 

areas (Oke, 1981). This unique climate of urban cities is referred to as urban climate 

and is distinguished by relatively higher surface air temperatures, and lower relative 

humidity and wind speed compared to surrounding suburbs (Oke, 1981).     

Urbanization is the most obvious case of the land-use change and modification of 

the earth’s environment. This modification significantly changes the physical, thermal, 

radiative, and aerodynamic properties of earth’s surfaces, leading to alteration of the 

surface climate of urban areas (Oke, 1981; Ren, 2015). The ensued change from the 

modification of urban surfaces is central to the formation and evolution of urban climate. 

These changes are associated with the construction and functioning of cities. The 

introduction of new materials for infrastructure construction coupled with changes to 

surface morphology and anthropogenic heating, significantly modify the exchange of 

water and energy and airflow between the surface and atmosphere (Du et al., 2016), 

leading to the modification of urban climate.  

At local and regional levels, the changes in urban form and cities affect urban air 

quality, water quality, wind and precipitation, urban heat island, urban boundary layer, 

and thermal heat budget (Han et al., 2014; J. Wang et al., 2008; K. Zhang et al., 2010; 

Cui and Shi, 2012). These effects are discussed in detail in the following subsections.   
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2.2.1 Urban Heat Island 

Urban cities tend to have higher air and surface temperatures compared to 

surrounding rural areas. This phenomenon is known as the urban heat island. It is 

perhaps the most indicative factor of how urbanization and LULC change affect local 

and regional climate. A link has been established between UHI and temperature 

extreme heat-waves, leading to increased heat stress and mortality in urban areas 

(Johnson et al., 2005; Koomen and Diogo, 2017). The degree of urban warming 

occasioned by surface modification varies spatially with space and time and can range 

from 1 – 3°C, but given the appropriate meteorological conditions (under calm and 

cloudless), urban air can be up to 10°C warmer than surrounding rural areas (Oke, 1981). 

The total heat generated and retained in an urban area is given by the surface energy 

balance equation (Oke, 1981; K. Zhang et al., 2010). 

 

𝑄𝑄∗ + 𝑄𝑄𝐹𝐹 =  𝑄𝑄𝐻𝐻 + 𝑄𝑄𝐸𝐸 + ∆𝑄𝑄𝑆𝑆 + ∆𝑄𝑄𝐴𝐴 … … … … … . (1) 

 

Where Q* represents the net surface radiation, QF is the anthropogenic heat, QH 

stands for turbulent sensible heat flux, QE represents the latent heat flux, while QS 

and QA stand for sensible heat storage and net heat advection, respectively. 

Grimmond (2007) has outlined to the underlying causes of UHI to include increased 

urban surface area (leading to increase in shortwave radiation absorption, reduced wind 

speed, and decreased heat transport); surface materials (thermal properties: higher heat 

capacity, surface heat storage, and conductivity); moisture characteristics (resulting in 

decreased latent heat flux,  large impervious surface areas, increased surface run-off); 

anthropogenic heating (heating and cooling, fuel combustion for transportation and 
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industrial activities); and air pollution (due to emission of pollutants and dust resulting 

to greenhouse effect). The difference in the water permeability and thermal properties 

of urban and rural surfaces is one of the major drivers of UHI. Urban surfaces have 

higher absorption rate for solar radiation, they are composed of materials with high heat 

capacity and conductivity and can more amount of heat compared to suburban and rural 

surfaces (Jin et al., 2011). In addition, the morphology of a city (in terms of sky view 

factor, and buildings’ height and density) affects its cooling rate by increasing the 

reflection of long-wave between walls, rising the absorption and retention of solar 

radiation during the day, and decreasing the wind speed and airflow at street level 

(Grimmond, 2007; Kalnay and Cai, 2003). Other factors include meteorological 

conditions, anthropogenic heating, land cover type, and urban morphology (Du et al., 

2016; Grimmond, 2007). 

A correlation between urbanization and UHI has been established for many cities 

and regions around the world.  (Du et al., 2016) studied the impact of various factors 

including urban area on surface UHI in the Yangtze River Delta Urban Agglomeration 

using remote sensing, statistical, and meteorological data. Results indicated that surface 

UHI intensity varies temporally with the time of the day and the season of the year. The 

highest UHI intensity was observed in the summer (0.84°C) followed by autumn 

(0.81°C) then spring (0.78°C) with the less intensity observed in winter (0.53°C). In 

addition, it was observed that UHI is higher during the daytime (0.98°C) compared to 

night-time (0.50°C). Using the meteorological data of Shanghai from 1978 to 2007, (K. 

Zhang et al., 2010) observed that an annual increase in UHI compared to suburban and 

rural areas, which correlates with increase in urban densities over the observed period. 

An increase in mean temperature rate of 0.75°C per decade was observed, and the 

variability of the UHI intensity was highest in autumn and weakest in the winter, with 
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night-time UHI being higher than daytime UHI. Similar variations were observed with 

expanding urban areas in Beijing from 1989 to 2000, with more compacted urban areas 

displaying higher UHI intensities, which was attributed to rapid transition from 

suburban lands to urban lands (Qiao et al., 2014).  In another study, (Bian et al., 2017) 

examined the effect of urbanization on the UHI of Shijiazhuang using meteorological 

data for 1965 – 2012. A significant warming of the urban boundary later of up to 0.23°C 

per decade was observed and the observed UHI for spring and autumn were more 

significant than the other seasons. Survey of temperatures in London reveals that the 

UHI is more intense in the city centre, during night-time, under stable weather 

conditions in the summer (Wilby, 2003). This effect was observed to reduce with 

distance from the city centre under windier conditions during the daytime. It was also 

noted that dense urban structures obstruct airflow and tend to reduce wind speed while 

reducing the overall convective heat losses from buildings (Wilby, 2003). 

González-Aparicio (2014) simulated and studied the effect of urbanization of 

Bilbao on the atmospheric boundary layer. They demonstrated a direct correlation 

between city expansion and UHI intensity. Compared to the baseline case, an UHI 

intensity of 2.2°C and 3°C were observed when the city doubled and trebled in size, 

respectively. Using ensemble numerical study approach, Li (2016) studied the impact 

of various urbanization patterns on the local climate of Singapore, specifically the 

canopy layer UHI intensity. Their results indicated that the pattern of urbanization has 

little impact on UHI intensity, with the impact of asymmetric urbanization pattern being 

mildly than that of symmetric urbanization due to closely linked urban area distribution 

in the former. Adachi (2012) estimated the impact of urbanization over a period of 70 

years on the summertime local climate of Tokyo metropolitan area. They predicted a 

rise in the surface air temperature of 0.5°C and an average of UHI intensity of 1.5°C.  
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Overall, the above studies have demonstrated that direct correlation between the 

process of urbanization and increasing UHI intensity, with the type of land cover 

change, urban morphology, and urban area density being critical factors that impact the 

intensity of UHI. Variation in anthropogenic heat flux in urban area is another factor of 

significant importance that influence UHI.   

 

2.2.1.1 Anthropogenic heating 

Anthropogenic heating resulting from human activities is another significant factor 

that contributes to the UHI effect experienced by urban areas. The main sources of 

anthropogenic heating release include buildings, transportation, and industries 

(Shahmohamadi et al., 2011; Sailor, 2011). It should be noted that anthropogenic heat 

release is often accompanied by moisture release, which affects the urban long-wave 

radiation budget (Sailor, 2011). Anthropogenic heating can raise the urban air 

temperature by as much as 1°C in summer and 3°C in the winter (Sailor, 2011). Other 

studies suggest that it can raise the urban heat island temperature by as much as 4°C 

and contribute to increasing heat stress on urban residents (Chapmanet al., 2016). The 

impact of anthropogenic heat emission on urban thermal environment is more 

pronounced in the densest part of the city and in winter when shortwave radiation is 

weak and the reverse is the case for winter (Ichinose et al., 1999; Chapmanet al., 2016).  

As such, anthropogenic heat emission should be considered and incorporated into 

urban climate models (Bian et al., 2017; Chapman et al., 2016). In most modelling 

studies, anthropogenic heat values are used as default, constant values, or adjusted 

based upon urban scenario and climate (Chapman et al., 2017). However, considering 

the role of anthropogenic heating to UHI intensity, it is important to estimate the 

anthropogenic heat flux, especially for simulation studies on the impact of future 
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urbanization on urban areas. The techniques used to estimate anthropogenic heat release 

are based on urban energy budget, urban growth, or building energy models (Adachi et 

al., 2012; Hamdi et al., 2014; Sailor, 2011). Chapman, Watson, and McAlpine (2016) 

used the population census data, the inventory of hourly traffic volume, and the 

electricity and gas consumption data of buildings to estimate the anthropogenic heat 

emission and its ensuing effect on the urban heat island of four Australian cities. 

Although anthropogenic heat flux was demonstrated to have significant effect on 

UHI intensity, its effect is not as significant as city expansion (González-Aparicio et al., 

2014). They found that doubling the anthropogenic heat flux has similar effect on the 

UHI as doubling the city size but over different urban areas (270 km2 for doubled 

anthropogenic heating vs 550 km2 doubled urban area). X. Li (2016) indicated that for 

the same urbanization pattern of Singapore, the amount of anthropogenic heat released 

into the urban area has significant impact on the UHI intensity, with its impact being 

more obvious during the night-time than the daytime.  

In another work, Bohnenstengel (2014) studied the impact of anthropogenic heat 

flux on the urban heat island of London, in spring and winter, by estimating the varying 

anthropogenic heat fluxes based on the energy-demand data of London. Their results 

indicated that including the anthropogenic heat emission significantly improves the 

simulation of the screen-level temperatures and that its impact is more prominent in 

winter compared to spring. This is because, in winter, anthropogenic heat emission 

accounts for a large percentage of the urban heat and the boundary layer is shallower, 

while during spring, the share of anthropogenic heat emission is small relative to the 

incoming solar energy. This agrees with the observations of Ichinose et al, 1999. 

Omitting the contribution of anthropogenic heating risk underestimating the impact of 

urban heat island on temperature (Chapman et al., 2016) and missing opportunities in 
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addressing the impact of rising urban temperatures and associated risks of heat stress.   

 

2.2.2 Urbanization and Ambient Air Quality 

The atmospheric air in urban cities is known to contain high levels of air pollutants 

mostly anthropogenic by source. Urban air pollution is mostly caused by transportation, 

and industrial and building energy consumption. Rapid urbanization, increasing 

population and industrialization are main drivers and contributors to air pollution (Tecer 

and Tagil, 2014). As highlighted earlier in section 2.2 changes in urban form and urban 

surfaces, which are driven by urbanization, have a significant effect on the 

meteorological conditions of urban cities. Variation in the meteorological conditions 

due to urbanization has a direct impact on the atmospheric concentration of pollutants 

including oxides of nitrogen (NOx), ozone (O3), aerosols, and particulate matter (Y. Li 

et al., 2019). It a well-known fact that air pollution has adverse effect on human health 

causing respiratory diseases and, in some cases, leading to increased hospitalization and 

mortality. The World Health Organization’s report on the global assessment of 

exposure and burden of diseases estimates that three million people died from exposure 

to ambient air population in 2012 alone (World Health Organization, 2016).  As such, 

understanding the relationship between urbanization and air quality is relevant to 

effective planning, long term sustainability of urban cities, and protecting the health 

and wellbeing of urban dwellers.  

Several studies have investigated the impact of urbanization on urban air quality. 

The relationship between urbanization and air quality exists mainly due to increase in 

human population and associated social and economic activities, which leads to higher 

demand for fossil-based energy and emission of pollutants (S. Wang et al., 2020). The 

effect of megacities on urban agglomerations could basically from the concept of ‘urban 
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metabolism’ (Baklanov et al., 2016), where urban cities consume huge amount of 

material resources and energy and excrete products while at the same time emitting 

gaseous pollutants, particulate matter, and aerosols into the atmosphere. The local effect 

of such emissions is evident within the boundaries of megacities, even though it can be 

transported over long distances and contribute to hemispheric background pollution 

(Baklanov et al., 2016).    

Given the health impact of particulate matter (PM2.5), it is considered one of the 

air pollutants of concern in urban cities (S. Wang et al., 2020). The increased demand 

for energy for socioeconomic activities in urban cities is considered one of the main 

reasons that aggravated the regional atmospheric concentration of PM2.5 (Zhou et al., 

2018). Han (2014) established a close link between the main indicators of urbanization 

(population, industrialization) with the atmospheric concentration of PM2.5, with the 

concentration in 85 urban cities in China being higher than those of surrounding areas. 

S. Wang (2020) constructed an urbanization index system which combined the social, 

demographic, economic and spatial components of urbanization to study the 

heterogeneity effect of urbanization on the atmospheric concentration of PM2.5 of 190 

countries between the period 1998 to 2014. Their results should a strong correlation 

between level of urbanization and economic activities in middle-high income countries 

with elevated atmospheric concentration of PM2.5. A study by (Fang et al., 2015) which 

investigated the impact of urbanization on air quality index in 289 Chinese and showed 

that the population and vehicle density, urbanization rate, and the number of secondary 

industries in a city significantly impact spatially affect air quality. Shen (2021) used the 

2020 covid-19 lockdown in China as a metric for evaluating the impact of urbanization 

on the air quality in Yangtze River Delta. Results from satellite and ground-based data 

showed a significant reduction in the surface concentration of particulate matter (PM10 
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and PM2.5), NO2, SO2, and CO in major cities, while the level of ozone (O3) increases 

in the same period.  

A host of urban activities such as transportation and industrial production generates 

aerosols and other gaseous pollutants whose concentration is higher in urban areas 

compared to rural areas (Pataki et al., 2007). Aerosol’s impact regional climate through 

the scattering, reflection, or adsorption of solar radiation. The resulting effect of 

aerosols on the climate (either cooling or warming) depends on the type of aerosol: 

sulphate-based aerosols produced a cooling effect whereas the carbon-based generate 

warming effect (Seto et al., 2013). Air stagnation, a process in which air stays in an area 

for an extended period, is another problem experienced in urban cities due to the impact 

of urbanization. Z. Li (2019) studied the impact of urbanization by comparing the 6 

hourly air stagnation cases of Shenzhen in 1979 and 2010. They identified the complex 

mechanism through which urbanization process induce air stagnation through changes 

in surface wind speed and temperature inversion.  

In view of the above studies which directly link the deterioration of urban air quality 

and its health associated impacts to urbanization process, it is important for 

policymakers and urban planners to consider the influence of urbanization amongst 

other factors while addressing the issues of urban air quality. 

 

 

2.2.3 Urbanization and Precipitation 

There is sufficient evidence that suggest urbanization or major urban areas influence 

cloud and the variability of precipitation, a phenomenon known as “urban rainfall effect” 

(Shem and Shepherd, 2009; Changnon, 1979). There are a number of urban area 

characteristics which might affect the precipitation level (the so-called urban rainfall 
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effect), which include: high surface roughness and its resulting impact on convergence; 

UHI and its effect on atmospheric boundary layers and downstream generation of 

convective clouds; aerosols which serve as nuclei sources for cloud condensation; and 

the impact of urban canopy processes on precipitation system (Solecki and Marcotullio, 

2013). Regardless of the mechanism involved in ‘urban rainfall effect’, urban areas and 

those directly downwind experience more precipitation and heavier rainfall than rural 

and upwind areas within the same region (Changnon, 1979).  

Shi et al. (2017) showed that large scale urbanization (secondary industries, average 

haze days, and urban population), which is linked to land-use change and air pollution 

is the main contributing factor to the observed decadal increase and shifting spatio-

temporal patterns of heavy regional rainfall in China, but not climatic factors (western 

Pacific Subtropical High, El Nino-Southern Oscillation, Atlantic Multi-decadal 

Oscillation, and Antarctic Oscillation). Kishtawal et al. (2010) examined the impact of 

urbanization on Indian monsoon rainfall changes using in situ and satellite-based 

precipitation and population data. Their results showed increased trend in intense 

precipitation in the urban areas compared to non-urban areas of the Indian monsoon 

region. Using simulation studies (Shimadera et al., 2015) demonstrated the impact of 

urbanization on the summertime precipitation of Osaka by comparing the case of 

present land-use with no urban land-use case. Their results showed that in addition to 

increasing the mean air temperature by 2.1°C, a decrease in mean humidity due to 

decrease in latent heat flux was observed. The observed increase in precipitation in the 

urban area compared to surrounding areas was attributed to the increase in the formation 

of convective clouds due to increase in sensible heat flux because of urbanization. This 

led to changes in the spatio-temporal distribution pattern of precipitation in and around 

urban areas. Similarly, X. L. Yang et al. (2012) demonstrated a correlation between 
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urbanization process and the increasing trend in annual precipitation, rain fall days, and 

flood season precipitation in the urban areas compared to sub-urban areas of Qinhuai 

River of Eastern China within the period 1961 – 2006.  

The above studies and many other studies (Souch and Grimmond, 2006) have 

demonstrated a shift and increase in precipitation in urban areas compared to non-urban 

areas. For rapidly growing and industrializing urban cities to effectively reduce the risks 

of flooding and waterlogging, they need to control the impact of urbanization on air 

pollution and regional climate due to their impact on extreme rainfall events (Shi et al., 

2017). 

 

2.2.4 Urbanization and Human Comfort 

 

Urban warming has serious consequence on people’s comfort and their healthy 

wellbeing. Human thermal comfort is a condition of the mind, which articulates one’s 

satisfaction or otherwise with his surrounding environment. Environmental factors such 

as air temperature, radiant temperature, humidity, and wind velocity, when combined 

with personal factors: clothing insulation and metabolic heat, affect human thermal 

comfort (Health and Safety Executive, 2021). Frequent and prolonged exposure to 

heated environments could lead to decreased thermal comfort and increase the risks 

heat related illness (Y. Y. Lee et al., 2017), such as heat stress. It should be noted that 

the environmental factors highlighted above are all influenced by factors such as UHI 

(section 2.2.1) anthropogenic heat flux (section 2.2.1.1), which are manifest impact of 

urbanization process on urban areas.  

Mahmoud and Gan (2018) investigated the historical impact of rapid urbanization 

on temperature humidity index, effective temperature index, and relative strain index 
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in Cairo between 1973 and 2017, which are the main indices for evaluating thermal 

comfort. Besides, increase in air temperature, relative humidity, and vapour pressure, a 

remarkable increasing trend in temperature humidity index (TRH: 0.33°C/decade), 

effective temperature index (ETI: 0.29°C/decade), and relative strain index (RSI: 

0.06/decade) was observed since 1994, which corresponds to rapid land-use change and 

increase in impervious surface areas due to rapid urbanization. Moreover, severe heat 

stress emerged and persist since 1994 and the highest thermal discomfort was identified 

in urban areas with less impact in new cities with high vegetation cover. Similar results 

were observed and reported elsewhere for pre- and post-urbanized Cairo (Robaa, 2011). 

In the contrary, (Doan et al., 2016) showed that while land-use change and 

anthropogenic heat flux led to increase in the surface air temperature of Ho Chi Minh 

city (0.22°C in established urban areas and 0.41°C in newly urbanized areas), it didn’t 

translate into significant change in human comfort due to negative influence of 

urbanization on relative humidity. However, in another study, Yang et al. (2019) 

demonstrated that the negative effect of relative humidity on thermal comfort is 

compensated for by the added effect of anthropogenic heat emitted. They further 

showed that the total thermal discomfort hours in Yangtze River Delta area increases 

by 27% due to urbanization and that anthropogenic heat and land-use change exerted 

similar contribution to human thermal comfort. As such, special consideration should 

be given to the influence of urbanization on human thermal comfort, especially in the 

built environment, when planning and designing developmental projects.   

 

2.2.5 Urban Climate and Global-Scale Climate Change 

As highlighted earlier, the impact of urbanization is mostly on local and regional 

climate. Nonetheless the process of urbanization has a significant impact on the global-
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scale climate change. The relationship between urbanization and global-scale climate 

change is intricate. Cities, regardless of their trivial spatial extend, exert an influence 

on global-scale climate change (Masson et al., 2020).  Urban areas are the main 

contributors to anthropogenic sources of greenhouse gases emission, mostly emanating 

from the use of fossil fuels for heating and cooling, industrial processes, and 

transportation (Grimmond, 2007). It was suggested that more than 90% of 

anthropogenic carbon emission emanate from urban cities, and this includes the 

reduction of global carbon sink through land-use change and deforestation and the 

clearing of land for cities and roads construction (Svirejeva-Hopkins et al., 2004).  

Urbanization-induced climate change, as noted by Ren (2015), is an integral part of 

urban climate change and is influenced by both global and regional climate change 

occasioned by large-scale man-made and natural forcing and by natural climate 

variability. The anthropogenic forcings include greenhouse gases emission, land use 

and land cover (LULC) change, and aerosols emission, while the natural forcings 

comprise of solar activities and volcanic eruptions (Ren, 2015). On the other hand, 

global-scale climate change would lead to an evolution of local and regional climate, 

resulting to occurrence and increased intensity of extreme events (Masson et al., 2020). 

A recent study (Darmanto et al., 2019) suggests that future projection of urban climates, 

especially in tropical and rapidly urbanizing megacities, cannot entirely rely on the 

global climate change and effect of emission scenarios, as the impact of urbanization 

on urban climate can reach the extent of the effect of global climate change.    

Changes in UHI presents a good indication of how urban and rural areas respond to 

climate change (Oleson, 2012). Due to the different impact of UHI on urban and 

surrounding rural areas, the two are likely to be impacted differently by climate change 

(Chapman et al., 2017). The local effect of UHI on urban climate could likely 
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exacerbate the impact of climate change on urban areas compared to rural areas 

(Darmanto et al., 2019). As discussed earlier, urban climate is influenced by factors 

such as anthropogenic heat, wind speed, cloud cover, land cover, etc., as such urban 

and rural areas would likely respond differently to the influence of climate change. 

These conditions strongly affect the intensity of UHI and any changes to conditions, 

especially wind speed and cloud cover (Oke, 1981), occasioned by global-scale climate 

change could affect the frequency and intensity of UHI. The response of UHI to climate 

change depends on changes on how changes in temperature, occasioned by climate 

change, affect the heating and cooling demands by urban residents and its associated 

anthropogenic heat release (Oleson, 2012). An analysis of the studies conducted on the 

response of UHI to climate change showed a large variability, which could be explained 

by changes in the factors that lead to the formation of (Chapman et al., 2017). 

As low wind speed results in low heat advection and increased trapping of heat in 

the urban canyon and cloud cover opens the sky resulting in longwave radiation 

reaching the surface, if climate changes lead to decrease in cloud cover and wind speed, 

a responding rise in the UHI would be experienced and vice-versa (Chapman et al., 

2017; T.R Oke et al., 1991). Numerous studies have examined the impact of climate 

change on the UHI at city-scale. For instance, a study by S. E. Lee and Levermore 

(2012) showed an increase in the UHI of 4K leading to a corresponding rise in indoor 

temperature by 3K at night in Manchester. Argüeso et al. (2014) modelled the combined 

effect of future urbanization and climate change on the local climate of Sydney. They 

demonstrated that projected reduced evapotranspiration and increased urban heat 

storage would increase the nocturnal temperature (minimum temperature) in urban 

areas throughout the year with more increase in winter and spring, leading to warmer 

nights and high risks of heat stress and sleep disorders. Climate change is predicted to 
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intensify the UHI in Chicago metropolitan area, leading to decreased comfort and 

increased energy consumption (Conry et al., 2015). Similar observations were reported 

for the Yangtze River Delta area where combined effect of global warming and UHI 

intensity were projected to lead to a regional mean surface air temperature of 18.5°C 

(2070 – 2100) compared to 15.4°C (1961 – 1990) based on the IPCC Special Report on 

Emission A2 Scenario. This increment is notably higher than the isolated impact of 

climate change on mean surface air temperature (15.4°C for the period 1961 – 1990 vs 

17.9°C due to climate change alone for the period 2070 – 2100).  

On the contrary, an investigation by Lauwaet et al. (2016) showed a decreasing 

effect of global warming on UHI, even though they noted the risks of increased extreme 

heat events occasioned by climate change. It should be noted though that their 

simulation study did not account for the impact of future urban growth on the projected 

UHI, which typically increases the temperature difference between urban and rural 

areas. Similarly, Kusaka et al. (2012) showed no future variation in UHI intensity of 

Osaka, Nagoya, and Tokyo due to climate change. It should also be noted that the 

projected CO2 emission through 2070 was kept constant (compared to 2011 levels) and 

that the study focuses on summer months, while another study by Argüeso et al. (2014) 

demonstrated that the impact of climate change on UHI intensity is more pronounced 

in colder periods of the year (winter and spring). In Hamburg, it was projected that the 

weather conditions that intensify UHI would not change with changes in weather 

pattern due to climate change, as such climate change would not have a considerable 

effect on the UHI intensity (Hoffmann and Schlünzen, 2013). For the city of London, 

while Wilby (2003) showed increase in UHI with climate change, no relative changes 

in UHI were observed at the regional level. In a different study by Mccarthy et al. (2012), 

however, they noted that while the influence of global-scale climate on the is similar 
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on both the urban and rural areas, the effects of urbanization would increase the 

frequency of extreme high temperature and further exacerbate the impact of climate 

change in urban areas of the UK.  

Overall, estimating the impact of climate change on local and regional climate 

without considering the contribution of urbanization on UHI risks underestimating 

future extreme temperatures and occurrence and frequency of heat stress related events 

in urban areas (Chapman et al., 2017). While in general, the impact of climate change 

on soil dryness would lead to decrease in UHI, its impact on anthropogenic heating and 

by extension on UHI varies depending on the heating and cooling requirements (Oleson, 

2012). Identifying the individual and combined effect of climate change and 

urbanization would provide opportunities for effective planning of urban adaptation 

strategies to curb the future impact of climate change and urbanization on urban areas. 

2.2.6 Urban Adaptation Strategies 

As the process of urbanization continues and the climate continues to warm, the 

risk, frequency, and intensity of UHI would continue to increase. This would further 

exacerbate the urban heat stress occasioned by climate change (see section 2.2.5 for the 

combined effect of urbanization and climate change on urban cities). Besides, the effect 

of urbanization on local and regional climate is greater in magnitude than the impact of 

global-scale climate change and would increase the vulnerability of urban residents to 

future climate change (Grimmond, 2007).  As such, to effectively mitigate and adapt to 

higher heat stress, we must consider the contributing effect of urbanization and rethink 

how we design and manage our cities.  

In addition to other impacts, UHI and or rising urban temperatures is the main 

manifestation of the effect of urbanization on urban climate. One promising strategy of 

moderating UHI and its heat stress associated impact is the modification of urban foam 
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(Oke, 1981). A numerical study on the effect of urban foam (compact-city vs dispersed-

city) indicated that while dispersed-city model led to increase in surface air temperature, 

the compact-city scenario led to temperature reduction (Adachi et al., 2014). Although 

the authors noted that to achieve effective mitigation, compact-city model needs to be 

combined with other strategies. In addition, other strategies mainly proposed for 

mitigating UHI effect include using cool pavement, cool roofs, enhancing vegetation 

cover, and reducing waste heat. Although the effectiveness of these strategies varies 

depending on the baseline climate, size, and the layout of the city (Larsen, 2015).  

Others include increasing surface and roof albedo, greening building surfaces and 

parking lots, and changing pavement and building materials (Takebayashi and 

Moriyama, 2012). Details of the main causes and mitigation strategies of UHI is 

detailed elsewhere (Grimmond, 2007).  

Larsen (2015) suggested that mitigation of microclimate must go beyond exterior 

level strategies to explore land-use planning and passive cooling strategies. For instance, 

Gill et al. (2007) investigated the impact of green infrastructure on the current and 

projected temperature and precipitation of Greater Manchester. Results of their energy-

balance model showed that replacing 10% of impervious surface with green cover in 

high-density residential area, resulted in keeping temperature below the baseline 

temperature (1960-1990). Similar effect was observed with greening roofs in areas with 

high density of buildings. In another study, using numerical studies, (Papangelis et al., 

2012) showed that replacing a commercial area with a green park in Athens led a 

cooling effect of up to 5°C at night time and induced a cooling effect ranging from 0.5 

to 1.2°C in the surrounding area. Stone et al. (2014) investigated the impact of changes 

to vegetative cover and surface albedo on future (2050) heat-related deaths in 3 US 

metropolitan cities: Atlanta, Philadelphia, and Phoenix. While a combination of 
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enhancing surface albedo and vegetation led to an offset of the project heat-related 

mortality by 40 to 99% in the three cities, each city responds separately to surface 

modification. Green infrastructure is a promising option for mitigating rising urban 

temperature, as it generates evapotranspiration while simultaneously reducing surface 

heat storage capacity (Lemonsu et al., 2015).  

Studies such as that by Stone et al., (2014) indicate that there is no universal 

approach to mitigating rising urban temperatures, but the biophysical and settlement 

pattern of each city must be considered to determine the most effective mitigation and 

adaptation strategies. 

 

2.3 Studies on Urbanization and its Impact on Shanghai 

Shanghai is a coastal megacity situated in the Yangtze River Delta in East China. It 

covers a total land area of 6340.5 km2, a total population of 2428.14 million residents, 

and a population density of 3830 people/km2 (Shanghai Municipal People’s 

Government, 2020). Since the economic reform of late 1970s, Shanghai, which is the 

most populous city in China, has experienced rapid and unprecedented urbanization 

and economic development. The urban expansion pattern of Shanghai was meticulously 

studied by (Zhao et al., 2016). The period between 1980 to 2014 witnessed rapid 

expansion in the city. The pattern of expansion of the urbanized area was initially 

rapidly outward around the downtown area followed by a slower expansion rate by in 

filling.  The urbanized land area in Shanghai increased threefold during the investigated 

time at a rate of 10.74%, with the greatest expansion taking place between 2000 to 2004. 

The maximum expansion rate took place in the north-west, west, southwest, east, and 

southeast directions. The urban sprawl experienced over the past three decades has 

resulted in significant environmental and ecological concerns (Zhao et al., 2006). Many 
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studies have noted and documented the impact of rapid urbanization on the local climate 

of Shanghai. 

Considering the importance of UHI as an indicator of the impact of urbanization on 

urban climate, there have been many studies, since 1980s on Shanghai’s UHI. Studies 

have attributed the observed increasing trend in Shanghai’s UHI to rapid urbanization 

and economic development (Zhao et al., 2016; Zhou and Wu, 1987; Zhou and Zhang., 

1982). Cui and Shi (2012) investigated the impact of population and land-use and land 

cover change on the evolution of the local climate and ecology of Shanghai. With 

increasing floating population and urban sprawl, cultivated land has been repurposed 

for buildings, which has been accompanied by increase in air temperature and reduction 

in relative humidity, wind speed and vegetation. Moreover, the observed growth in the 

UHI in Shanghai is mostly influenced by increase in impervious surface and 

anthropogenic heat emission from transportation and buildings. By replacing natural 

vegetation cover with impervious surfaces, the surface albedo and surface emissivity of 

Shanghai was observed to decrease drastically, providing favourable conditions for 

urban heat island effect (M. S. Jin et al., 2011).  

Zhang et al. (2010) studied the annual, seasonal, fixed annual, and the spatio-

temporal distribution of UHI intensity of Shanghai using meteorological data from 11 

stations for the period 1978 to 2007. UHI was observed to be more intense in autumn 

and weakest in summer and the general intensity trend conforms to trends to population 

and the gross domestic product of the city.  Tan et al. (2010) studied the relationship 

between urbanization with UHI and the frequency and intensity of heat wave in 

Shanghai using meteorological record from 11 stations (in urban, suburban and rural 

areas) from 1975 to 2004. Their results indicated that variation in the surface warming 

of urban and surrounding areas showed an increasing trend in UHI effect, which led to 
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more hot days and increased frequency in heat waves in urban areas. Moreover, a 

survey of the summer heat-related mortality showed more mortality in urban areas 

compared to surrounding areas.     

Using an integrated approach based on geographic information system (GIS) and 

remote sensing, Li et al. (2009) quantitatively studied the recent pattern of UHI in 

Shanghai metropolitan area between 1997 to 2004. While newly developed and highly 

vegetated remote island exhibit a cooling effect, the rapidly expanding urbanized areas 

with their characteristic impervious surfaces remarkably increased the extend and scale 

of hot spots in the city. This coupled with rapid changes in land use and land cover in 

urban fringes exacerbated the UHI in Shanghai metropolitan area. Studies of the 

interaction between urban expansion (urban foam) and UHI effect of Shanghai 

(between 1984 to 2014) showed the urban foam has a direct impact on the city’s UHI 

intensity (Zhao et al., 2016). The urban compactness ratio affects the range of influence 

and intensity of UHI. When the compactness ratio is less than 0.15, a compact urban 

design can control the influence and intensity of the UHI, above the value of 0.15, a 

compact design would worsen the UHI effect.  

Data from the Shanghai Environmental Monitoring Centre showed that the air 

quality index of the city is directly related with the level of urbanization in the city 

within the period 1983 to 2005, and a spatial pattern of air quality was observed 

between the urban, suburban, and rural areas, with the urban areas having the worst air 

quality (Xia et al., 2014). Similar pattern of deteriorating water quality was observed, 

with the most severe pollution taking place in urban areas (Zhao et al., 2006). Analysis 

of the historic degradation of water quality in Shanghai, between 1947 to 1996, suggests 

that 94% of the variability in water quality classification is attributed to urbanization, 

specifically industrial land use (Ren et al., 2003).  
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Over the last century, meteorological records showed an increasing trend in the 

intensity of hourly precipitation, with the frequency of heavy precipitation being 

significantly higher within the period 1981 to 2014, which coincided with rapid 

urbanization in Shanghai. The observed extreme precipitation was due to regional 

warming and increased atmospheric water vapour content and moisture flux. Moreover, 

the long-term spatial distribution of total precipitation intensity showed an urban rain 

island feature, with heavy precipitation increasingly concentrated in the urban and 

suburban areas of Shanghai (Liang and Ding, 2017). High load of atmospheric aerosol 

load over Shanghai could directly scatter or absorb solar radiation leading to reduced 

surface isolation and a cooling effect on urban surface. Meanwhile, the aerosols serve 

as nuclei for cloud condensation and influence the microphysical properties of the cloud 

(aerosol’s indirect effect), which leads to urban areas having different cloud 

characteristics from surrounding rural areas (M. S. Jin et al., 2011). 

 

2.4 Modelling Approach for Estimating and Predicting the Impact of 

Urbanization on Urban Climate 

 

It should however be noted that most of the studies on the effect of urbanization on 

the microclimate of Shanghai (section 2.3) are based on historical observation of 

meteorological records. As already discussed in section 2.2.5, urbanization, especially 

rising urban temperatures would exacerbate the heat-related stress and mortality in 

urban areas. As such it is reasonable to develop metrics to quantify the contribution of 

urbanization to local and regional climates, while at the same time predicting future 

impacts to provide policy directions planning future urbanization and effective 

mitigation of rising temperature and its related heat-stress and mortality impacts.  
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While greenhouse gas emission and land-use change are the main driving 

anthropogenic causes of global-scale climate change, it has been demonstrated by many 

studies (section 2.2) that modification to land-use and land-cover due to urbanization is 

one of the main driving factors leading to rising UHI, precipitation, wind speed, 

humidity, and air quality of urban areas. However, is difficult to separate the warming 

effect of these factors. Besides, the impact of urbanization is mostly measured by 

comparing the differences in observation between urban and rural areas, but different 

results are obtained depending on whether population data or satellite measurement of 

night lights are used to classifying urban and surrounding rural areas (Kalnay and Cai, 

2003). Another issue is the possibility of some weather monitoring stations (especially 

those situated in suburban/rural areas and those downwind of urban areas) being 

affected by urbanization (Philandras et al., 1999). For urban planning and decision 

purposes, detailed information is needed that cannot be easily obtained from 

observation networks (Hamdi et al., 2020).  

Another strategy of measuring the impact of urbanization is to analyse temperature 

time series stations that are were previously classified rural but currently considered 

urban due to urban sprawl (Philandras et al., 1999). But one challenge with this 

approach is the unavailability of comprehensive pre-urban records for comparison in 

most areas. A more viable approach used by (Kalnay and Cai, 2003) is to compare trend 

in surface temperature, which is sensitive to changes in land-use, and trends in 

reconstructed surface area from the reanalysis of global weather, which is independent 

on surface observations to estimate and quantify the impact of land-use change on urban 

climate.  Another approach is using satellite to identify land use changes which can then 

be correlated with meteorological temperature record and satellite thermal data 

(Romero et al., 1999).  
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Considering the above discussed factors, it is rather challenging to measure and 

evaluate the impact of urbanization on temperature based on comparison of observed 

data. Besides, the collective effect of global-scale climate change and rapid 

urbanization would likely make urban dwellers susceptible to various environmental 

challenges including extreme weather events, poor air quality, heat stress, and poor 

water quality. It is therefore essential to understand and estimate the future effect of 

climate change and urbanization on local and regional climate and to develop robust 

mitigation and adaptation strategies (Chen et al., 2011). Numerical modelling is another 

promising tool and a viable approach for investigating the historical effect of 

urbanization on local and regional climate. One of the advantages of the modelling 

approach is the possibility to eradicate the influence of climate variability and non-

stationarity (Thompson, 2009). 

Various numerical modelling studies have been conducted to investigate and predict 

future individual and combined effect or climate change and rapid urban growth on the 

climate of many urban cities across the world. For instance, (Li et al., 2009) used the 

WRF model with 5 one-way domains to study the impact of urbanization and its pattern 

on the UHI and rainfall pattern of Singapore. Adachi et al. (2014) used the WRF model 

to study the effect of urban form on the moderation of UHI in Tokyo Metropolitan area 

and for the prediction of the best model for further urban growth planning. Yang et al. 

(2016) conducted numerical experiments based on regional atmospheric model coupled 

with single layer urban canopy model and the future climate forcing to investigate the 

impact of urban foam (compact-city vs dispersed city) on the future thermal 

environment of Beijing. By coupling the WRF model with the Urban Canopy Model, 

H. Li et al. (2019) study the intensity of the UHI in Berlin, which was due to the 

difference in the sensible heat flux between impervious and vegetation surfaces. Similar 
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model was used to simulate and study UHI in Hangzhou during long-lasting heat wave 

(Chen et al., 2014). Moreover, numerical modelling approach has been utilized to study 

hypothetical urban growth models to develop strategies for the mitigation and adaption 

to the individual and combined effect of climate change and urbanization on urban 

climate (see section 2.2.6). As such, numerical modelling approach provides with 

opportunity not only to study the historical effect of urbanization but also predict future 

effect of urban growth on urban climate and plan mitigation and adaptation strategies. 

For the reminder of this thesis, numerical modelling approach using the WRF model 

coupled with the urban canopy model and NOAH model would be used to study the 

impact of future urban growth on the climate of Shanghai. Details of the methodology 

used in data collection and model set up are presented in chapter 3. 
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3 Methodology and analytical tools  

3.1 WRF Pre-processing System (WPS) 

The WPS program is mainly used for real data simulation. Its functions include 1) 

defining the simulation domain; 2) Interpolate land data (such as topography, land use 

and soil type) into the simulation domain; and 3) Extracting and inserting 

meteorological data from another model into the simulation domain. 

 WPS is a set of three programs whose combined function is to prepare inputs for 

real programs that simulate real data. Each program performs a preparatory phase: 

geogrid.exe defines the model domain and inserts static geographic data into the grid; 

ungirb.exe extracts weather fields from general regularly-distributed information in 

binary form (GRIB) files; And metgrid.exe horizontally interpolates the meteorological 

field extracted by ungrib.exe into the model grid defined by geogrid.exe. 

 

Figure 3.1 WPS flowchart (Morris 2016) 

 

The data flow between WPS programs is shown in the Fig 3.1 above. Each WPS 

program reads the parameters from a common name list file – namelist.wps, as shown 

in the figure. This name list file has a separate name list record for each program and a 
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shared name list record that defines parameters used by multiple WPS programs. 

3.1.1 geogrid.exe 

The purpose of geogrid.exe is to identify simulated areas and interpolate various 

terrain data sets onto pattern grid points. The simulation region is determined by setting 

the parameters related to "geogrid" in the namelist.wps file. In addition to calculating 

latitude and longitude and scaling factors for each grid point on the map, geogrid.exe 

interpolates default values for soil type, land use type, terrain height, annual mean deep 

soil temperature, roof vegetation cover, roof albedo, maximum snow albedo, and slope 

categories. The global dataset of these fields can be downloaded from the WRF website, 

and the data can be viewed as constant over time, so it only needs to be done once. 

In addition to interpolating the default static data, the geogrid.exe program can also 

interpolate more continuous and different types of terrain into the simulated area. It is 

able to interpolate new or additional data sets into the simulated region by applying the 

table file - GEOGRID.TBL. The GEOGRID.TBL file defines all terrain fields that can 

be generated by geogrid.exe. It describes the method needed to interpolate a terrain site 

and the exact location of the required data. 
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Figure 3.2  Examples of configuration of domains (nested domain: D01, D02 and D03) 

 
The files generated by geogrid.exe are in WRF I/O API format, Network Common 

Data Form(NetCDF) output files can be generated in NetCDF I/O format, which is 

easier to use some external software - NCView, NCL to visualize (draw topographic 

maps). 
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3.1.2 ungrib.exe 

The ungrib.exe program reads GRIB files, "extracting" the data, and writes it out in 

an intermediate format that is able to be read by metgrid.exe. GRIB files contain 

weather element fields that change over time and are derived from other regional or 

global models, such as National Centers for Environmental Prediction (NCEP) 's Global 

Forecast System (GFS) models. The GRIB file contains more factor fields than are 

needed to start WRF, thus the Vtable file (see Appendix for example of the Vtable) 

defines which fields from the numerous fields of the GRIB files that are to be extracted 

and then write into the intermediate file format understood by the metgrid.exe program. 

Detail descriptions of the fields in the Vtable can be found on the WRF-ARW User’s 

Guide V3, “creating and editing Vtable” section (Wang et al., 2012). 

3.1.3 metgrid.exe 

The function of metgrid.exe program is to horizontally interpolate the 

meteorological element fields extracted by ungrib.exe program into the simulated area 

determined by geogrid.exe. The interpolated data can be recognized and absorbed by 

WRF's real.exe program. The time periods for those interpolated by metgrid.exe can be 

adjusted by setting the share record section in namelist.wps, and the time is set 

separately for each simulated region (outermost and nested). Like the ungrib.exe 

program, metgrid.exe processes data that changes over time, metgrid.exe program is 

needed to be performed every time with a new simulation. 

The METGRID.TBL file provides control over how each meteorological field is 

interpolated. As with the GEOGRID.TBL file, the METGRID.TBL file has a section for 

each field, and within each section, it is possible to specify options such as the 

interpolation methods to be used, the field that will act as the mask for masked 

interpolations, and the staggering to which a field will be interpolated (Moris, 2016). 
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3.2 WRF model 

WRF is a new high resolution mesoscale meteorological Model and data 

assimilation system. The model project is founded in the late 1990s by the National 

Centre for Atmospheric Research, the Centre for Environmental Prediction, the 

Weather Prediction Systems Laboratory, the Air Force Weather Service, the Naval 

Research Laboratory and the Oklahoma University Centre for Storm Analysis and 

Prediction. WRF models can provide researchers with simulations based on actual 

atmospheric conditions (derived from observations and analyses) or ideal conditions 

(Wang et al., 2012). WRF provides a flexible and efficient platform for forecasting and 

reflects the latest advances in physics, numerical and data assimilation provided by a 

wide range of research teams. As a new generation of fully compressible non-static 

model, WRF has the characteristics of being portable, easy to maintain, expandable, 

efficient, and capable of parallel computing (Wang et al., 2012). At present, this model 

system has been greatly promoted by many research institutions and universities 

constantly using and improving the model, making the model simulation effect more 

accurate.   

WRF model has two dynamic cores, a data assimilation system and a software 

architecture that supports parallel computing and system scalability. The model is 

suitable for a variety of meteorological applications ranging from tens of meters to 

thousands of kilometres. WRF model mainly has two dynamic cores, which are NMM 

(non-hydrostatic Mesoscale Model) mainly applied and operational forecasting; and the 

ARW (Advanced Research WRF)  model for advanced research (mainly provided to 

researchers for original Research). The WRF-ARW dynamic core is chosen in this 

study due of its widespread use in several fields of research and real-time forecasting 

worldwide (Morris et al., 2015b; Martins et al., 2015; Li et al., 2016). 
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Fig 3.3 depicts the major components and a flowchart illustrating the functionality 

of the WRF modelling system's components. The software framework offers 

infrastructure for dynamic solvers, physics packages that interface with the solver, 

initialization routines, and other model-related software components (Skamarock et al., 

2008). 

 

Figure 3.3 WRF software infrastructure (Skamarock et al., 2008) 
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3.2.1 WRF-ARW model 

ARW is a completely compressible, Eulerian mass coordinate non-hydrostatic model 

with a run-time hydrostatic option that solves conservative equations of mass, 

momentum, and energy using terrain-following coordinates and with the possibility of 

multiple layering to increase precision across the area of interest (Skamarock et al., 

2008). It is a numerical weather forecast model of the next generation with enhanced 

dynamics, physics, and numeric methods. Horizontal discretization is accomplished 

using Arakawa C-grid. For scalar variables, the model equations are conservative. 

Additionally, the model incorporates a time-split third order Runge-Kutta integration 

scheme for model integration (Skamarock and Klemp, 2008) with higher order 

advection methods,  comprehensive Coriolis, curvature, and mapping terms. The model 

is commonly used in hydrology and meteorology in metropolitan areas (Chen et al., 

2011; Li et al., 2013). Additional details regarding the model and its several governing 

equations are available in the NCAR ARW Technical Note (Skamarock et al., 2008). 

As with the WPS, the ARW generates two critical executable files during the model 

installation process (real.exe and wrf.exe). The real.exe program is responsible for 

handling real-world input and model initialization, whereas the wrf.exe software is 

responsible for simulation integration and computation of all provided physics and 

dynamics settings. 

The real.exe program is a real-data initialization and pre-processor for the WRF 

model (wrf.exe). It processes pre-processed data from the WPS program and generates 

the initial and boundary conditions for later use. Real.exe is to ensure that the data has 

been interpolated horizontally to the right grid-point spacing for each variable and that 

the winds have been rotated correctly to the WRF model map projection. Also, real.exe 

gathers the 3D data like pressure, wind speed, temperature, relative humidity, 
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geopotential height, soil temperature, soil moisture, soil liquid from WPS and import 

to WRF. Other meteorological data from the WPS are also handled by real.exe like sea 

level pressure, surface pressure, surface wind seed, surface temperature, surface relative 

humidity, input elevation and so on. For regional predictions, multiple time periods 

must be processed by real.exe in order to provide the model with a lateral boundary file. 

ARW.exe then processes the numerical integration of the model and calculates the 

different physical and dynamic options using the initial and boundary conditions 

generated by the real.exe program. The program runs the model simulation using the 

run-time selected namelist.input options (such as physical selection, time step, 

simulation length, and nested type) and outputs history and restart files that can be used 

to start the program later. A simplified flowchart for WPS and WRF interactions and 

dependencies is shown in Fig 3.4 

 
Figure 3.4 WRF modelling system flow chart (MMM, 2015) 
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3.2.2 Noah Land Surface Model 

Noah LSM is a land model of WRF, which has been widely used. As a coupled 

atmospheric model for lower boundary layer conditions, Noah LSM has a basic 

function of providing surface sensible heat, latent heat flux and surface temperature. Its 

model is based on diurnal varying Penman potential evaporation approach; a multi-

layer soil model, surface hydrology, frozen ground physics and a modestly complex 

canopy resistance parameterization (Chen et al., 1996; Chen et al., 1997; Chen and 

Dudhia, 2001; Ek, 2003). predictive variables include liquid water, ice, temperature of 

soil layer, water amount stored in the plant canopy and snow stored on the ground (Chen 

and Dudhia, 2001). The main objective is to provide surface sensible and latent heat 

fluxes, as well as surface skin temperature, as lower boundary conditions for linked 

atmospheric models. 

For simulation area without an urban canopy model employed (i.e., Outer nested 

region like D01 and D02), the urban areas parameters are approximated by a universal 

urban parameter in Noah LSM. The following parameter values are used to represent 

the zero-order influence of urban surface (Liu et al., 2006): (1) roughness length is 0.8m, 

representing the turbulence caused by building drag or rough elements; (2) Surface 

albedo as 0.15, representing short-wave transmission in urban blocks; (3) The 

volumetric heat capacity of urban surfaces (walls, roofs and roads) is 3.0Jm-3K-1, 

assuming surface as concrete or asphalt; (4) Soil thermal conductivity 3.24 W m-3K-1, 

representing the large heat capacity of urban buildings and roads; (5) The decrease of 

the greening rate in urban areas leads to the decrease of evaporation. This method has 

been successfully applied in real-time weather forecasting (Liu et al., 2006) and in 

studying the impact of urbanization on land and sea breeze circulation (Lo et al., 2007). 



44 
 

 
Figure 3.5  WRF/Noah LSM model (Kusaka, 2004) 

 

3.2.3 Urban Canopy Model 

The single-layer urban canopy model was invented by Kusaka (2004). The model 

assumes that street canyons are infinitely long and thus represent the geometry of the 

city. UCM can recognize the three-dimensional surface of the city. At Street Canyon, 

UCM considers the effects of shadow, reflection and capture on radiation and prescribes 

an additional wind profile description document. Predictive variables include roof, wall, 

and road surface temperatures (calculated from the surface energy balance) and 

temperature profiles (calculated from the heat conduction equation). The surface 

sensible heat flux of each surface was calculated by Monin-Obukhhov similarity theory 

and Jurges formula. The total sensible heat flux of roof, wall, road and city block is 

transferred to WRF-Noah model. The total momentum flux is calculated in a similar 

manner. UCM calculates canyon drag coefficients and frictional velocities using a 
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stability similarity function of momentum. The total friction velocities of converged 

urban and non-urban surfaces are transmitted to the WRF boundary layer scheme. 

Anthropogenic heat and its diurnal variation need to be added to the sensible heat flux 

output by the urban canopy model. In UCM, about 20 physical parameters are 

considered 

When UCM is coupled with Noah LSM in WRF model, the cumulative sensible 

heat flux of the grid can be estimated by the following formula as: 

𝑄𝑄ℎ = 𝐹𝐹𝑣𝑣 × 𝑄𝑄ℎ𝑣𝑣 + 𝐹𝐹𝑢𝑢 × 𝑄𝑄ℎ𝑢𝑢 

Where𝑄𝑄ℎ  represents the total sensible heat flux of a certain grid simulated. 𝐹𝐹𝑢𝑢 

represents the percentage of urban underlying surface, such as cement, asphalt, and 

other impermeable underlying surface; while 𝐹𝐹𝑣𝑣 represents the percentage of natural 

surface, such as urban grassland, bushes, crops, and trees. 𝑄𝑄ℎ𝑢𝑢 is the sensible heat flux 

of artificial surface (including artificial heat) calculated by UCM, while 𝑄𝑄ℎ𝑣𝑣  is the 

sensible heat flux of natural surface calculated by Noah LSM (Chen et al., 2011). 

Similarly, latent heat flux, upward long-wave radiation flux, albedo and emissivity 

are estimated in a similar way (Chen et al., 2011). 

3.3 Other analysis tools 

3.3.1 ArcGIS 

ArcGIS is a world leader for the design and development of Geographic 

Information Systems software developed by Environmental Systems Research Institute, 

Inc. GIS technology through this software allows the organization, manipulation, 

analysis, and visualization of spatial data, often revealing relationships, patterns, and 

trends (Scott, 2009). 

In this study, ArcGis10 is used mainly for making maps of underlying surface 

distribution, adding shapefile, reclassifying land use data, reprojection and splicing of 
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raster data, and converting data into ASCII format for further WPS processing. 

3.3.2 NCAR Command Language 

The NCAR Command Language, developed by the National Centre for 

Atmospheric Research's Computational & Information Systems Laboratory and funded 

by the National Science Foundation, is a free interpreted language optimized for 

scientific data processing and visualization (NCAR, 2015). 

In this study, all WRF simulation results were displayed after reading and 

graphically processing with NCL script. Figure 3.6 shows the average spatial 

distribution of planetary boundary layer height in the simulated region. 

 

Figure 3.6 Averaged planetary boundary layer height distribution of Shanghai area during 

simulation 
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3.3.3 OriginPro 

OriginPro is a proprietary computer program for scientific graphing and data 

analysis on an interactive basis. It is licensed and produced by OriginLab Corporation 

and operate on Microsoft Windows platforms. Statistics, curve fitting, signal processing, 

and peak analysis are all included in the software's data analysis functionality. OrginPro 

can read files in a variety of formats, including Excel and NetCDF, and to produce 

plotted graphs in a variety of image file formats (Origin Lab 2013). 

In this study, OriginPro is used to process discrete data results and output them as 

line charts that change over time to intuitively show the logic behind the simulation 

results. 

3.3.4 MATLAB 

MATLAB is a proprietary multi-paradigm programming language and numeric 

computing environment developed by MathWorks inc. MATLAB can be used to do 

matrix operation, function and data drawing, algorithm implementation, the creation of 

user interface and program interface written in other languages (Tranquillo, 2011). 

MATLAB 2020b is used in this study to process a large number of observational 

data and the data matrix of WRF simulation results and compare the simulation results 

to obtain the fitting effect. 

3.4  NCEP Final analysis (FNL) data 

The NCEP FNL Operational Global Analysis data set consists of (0.25° x 0.25°) 

grids that are prepared operationally every six hours. This FNL comes from the Global 

Data Assimilation System (GDAS), which gathers observational data from the Global 

Telecommunications System (GTS) and other sources on a continuous basis for the 

purpose of conducting different analyses (NCEP et al., 2000). The FNLs are modelled 

using the NCEP-used Global Forecast System, however they are created approximately 
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an hour after the GFS is initialized. The FNLs are postponed allowing for the inclusion 

of more observational data. The GFS is run early to accommodate time-sensitive 

forecast requirements and initializes with the FNL from the previous 6-hour cycle. 

The analyses are provided on the surface, at 32 obligatory and non-mandated 

pressure levels ranging from 1000 millibars to 10 millibars, in the surface boundary 

layer and other sigma layers. Surface pressure, sea level pressure, geopotential height, 

temperature, sea surface temperature, soil temperatures, ice cover, relative humidity, u- 

and v-winds, vertical motion, vorticity, and ozone are all included as parameters (NCEP 

et al., 2000). 

 

3.5 Conclusion 

This part of the Thesis details the different techniques and tools used to achieve the 

stated goals and objectives of this research. These include weather research and 

forecasting model, NOAH land surface model, and urban canopy model, as the main 

tools that this research relies on to analyse the impact of urbanization on local climate 

of Shanghai. Other tools such as ArcGIS, NCL and MATLAB are used to process the 

simulation results generated by WRF to present intuitive images for subsequent 

analysis and conclusions. 

In addition, FNL data provided all the side boundary conditions for this study to 

drive the dynamic downscaling simulation of WRF, and hourly observation data from 

11 observation stations in Shanghai provided a strong argument for the simulation 

validation of this study. 
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4 Evaluation of NOAH/SLUCM coupled to WRF and urban 

climatology simulation of Shanghai 

4.1 Introduction 

The rapid development of urbanization in China has changed the physical properties 

and surface morphology of the underlying surface, thus affecting the weather and 

climate characteristics. Studies show that in the process of urbanization, the temperature 

(Kalnay and Cai, 2003), wind speed (Tao et al., 2018), sunshine (Wu et al., 2015) and 

precipitation (Wang et al., 2007) of the city are all affected by land use change to a 

certain extent. Due to the interaction between land use data and local meteorological 

elements, the accuracy of weather and climate simulation results is also affected by the 

degree of matching between land use data used in the model and the actual situation 

(Madala et al., 2019). 

Currently, in the WRF Model, the default data set is relatively out of date. One is 

the United States Geological Survey (USGS) data, updated in 1993 and divided into 24 

categories. The other is the moderate-Resolution Imaging Spectroradiometer (MODIS) 

data, which was updated in 2001 and divided into 20 categories, with only one land 

category representing cities. Studies have shown that more precise and accurate land 

use data can improve the simulation effect of the model (Cao et al., 2015), so it is 

usually necessary to optimize and update the land use data before the operation of the 

model. 

The change of land use caused by urban development is reflected in the continuous 

outward expansion of urban outer contour and the increasing complexity of urban inner 

spatial structure on the other hand. Therefore, the update of land use data in WRF model 

is mainly about the correction of urban land use area and the refinement of urban inner 
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classification. In terms of urban area correction, Chang Ming et al., (2014) reclassified 

existing local land cover data according to USGS classification standards to generate 

new land use data. Because the updated data are more consistent with the actual land 

use, the simulation effect of WRF model on temperature, wind speed and water vapor 

pressure are improved. In terms of refinement of the classification of inner cities, 

WRF/UCM supports researchers to further subdivide urban built-up areas into low-

intensity residential areas, high-intensity residential areas, industrial and commercial 

areas, and transportation areas (or called "low-density areas", "medium-density areas", 

and "high-density areas"). Studies show that urban heterogeneity has a certain impact 

on meteorological elements and their distribution characteristics (Song et al., 2014), so 

it is necessary to consider the fine classification of cities in the model. 

In this chapter, a land use and land cover dataset from the Mega-Cities Project 

(Murayama et al, 2015; Gong et al., 2017) is used. The dataset is generated by collecting 

high spatial resolution satellite imageries with geometrically corrected. A supervised 

classification method with maximum likelihood algorithm is used to the classification. 

Using this data set, the urban non-uniformity is fully considered, and the urban built-

up area is subdivided into 2 more categories. On the other hand, the anthropogenic heat 

input is estimated according to the data of Shanghai statistical yearbook (Shanghai 

Statistics Bureau, 2020), also the daily variation curve is corrected. The simulation 

results using updated urban canopy model is compared with the default data set of WRF, 

and the influence of different land use data optimization schemes on the simulation 

process is studied, which verifies the ability of WRF/Noah/UCM model to simulate 

local weather in Shanghai. The model is validated against a network of observation, 

followed by a discussion of simulation results. 
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4.2 Methodology 

4.2.1 Study region 

Shanghai is located in the eastern part of China, at the lower reaches of the Yangtze 

River, with its global positioning system coordinates of 31° 13' 27.6996'' N and 121° 

28' 9.0120'' E, with a total area of 6,340 km2. As a part of the Yangtze River Delta 

impact plain, Shanghai is densely covered with rivers that has rich water systems. The 

terrain of Shanghai area is generally broad and flat as average elevation of Shanghai 

being only 2.19 meters. Its highest point is located on Dajinshan Island in Jinshan 

District of an altitude of 103.7 meters. 

Shanghai has been one of the largest metropolises in China ever since 1843, when 

ports were opened, and the development of the hinterland trade began. Due to its unique 

geographical and climatic advantages, the city has been endowed with unlimited 

development potential and opportunities, gradually replacing Guangzhou as the centre 

of foreign trade. According to the data in 2019 (Shanghai Statistics Bureau, 2019), more 

than one-third of the city's Year-end Resident population are ‘floating people’, and the 

rapid growth of the floating population and many immigrants indicates that a trend of 

increase in the total population of Shanghai. The high intensity of human activities has 

greatly influenced the land use types in Shanghai. Since 1990, a large amount of arable 

land was occupied by building land, which has resulted in the total area of construction 

land in Shanghai being tripled compared to 30 years ago. Now, the total construction 

land of this city is as high as 46% of the land area, far more than Tokyo, Paris and other 

international metropolises (Shanghai Statistics Bureau, 2019). 

Due to the early urban development of Shanghai, its urban morphology and land 

use situation is complex which makes it a good sample for the study of urban 

development and its impact on regional climate. At the same time, with the rapid 
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development of Shanghai, the city is still in constant change, so it is necessary to study 

the updating of urban land use data. Shanghai is the representative of the urban 

agglomeration in the Yangtze River Delta, and its study can also serve as a reference 

for other cities in the Yangtze River Delta. Therefore, this study has chosen Shanghai 

as its region of study. 

4.2.2 Model and experimental design 

The key to understanding local climate research first comes from the analysis of 

meteorology data, which can be recorded by 11 in-situ observation stations located in 

Shanghai. However, the discrete location of each station is not able to provide a whole 

picture of the local climatic characteristics, therefore, a spatio-temporal continuous 

analysis performed by a proven numerical simulation tool is needed. 

In this study, ARW dynamic core coupled with NOAH land surface model (Chen 

and Dudhia, 2001; Tewari et al., 2007) and the single layer urban canopy model 

(Kusaka and Kimura, 2001; Chen et al., 2011) is used to conduct the simulation. The 

version of WRF is 3.8.1, renowned to be a next-generation mesoscale weather and 

climate simulation tool (Skamarock et al., 2008). The combination of these models 

makes WRF even able to connect the land surface, urban canopy and the overlying 

atmosphere and process taking place among them (Chen et al., 2014). The ability to 

capture and reflect impacts of urbanization on near surface meteorological process is 

also an advantage of the combination (Miao et al., 2009; Chen et al., 2011). As a 

simulation tool, user-defined land use and land cover data can be input as replacement 

of default dataset provide better performance in urban effect assessment. Figure 4.1 

illustrates the domain configuration of the model and the terrain of the whole area of 

interest. A three one-way nested domain with a horizontal resolution of 9 × 9 km, 3 × 

3 km, and 1 × 1 km, for d01, d02 and d03, are respectively configured to handle the 
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numerical simulation of the area. 

 

 

Figure 4.1 Domain setting of the simulation and terrain height of simulation area 
 

There are 128 × 128 grids for D01, which covers most areas in Southeast China. 

D02 with 118 × 118 grids are mainly Yangtze River Delta, while D03 covers only the 

whole central area as our main study interest. For the vertical setting, there are 34 

hydrostatic-pressure levels to resolve vertical layers for all domains, with 15 of the 

levels are reserved below 850 hPa to further resolve turbulence and frequent changes 

of atmospheric variables within the lower planet boundary layer (PBL) and top at 

100hpa. Additionally, these lower levels would be helpful in illustrating the small-scale 

feature near Earth’s surface (Morris et al., 2016) 
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Figure 4.2 Land use and Land cover map for (a) Default as MODIS, and (b) Updated urban land 
surface using Mega-cities Project data 

 

Default Land use and Land cover dataset in WRF uses MODIS 2001 data, which is 

out of date in its classification of LULC type but still has a relatively high accuracy of 

classification when the gird scale is large enough. To save on more computational costs, 

both d01 and d02 are still using the default MODIS dataset. For d03, there are 4 cases 

designed in different surface dataset scenarios to evaluate the performance and to 

conduct further analysis: (a)MODIS, (b)URB, (c)URB_noAH, (d)CONTROL. Case a 

MODIS represents the default simulation setting and physical characteristic of the land 

surface in d03. The default data in WRF has not been updated since 2001. The 

resolution for this dataset is 1km. Case b as URB is using the updated land use and land 

cover dataset from the Mega-cities Project led by University of Tsukuba (Murayama et 

al, 2015; Gong et al., 2017) to replace all grids within Shanghai area. The land cover 

type for urban area is single in MODIS dataset as in ‘Low intensity residential area’, 

while there are 2 sub-classes in this updated dataset: Low intensity residential area (LIR) 

and High intensity residential area (HIR). This data would be useful in explaining the 
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variation in development density and provides more details in further simulations. Case 

c as URB_noAH represents urban surface land cover without anthropogenic heat 

emission as a representative of heat source from human activities in the simulation 

settings, which evaluates the contribution of AH in urban area. Finally, for the 

CONTROL case, all the urban surfaces are removed and replaced with natural 

vegetation as in rural space. The no-urban (case d CONTROL) method of evaluating 

UHI can largely remove effects like sea-land breezes, heatwaves and other advections 

that may have an influence on the results other than purely urbanization process (Li et 

al., 2011; Bohnenstengel et al., 2011). This approach has proved to be a reliable way to 

successfully evaluate urbanization effects (Wang et al., 2014). 
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 Table 4.1 Main Physical parameterization setting 

 
 

Physical parameterizations used are listed in table 4.2, including the microphysics 

scheme of single-moment six-class (WSM-6) microphysics scheme (Hong and Lim 

2006; Dudhia et al., 2008), and a surface-layer scheme based on the Monin-Obukhov 

similarity theory. For radiation, the Dudhia shortwave radiation scheme (Dudhia 1989), 

and the RRTM longwave scheme (Mlawer et al., 1997) was used. On the D01 and D02, 

the Kain-Fritsch convective cumulus parameterization scheme (Kain 2001) was applied. 

D03 does not need any cumulus parameterization as it is able to resolve updrafts and 

downdrafts in such a sufficiently refined resolution. 

 The UCM as single layer urban canopy model was used to consider the effects of 

 D01 D02 D03 

Microphysics Scheme single-moment six-class 

(WSM-6) microphysics 

scheme 

single-moment six-class 

(WSM-6) microphysics 

scheme 

single-moment six-

class (WSM-6) 

microphysics scheme 

Longwave Radiation 

Scheme 

Long-wave Rapid 

Radiative Transfer 

Model (RRTM) 

Long-wave Rapid 

Radiative Transfer 

Model (RRTM) 

Long-wave Rapid 

Radiative Transfer 

Model (RRTM) 

Shortwave Radiation 

scheme 

Dudhia cloud radiation 

scheme 

Dudhia cloud radiation 

scheme 

Dudhia cloud 

radiation scheme 

Surface-layer Scheme Monin-Obukhov 

similarity theory 

Monin-Obukhov 

similarity theory 

Monin-Obukhov 

similarity theory 

Planetary Boundary 

scheme 

Yonsei University 

(YSU) scheme 

Yonsei University 

(YSU) scheme 

Yonsei University 

(YSU) scheme 

Convective Cumulus 

Parameterization 

Scheme 

Kain-Fritsch convective 

cumulus 

parameterisation 

Kain-Fritsch convective 

cumulus 

parameterisation 

N/A 

Urban Canopy Model N/A N/A SLUCM 
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urban geometry on surface energy balance and wind shear for urban regions (Kusaka 

et al., 2001; Kusakaand Kimura，2001).This model includes shadows from 

buildings，canyon orientation，diurnal variation of azimuth angle, reflection of short 

and long wave radiation, wind profiler in the canopy layer, anthropogenic heating 

associated with energy consumption by human activities and multi-layer heat transfer 

equation for surfaces.(Chen et al., 2011) 

Table 4.2 SLUCM parameters settings for MODIS case and URB case 

Urban Parameters LIR HIR MODIS 

Mean Building height (m) 5 27.5 7.5 

Standard deviation of building height (m) 1 8 3 

Building roof width (m) 8.3 24 9.4 

Road width (m) 8.3 16 9.4 

Maximum Anthropogenic heat (W m-2) 20 120 0 

Urban Fraction 0.5 0.9 0.9 

Volumetric heat capacity of roof (MJ m-3 K-1) 1.20 1.20 1.2 

Volumetric heat capacity of building wall (MJ m-3 K-1) 1.40 1.40 1.40 

Volumetric heat capacity of ground (road) (MJ m-3 K-1) 1.68 1.68 1.68 

Thermal conductivity of roof (W m-1 K-1) 0.67 0.67 0.67 

Thermal conductivity of building wall (W m-1 K-1) 0.8 0.8 0.8 

thermal conductivity of ground (road) (W m-1 K-1) 1.32 1.32 1.32 

Surface albedo of roof 0.2 0.15 0.2 

surface albedo of building wall 0.2 0.15 0.2 

surface albedo of ground (road) 0.11 0.11 0.11 
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Figure 4.3 Building Radial distribution in 500m from Shanghai Meteorological 

Bureau (Tan et al., 2016) 

 

There are insufficient resources available to obtain all the building height and 

distribution information in Shanghai, and therefore, a SLUCM is used in parameterize 

Shanghai area. Tan and Grimond published a paper about Shanghai’s Urban Integrated 

Meteorological Observation Network in 2015 by digitalized an 80000m2 building 

height in shanghai downtown area as is seen in Figure 4.3. It must be taken into account 
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that the LULC scheme is not only used in the core city, which means it is not only the 

core city being characterized as High-density residential area in this simulation. 

Therefore, some parameters should also be adjusted to fit more in our simulation. Table 

4.1 lists most important Urban surface parameters used, including other key parameters 

such as Mean building height, Standard deviation of building height and AH maximum 

level. The remaining parameters have been set as default as per the recommendations 

of various other researchers (Ahmed et al., 2015; Salleh et al., 2015; Tan et al., 2016). 

Anthropogenic heat is mainly produced by human production and living and 

biological metabolism. Due to the high population density in cities, heat released by 

fossil fuels comprises of that in the combustion of gas stoves and internal combustion 

engines in industrial production, by air temperature regulating equipment and motor 

vehicle exhausts, amongst others. The effect of anthropogenic heat on urban heat 

balance is influenced by many factors, such as the geographical location of the city, the 

size of the construction scale of the city, the level of population density, the level of 

energy consumption per person, the nature of the city and its regional climate conditions, 

and other obvious seasonal and diurnal variations. (Wang et al., 2011; Lu et al., 2014) 

In this research paper, anthropogenic heat emission sources are considered from 

industry, transportation, construction, and human metabolism with each contribution 

estimated in table 4.3(Li et al., 2015). To further substantiate the findings of the 

simulation, a diurnal profile of AH emission has been included. 
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Table 4.3 Estimated Anthropogenic Heat Flux 

City Area 

(km2) 

Anthropogenic Heat (× 106𝐽𝐽/𝐴𝐴) Average Flux 

(W/m2) 
Industry Transport Building metabolism 

Shanghai 866 173.7 87.3 49.9 10 120 

 

 

Figure 4.4 The diurnal profile of AH intensity used in the UCM 

 

For simulation lateral boundary conditions, data from the National Centres for 

Environmental Prediction Final Analysis data is used. The data is on 0.25-degree 

resolution of each grid cell generated by each six hours. The Global Data Assimilation 

System, which continuously collects observational data from the Global 

Telecommunications System is used to help assimilate the product to increase its 

accuracy (NCEP et al., 2000). 

Observation data used is Hourly Data from Surface Meteorological Stations in 

China. In this case, there are 11 national observation stations in Shanghai and the real 

time data are quality controlled at an overall 99% accuracy standard. Observation 
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stations information can be found in table 4.4 and Figure 4.4. Model validations and 

analyses are conducted using this observation data on corresponding results from d03, 

unless stated otherwise. 

Table 4.4 Observation stations information 

Station Name Station ID Longitude (°) Latitude (°) Elevation (m) 

Minhang 58361 31.10 121.37 5.5 

Baoshan 58362 31.40 121.45 5.5 

Jiading 58365 31.37 121.25 4.4 

Chongming 58366 31.67 121.50 4.3 

Xujiahui 58367 31.20 121.43 4.6 

Nanhui 58369 31.05 121.78 5.0 

Pudong 58370 31.23 121.53 4.4 

Jinshan 58460 30.82 121.27 - 

Qingpu 58461 31.13 121.12 4.0 

Songjiang 58462 31.03 121.23 4.2 

Fengxian 58463 30.88 121.50 4.6 
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Figure 4.5 Observation station locations 

 

4.3 Model validation 

Numerical modelling has the advantage of being able to support simulations in 

different scenarios and easy to alter settings for different research interests, while its 

inherent limitation is non-neglectable, such as lack of complexity of real -world 

characteristics, and an over simplified physical process model in theoretical 

assumptions. Thus, validation of this WRF/NOAH/UCM combination on its ability to 

capture meteorology characteristic of our research is necessary before more scenarios 

are introduced for further study. 

2-m temperature (T2m), 2-m relative humidity (RH) and wind speed (WS10m) 

generated during simulation period is validated against network of all 11 Observation 

stations (result generated during first 12hours are abandoned as spin hour data). Five 

statistics tools are used at this stage, namely: Mean Bias Error (MBE), root-mean square 
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error (RMSE), hit rate (HR) and Index of Agreement (IOA).  

MBE is calculated as 

MB = 1
𝑁𝑁
∑ (𝑃𝑃𝑖𝑖 − 𝑂𝑂𝑖𝑖)𝑁𝑁
𝑖𝑖=1  

where Pi is the modelled value for station i, Oi is the observed value, and N is the 

number of values analysed. 

IOA is calculated as 

IOA = 1 −  ∑ (𝑃𝑃𝑖𝑖−𝑂𝑂𝑖𝑖)2𝑁𝑁
𝑖𝑖=1

∑ (|𝑃𝑃𝑖𝑖−𝑂𝑂�|+|𝑂𝑂𝑖𝑖−𝑂𝑂�|)2𝑁𝑁
𝑖𝑖=1

 

 

Index of Agreement (IoA) provides further insight into the behaviour of the model 

for scalar magnitudes. It ranges from 0 to 1, (0<IoA<1) 

HR is calculated as 

HR =  1
𝑁𝑁

 × 𝑛𝑛𝑛𝑛𝑛𝑛(|𝑃𝑃𝑖𝑖 − 𝑂𝑂𝑖𝑖| < 𝐶𝐶) 

 

C as the threshold value is set as 1.0°C (Cox et al., 1998) for 2-m temperature, 1.0 

m/s (Kulkarni et al., 2008) for 10-m wind speed and 5% (Lawrence 2005) for relative 

humidity as the desired accuracy (hit-rate). 

RMSE is calculated as 

RMSE = � 1
𝑁𝑁
∑ (𝑃𝑃𝑖𝑖 − 𝑂𝑂𝑖𝑖)2𝑁𝑁
𝑖𝑖=1  
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Table 4.5 Statistical summary of model validation for different cases 
 

 

Statistics of model validation for all 4 different cases are summarized in table 4.5. 

Generally, the WRF/NOAH/UCM combination model yields a good performance for 

2-m temperature, 2-m relative humidity, and 10-m wind speed as our main indexes of 

evaluation. This is particularly the case for case b - URB, which uses the updated land 

use and land cover map along with an estimated AH emission diurnal curve. The IOA 

for case b - URB is 0.993, 0.976 and 0.815 for T2m, RH and WS10m, respectively. 

Regarding the T2m simulation, cold bias can be found in the case of MODIS, 

URB_noAH and CONTROL case as there is no urban land cover. It is noticeable that 

even for the cold bias, URB_noah shows a relatively low value of the cold bias (-0.39) 

compared to the MODIS case (-2.074), which indicates that the updated LULC map is 

able to correct the underestimated urban area in MODIS 2001 dataset. The only warm 

Variables Statistics 

Indicators 

MODIS URB_noAH URB CONTROL 

T2m (°C) MB -2.074 -0.39 0.269 -2.569 

 RMSE 2.244 1.546 1.512 2.823 

 IOA 0.854 0.991 0.993 0.852 

 HR 0.46 1 1 0.50 

RH (%) MB 7.087 2.411 -2.18 8.319 

 RMSE 8.428 5.347 4.712 9.292 

 IOA 0.885 0.933 0.936 0.913 

 HR 0.66 0.83 0.88 0.125 

WS10m (ms-1) MB 1.128 0.418 0.306 1.175 

 RMSE 1.192 0.995 0.918 1.285 

 IOA 0.335 0.634 0.715 0.138 

 HR 0.41 0.92 0.92 0.38 
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bias comes when the AH emission is taken into consideration in case b - URB. The 

introduction of SLUCM and updated LULC yields a better result when looking at 

RMSE and IOA considered with that of MODIS case. RMSE is reduced from 2.244 to 

1.546 and 1.512, IOA is increased from 0.854 to 0.991 and 0.993, without and with AH 

respectively. 

Similar result can be found in terms of RH simulation. Positive bias is reduced when 

updated LULC map and SLUCM is employed in case c - URB_noAH, from a large 

mean bias of 7.078 to 2.411, and further turns into a negative bias of -2.18 in case b - 

URB when the AH emission is taken into account. This result makes sense as the 

rapidly change of land cover from croplands and forest into impermeable artificial 

underlying surface in Shanghai is observed since 2001, when MODIS data was 

generated. An improvement can be inferred by a 5.081 and 5.168 ˚C reduce of RMSE 

of 2-m temperature for URB_noAH case and URB case, respectively. It is noticeable 

that most observation stations located on MODIS 2001 map are classified as cropland, 

which is not consistent with reality. All cases therefore overestimate the wind speed in 

the simulations while the case b. URB still presents the most accurate results out of 4 

with a RMSE at 0.918 m/s and a IOA of 0.715. 

 

Figure 4.6 Average diurnal profile of (a) 2-m temperature (left), (b) Relative humidity 
(middle), (c) Wind speed (right) 
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The update of urban underlying surface datasets is helpful to input updated surface 

albedo, radiation, roughness, and other parameters, which is more consistent with 

present reality, and thus has an impact on the simulation of water vapor and energy 

balance in the land-surface scheme. 

In addition, the introduction of UCM and AH enables the model to consider simple 

building morphological characteristics, and the shading effect among buildings to 

establish energy balance equations on the roof, wall, and road surface. The 

improvement of the simulations’ results is clearly demonstrated diurnally in Fig 4.6. 

For 2m-temprature, 1700 – 0700 local time simulation indicates that the AH is 

playing an important role in heating the surface, leading a slower temperature drop 

before the sunrise. Temperature rises rapidly during daytime and reaches its peak at 

1300 when the radiation is dominant all the energy balance equation. All simulation fail 

to capture temperatures as extreme as 39.225°C but the URB case can be seen as 

coming the closest. MODIS case is able to capture the trend of temperature diurnal 

curve but the outdated LULC distribution leads to a systematic underestimated of T2m. 

The increase in simulated surface temperature also results in a reduction of relative 

humidity of Shanghai area, which led to an underestimation of the relative humidity 

during the simulation period. (Figure 4.6b). Due to updated urban land cover 

information such as building height and roughness length in the simulation, wind speed 

simulated for both URB case is lower than MODIS and noURB. However, 

overestimated wind speed during 0000 – 1000 is observed for all cases. 

Overall, land-use dataset update setting (URB_noAH) and with AH 

parameterization setting (URB) increases WRF simulation performance, with AH 

added case is having best result with a RMSE at 0.512°C, 4.712 and 0.918ms-1 for 2-

m temperature, 2-m relative humidity and 10-m wind speed, respectively. 
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In the further research of this chapter, Case b - URB is used to study the climatology 

of Shanghai city. Spatio-temporal distribution of temperature, humidity, wind speed, 

energy budget and planetary boundary layer height will be the next topics discussed. 

4.4 Results and discussions 

4.4.1 2-m Temperature and Urban heat island intensity 

As demonstrated above, diurnal profile of average 2-m temperature is shown in 

Figure 4.6, while Figure 4.7 indicates it also has a spatial distribution pattern dependent 

upon the land cover and human activities. 3 typical intervals can be classified according 

to Figure 4.7a (Morning before sun rise: 0100 – 0500 LT, daytime when sun rises: 0700 

– 1400 LT, and night time after sunset: 1800 – 2400 LT). 2-m temperature is dropping 

in the morning with different pace as rural area reaches its lowest temperature at 

27.56°C, followed by LIR at 29.78°C and HIR at 31.05°C. AH emission plays a 

dominant role in heating the surface when there is no direct sun radiation. At daytime, 

surface temperatures would start increasing naturally after sunrise until reaching the 

maximum temperature at 38.85°C, 38.30°C and 37.91°C for HIR, LIR and rural areas 

respectively. Although the temperature distribution gradient is maintained in the 

simulation, it is clear that the maximum temperature is relatively closed. Within the 

first 6 hours of sunrise, T2m of rural area experiences a surge for 10.4°C, while that of 

the HIR for 7.8°C only. Large areas of artificial underlays in cities, such as impermeable 

roads and roofs, absorb more heat than vegetation in suburban areas, which slows down 

the temperature rise of urban areas directly exposed to sunlight during daytime and 

slowly releases the heat back after sunset. This can be verified by the night time curve 

of Figure 4.7a as a similar process of that in the morning. Overall, HIR with higher 

fraction of urban area shows the highest max temperature(38.85°C) but lowest Diurnal 

temperature range(7.8°C), as opposed to rural spaces that come with 37.91°C max and 
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10.4°C range, with LIR in the middle of all indicators (38.3°C maximum and 8.52°C 

range). 

 

Figure 4.7 Averaged temporal variations of: (a) 2-m temperature (up left figure) and 

Spatiotemporal variation of 2-m temperature above the surface during: (b) morning (up right 

figure), (c) day time (bottom left figure) and (d) night time (bottom right figure) 

 

Fig 4.7 bcd shows the spatial distribution of 2m temperature at different stages. The 

temperature distribution after sunrise shows no obvious difference among 3 underlying 

surfaces. The maximum temperature appears in the northwest direction of Huangpu 

River and gradually decreases towards the coastline. However, the temperature 

distribution after sunset reflects the obvious influence of underlying surface, which is 

more significant in 0000-0500 LST stage. It can be clearly seen that there is a certain 

degree of cliff in the temperature distribution, and the temperature gradient at the edge 
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of the high temperature area is large. It is posited that this is a result of the 

oversimplified introduction of AH emission, with no consideration of continuous 

distribution in the boundary area of 2 different land cover types. 

 

Figure 4.8 (a) Averaged temporal variations of UHII (left figure) Spatiotemporal variation 

of 2-m temperature above the surface during (b) day time (middle figure), (c) night time (right 

figure) 

 

The UHI distribution is calculated by result of case a. URB minus results of 

CONTROL case. Results representing purely temperature rise due to urbanization can 

be observed in such idealistic experiments design. Another idealistic experiment using 

case c. URB_noAH minus case d. noURB is carried out to evaluate the UHII without 

the AH emission. By comparing the results, contribution to UHII from AH can be 

inferred. 

Fig 4.8a summarises the diurnal profile of UHII for 2 different land cover type. 

Results indicate that stronger effect of Urban heat island can be found during night time 

than daytime. The peak value of UHI occurs at time around 2000LST with a maximum 

magnitude of 4.15°C and 2.93°C for HIR and LIR, respectively. In the next few hours, 

the urban heat island effect has been largely slowed down and maintains a relatively 

stable level before sunrise (3.13 to 3.37 for HIR and 2.22 to 2.29 for LIR). Immediately, 
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during the daytime when the solar radiation is heating the whole surface, UHII 

decreases fast and reaches its lowest level around 1200LST with a value of 0.68 for 

HIR and 0.36 for LIR.  

The contribution of AH for UHI can be inferred from Figure4.9a as well. During 

daytime, an average contribution of 69%(HIR) and 76%(LIR) is made by AH emission 

while that percentage drops to 20%(HIR) and 19.7%(LIR) at night and over all 36% 

and 39% for HIR and LIR, respectively. The contribution of AH to the UHI intensity 

in this study is comparable with those described by Wang et al., (2013a) (34% in the 

Beijing–Tianjin–Hebei metropolitan area) and Feng et al., (2012) (31% in the Yangtze 

River delta region). 

Fig 4.8b and c shows the spatial distribution when a lowest and highest UHII occurs 

in simulation period. It is clear that UHI distribution is dependent on urban land-use 

type and is preponderant during night time when strong UHI is observed as seen in 

Figure 4.8c. The centre of UHI is located in HIR and its intensity rapidly decrease to 

LIR and rural area in descending order of magnitudes. It is however much less 

significant in the case of daytime UHI like Figure 4.8b shows. The margin of UHI level 

is not consistent with LULC map of HIR and LIR, and there is less hierarchy of UHII 

like Figure 4.8c. During daytime, the surface is heated by direct solar radiation and 

atmospheric longwave fluxes, which dominates the fluxes over both rural and urban 

landcover with almost equal energy heating the whole Shanghai city; this leads to a 

reduction of thermal different between surfaces, which also explains the results in 

Figure4.7a where temperature for all surfaces is rising rapidly. It is natural that the 

dominant of direct sun radiation ends after sunset and re-radiation of absorbed fluxes 

plays a more important role at night time.  

The most notable feature of the urbanization process is that the underlying surface 
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changes from vegetation to urban areas. In this process, many physical parameters such 

as albedo and heat capacity have changed. Lower urban surface albedos and higher heat 

capacity of urban landcover result in higher heat retention relative to the vegetated areas, 

which is released to the atmosphere at night time. What is more significant is the 

shortwaves radiation absorption and trapping effect by the urban surfaces and buildings 

are also taken into consideration in single layer urban canopy model. The AH emission 

amplifies such an effect and pushes the UHII to reach its maximum magnitude during 

night time. 

4.4.2 Urban surface energy balance and PBLH 

 

 

Figure 4.9 Averaged (a) Sensible heat flux – SH (left figure) in Wm-2, (b) Latent heat flux 

– LH (middle figure) in Wm-2 and (c) PBLH in m (right figure) 

 

 

Fig. 4.9 shows a simulated average of both sensible and latent heat fluxes and 

planetary boundary layer height above Shanghai during the investigated period. Spatial 

distribution of LH, SH and PBLH can be seen clearly on the model domain, with 

different areas showing a great difference. HIR has an average sensible heat flux of 

161.7 Wm-2, while the rural area shows the least sensible average flux with a mean 

magnitude of 39.5 Wm-2. In contrast, the average latent fluxes of 234 Wm-2 and 148.3 
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Wm-2 are observed for HIR and rural areas, respectively (66.5 Wm-2 averaged SH and 

102.5 Wm-2 for LIR). The surface energy budget was modified due to urbanization 

process, as the increase in impervious subsurface in urban areas reduces moisture 

presence, thereby reducing evaporation and latent heat intensity. On the other hand, this 

increase of artificial material leads to a larger temperature difference between the 

surface lying and the atmosphere in city area, which causes energy flux to show as 

sensible heat flux. 

 

Figure 4.10 Averaged temporal variations of: (a) sensible heat flux (left figure), (b) latent 

heat flux (middle figure), (c) Planetary boundary layer hight (right figure) 

 

As for the diurnal profile of sensible and latent heat, the variance from different 

land cover types also can be noticed. Latent heat flux is observed to maintain at a stable 

level for all 3 area in the morning before the sunrise (0 – 9.8 Wm-2), while the sensible 

heat flux is relatively higher than the other 2 land cover at around 44 Wm-2. Nonetheless, 

the SH benefits greatly from the increase in urban surfaces, which cause rapid changes 

in heat content of the surfaces during solar irradiance. Highest sensible heat flux level 

can be observed during 1200LST to 1300LST with value of 378.5 Wm-2, 201.3 Wm-2 

and 149.6 Wm-2 for HIR, LIR and Rural, followed by a dive in all magnitude. This is 

reasonable as sensible heat comes only comes from shortwaves solar radiation and 

atmospheric longwave fluxes, and temperature difference between ground and 

atmosphere is decrease gradually from 1400LST, and eventually drops to the lowest 
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during the night. For HIR the sensible heat flux is still observed with a value of  44 

Wm-2 due to the AH emission that must be taken into consideration even at night time 

which constantly heats the atmosphere. 

Similar processes can be found in terms of PBLH shown in Figure 4.10 c. After 

sunrise, shortwave solar radiations and atmospheric longwave fluxes is the heat the 

Earth’s surface receives, leading to a rise in surface temperature for all land cover types, 

and as a result causes vertical and horizontal transport of the heat fluxes (SH). After 

that, an increase of evaporation from surface moisture and transpiration from vegetation 

begins, which is then transported by wind (LH) into the canopy layer as the lower 

boundary layer above the surface. These interactions of the solar radiation, atmospheric 

longwave fluxes, sensible heat flux and latent heat fluxes affect the temporal growth of 

the PBLH. A higher proportion of urban coverage and AH intensity amplifies this effect, 

thus a number of over 2300m of the maximum PBLH can be found for HIR area during 

1200LST to1300LST, while that of LIR and rural areas are just 1987m and1664m, 

respectively. During morning before sunset, the three land classes have a near-stable 

PBLH around 195 m, however the HIR area has a much higher value after the sunrise, 

which is different from other 2 land cover types. This is likely the heat energy retained 

during daytime which has re-radiated into the urban canopy layer after sunset, providing 

the fluxes to maintain a deeper PBL height. Likewise for the case of SH and LH – from 

the average PBLH representation in Figure. 4.9c, land cover spatial characteristic can 

be observed in the PBLH spatial distribution, with a decreasing magnitude 

corresponding to a decreasing urban fraction. 
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4.4.3 Wind speed and Relative humidity 

 

 

Figure 4.11 Averaged temporal variations of: (a)Relatively humidity (up left figure) and 

Spatiotemporal variation of RH above the surface during: (b) morning (up right figure), (c) 

day time (bottom left figure) and (d) night time (bottom right figure) 

 

Just like the heat island effect, the urban dry island of Shanghai is also fully reflected 

in this simulation. As the main body of the city is reinforced by a concrete impermeable 

underlying surface, most of the water falling on the ground is drained to other places 

through artificial laid pipes, lacking the absorption and storage capacity of soil and 

vegetation that the natural ground has. As a result, the air near the surface of a city is 

not constantly replenished by the evaporation of soil and vegetation as it is in other 

natural areas (Kratzer 1956; Lokoshchenko 2014). Consequently, cities have less 
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moisture and lower humidity in the air, creating "dry islands" isolated from surrounding 

areas, as is demonstrated in Figure 4.11. 

In addition to the impact of surface underlying, daily solar radiation has a direct 

effect on the relative humidity. After sunrise, the relative humidity of the three kinds of 

underlying surfaces begins to drop rapidly from their maximum values (66.6 for HIR, 

73 for LIR and 84 for rural area) until reaching its lowest level at about 1400LST at 

noon, followed by a gradual increase. It is worth noting that after sunset, the relative 

humidity increases faster in the rural area, which is due to the more obvious temperature 

drop in the suburbs and more abundant water vapor in the air, while HIR and LIR do 

not show such changes due to more impervious underlying surface coverage. Urban dry 

island effect is also a change in residents’ living environment caused by urbanization, 

which is coupled with urban heat island effect and affects residents' health (Wang et al., 

2010). 

The distribution of wind field in Shanghai is complex as Shanghai is located in the 

centre of the north and south coast at the confluence of Yangtze River and Huangpu 

River. It is thus difficult to simulate the wind field due to the combined influence of 

land-sea breeze and heat island effect. 

The following figures shows the wind field distribution at two different typical 

moments. As shown in Figure 4.12a, it can be clearly seen that the temperature on the 

land surface is higher than that on the sea surface, resulting in the surface pressure being 

lower than that on the sea surface, forming a relatively strong sea and land breeze 

blowing from the sea to the land. Additionally, the lake breeze from Lake Taihu can be 

observed in the west due to pressure difference. The coupling of such mesoscale effects 

adds greater difficulty to precisely simulate the wind field of Shanghai area. 
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Figure 4.12 Surface pressure and wind field for: (a) 1400 LST (left figure), (b) 0400 LST 

(right figure) 

 

During the night, the specific heat capacity of sea water is much higher than that of 

the urban area of Shanghai, resulting in a relatively rapid cooling of the urban area. At 

this time, the sea and land breeze blow from the land to the sea. However, due to the 

existence of heat island effect, there will still be some areas in the main urban area of 

Shanghai with a high temperature, which influences the distribution of land sea breeze 

wind field. 

In general, while the wind field simulation does not fully reflect reality, it can still 

reflect the typical situation of the complex wind field distribution in Shanghai to a 

certain extent, in particular the UHI affecting the land- sea breeze which can be clearly 

shown from simulation results. 
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4.5 Conclusion 

In this study, the effect of LULC dataset and anthropogenic heat parameterization 

on the performance of coupled model systems (WRF / Noah / UCM) were examined. 

The simulation results shows that the introducing of AH and elaborative LULC dataset 

does significantly improve the model prediction of atmospheric and surface 

meteorology. The comparison between the simulation results and the observation data 

shows that the model has the ability and is sufficiently suitable to reproduce the regional 

meteorological parameters of Shanghai and can continue to be used in the current 

research.  

The influence of urbanization on meteorology characteristic in Shanghai has also 

been canvassed. Further simulation results shows that the environmental conditions in 

this area have changed due to urbanization. For example, the average relative humidity 

and latent heat flux in urban areas are lower compared to the rural space. On the 

contrary, the impact of urbanization also significantly increases the average planetary 

boundary layer height, sensible heat flux, 2-m temperature, and urban heat island 

intensity. 

The transformation of vegetation to urban surface changes the surface energy 

balance of local environment and the spatial distribution of PBLH and UHII. For 

instance, planetary boundary layer height, sensible heat flux, 2-m temperature, and 

urban heat island intensity decreases radially from the urban centre to the minimum 

near the least developed areas. However, relative humidity and latent heat flux 

increased radially away from the city centre. In terms of diurnal profile, the impact of 

urbanization on the heat island effect in Shanghai is dominant after sunset, and then 

decreases to the minimum during the day to reaches its lowest level at noon. In addition, 

the intensity of urbanization, solar radiation and periodic sea land wind have an 
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important impact on the temporal and spatial distribution of meteorological parameters.  

The simulation shows the impact of urbanization on environmental meteorology in 

Shanghai. The increase of urban buildings and decrease of vegetation is one of the 

reasons for the average temperature rising and the formation of both urban heat island 

and uber dry island. This means efforts must be made to increase the vegetation fraction 

in urban areas to mitigate said effect.  

The results also implies that uniformed parameterization of single layer urban 

canopy likely has an impact on the validation of the model. In addition, the current 

research does not consider the impact of urban design and building structure in detail, 

and therefore, simulation of wind field is not as accurate as the observation data. Further 

research should be carried out in this respect. 
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5 Urbanization of Shanghai and its impact on local climate since 21st 

century 

5.1 Introduction 

With the rapid development of China's economy, the world's economic centre is 

increasingly shifting to China. Urbanization is not only the basis and driving force of 

economic development, but also the inevitable choice and final result of economic 

development. Since the reform and opening up, China's urbanization has been 

significantly accelerated, with the urbanization rate growing at an annual rate of 1%. In 

1978, There were only 193 cities in China, but by the end of 2017, the number of cities 

in China has increased to 661 (Mohurd, 2017). Meanwhile, China has also formed three 

major urban agglomerations: the Yangtze River Delta, the Pearl River Delta and the 

Beijing-Tianjin-Hebei region. As the core city of the Yangtze River Delta city group, 

Shanghai is also the economic, financial, and technological centre of China. The rapid 

economic development has been accelerating the urbanization process in Shanghai, 

attracting a large number of people. By the end of 2017, the permanent resident 

population of Shanghai has reached 24.18 million (Shanghai Statistical Yearbook, 

2018). Nowadays, the urbanization rate of Shanghai exceeds 70%, making it one of the 

cities with the highest urbanization degree in China (Yu et al., 2019). The improvement 

of urbanization level has also led to earth-shaking changes in the local land use structure, 

which has changed the physical properties of underlying surface and affected the local 

weather and climate characteristics. Compared with the suburbs, the drainage system 

in the city is more developed, and the ground material is mostly asphalt or cement, 

which leads to the high impermeability of the city. The density of urban buildings and 

the building height leads to an increase of urban surface roughness. At the same time, 

the interior of the city has a more complex geometry than the suburbs and the radiation 
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reflect multiple times between buildings, forming a "capture" effect. All of these 

characteristics make the energy budget in the city significantly different from that in 

the suburbs, so there are significant temperature differences between the suburban area 

and downtown area (Balling et al., 1988; Cai et al., 2003). Studies show that the 

enhancement of urban surface heat island is mainly caused by land use change (Chen 

et al., 2013), and there is a significant positive correlation between surface temperature 

and built-up area (Cao et al., 2013; Shi et al., 2018).Taking Shanghai as an example, 

during the 30 years from 1984 to 2014, the urban area of Shanghai increased by 994 

km2, while the temperature in some areas rose by 81% (Zhao et al., 2016). Many people 

have made detailed analyses on this aspect based on observation data. For example, 

Shen et al. (2014) based on observation data from 1994 to 2014, concluded that sea-

land temperature difference gradually decreased, which weakened sea-land wind in 

Shanghai with the development of urbanization. Also, by comparing the observation 

data since 1916, Liang and Ding (2014) obtained the fact that the frequency of heavy 

precipitation in Shanghai increased with the development of urbanization. However, 

few people realize the fact that statistical data analysis not only reflect the influence of 

the urbanization of Shanghai, also includes the background of the impact of global 

warming. And due to the fixed location of observation stations, the clear boundary 

between suburbs and cities cannot be accurately grasped, so the calculation of UHII is 

not rigorous enough. 

In view of such a gap in the research, four ideal experiments are designed in this 

chapter to represent the urbanization development process of Shanghai in 2000, 2010 

and 2017 by replacing LULC data set and AH Settings (no urban scenario as fourth 

case). Sensitivity analyses are conducted based on the simulation results, aiming to 

exclude the influence of global warming background. And to explore the impact of the 
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urbanization development process in Shanghai on local climate (near surface humidity, 

near-surface temperature, and wind speed) and human comfort. 

5.2 Methodologies 

In this study, different materials and methods are used to adapt to different 

simulation situations. Land use and land cover datasets for 2000, 2010 and 2017 are 

converted into MODIS 33-category classification system as replacement of WPS 

default static dataset. By comparing the data sets of land use and land cover in 2000, 

2010 and 2017, three cases representing the urbanization process of Shanghai since the 

21st century is simulated under same other settings. NCEP generated Global Final 

reanalysis data in the resolution of 0.25° x 0.25° are used as the initial and lateral 

boundary conditions of the simulation. The initial conditions are updated in every 6 

hours (NCEP, 2000). 

In addition, before starting the case study simulation, an observation data network 

is used to evaluate the performance of the model. The observation data of 11 

observation stations located in different area of Shanghai and simulation results are 

compared. 

Finally, by coupling WRF/NOAH/UCM, a set of sensitivity experiments 

investigating the impact of urban expansion and urbanization on local climate are 

carried out. 

5.2.1 Study area 

Situated at 120° 51' E - 122° 12' E and 30° 40' N - 31° 53' N, Shanghai lies on the 

west coast of the Pacific Ocean and the east coast of the Asian continent, at the central 

point of China’s north and south coast, at the confluence of the Yangtze River and the 

Qiantang River into the sea. Additionally, Shanghai borders the Yangtze River to the 

north, the East China Sea to the east, Hangzhou Bay to the south, and Jiangsu and 
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Zhejiang provinces to the west. It has an inland coastline of nearly 172 kilometres long, 

and boasts a superior geographical location, convenient transport facilities, and 

fantastic river and seaports. It is approximately 120km long from north to south and 

140km wide from east to west. At the mouth of the Yangtze River to the north of 

Shanghai, there lie three islands: Chongming, Changxing and Hengsha (Ren et al., 1991; 

Yuan et al., 2004; Nie et al., 2006). Shanghai has the northern subtropical monsoon 

climate, with mild humidity, noticeable monsoon, and abundant rainfall (Gu et al., 2007; 

Da et al., 2004). According to statistics, Shanghai has an annual average temperature 

of 15.2-15.9℃, and the coldest month has an average temperature of 3.1-3.9℃, while 

the hottest month has an average temperature of 27.2-27.8℃ (National Climatology 

centre, 2021). The annual average precipitation is 1048-1138mm, with 129-136 days of 

annual precipitation and 228 days of annual frost-free. The prevailing wind direction in 

Shanghai demonstrates an obvious seasonal change: the southeast wind prevails in 

spring and summer, and the northeast and northwest wind haunts in autumn and winter. 

The dominating wind directions throughout the year are the east and southeast wind 

(Mu et al., 2008; Hou et al., 2008). 

Shanghai has the highest population density in China and is one of the most dynamic 

economic zones in the world. In 2020, Shanghai's GDP reached 3,870 billion yuan 

(Shanghai Municipal Statistics Bureau, 2021), accounting for 2.4% of China's total. 

Administratively equivalent to a province, it is divided into 18 county-level districts: 

17 districts and one county, nine of which the urban core area collectively known as the 

downtown area, namely the Huangpu, Luwan, Xuhui, Changning, Jing’an, Putuo, 

Zhabe, Hongkou, and Yangpu. Other nine area located far away from downtown are 

Baoshan, Minhang, Jiading, Jinshan, Songjiang, Qingpu, Fengxian, Pudong, and 

Chongming island. There are 11 weather stations in Shanghai, as shown in Figure 5.1. 
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Figure 5.1 Administrative Divisions of Shanghai 

Shanghai has seen rapid urbanization and infrastructural development. Natural 

vegetation and environmental surface energy balance in cities have been replaced by 
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asphalt engineering surfaces, and most materials used in the construction of roads, high-

rise buildings and recreational facilities have low reflectivity and low surface albedo 

(Ahmed et al.,2015). Air flow, temperature distribution, momentum exchange, heat and 

moisture in cities are all affected by anthropogenic surface changes. Moreover, 

emissions from heavy machinery, cars and air conditioning units only add to Shanghai's 

environmental problems (Zhao et al., 2006). Urbanization in the region has led to an 

increase in the number of people living in cities and a corresponding increase in human 

factors (Moser 2010). It is therefore important to observe the development of urban heat 

islands through urbanization. 

 

5.2.2 Model and experimental design 

Simulation is conducted using WRF-ARW dynamic core (Skamarock et al., 2008) 

coupled to NOAH land surface model (Chen & Dudhia 2001; Tewari et al., 2007) with 

the urban canopy model (Kusaka & Kimura 2004; Chen et al., 2011). WRF is not a 

statistically balanced but compressible model which uses large-scale coordinate 

systems. Although WRF is designed as a numerical weather prediction model, it can 

also be used as a regional climate model. Noah LSM, as a coupled atmospheric model 

for lower boundary layer conditions, has a basic function of providing surface sensible 

heat, latent heat flux and surface temperature. It is based on a diurnal Penman potential 

evaporation method, multi-layer soil model, a complex canopy resistance parameter, 

surface water literature and frozen soil physics (Chen et al., 1997; Chen and Dudhia, 

2001; Eket et al., 2003). Variables calculated include temperature in the soil layer, water 

stored in the plant canopy and snow water equivalent stored in the ground. 
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Figure 5.2 Schematic of Single urban canopy model 
 

A single-layer urban canopy model assumes that the infinite length of the street 

represents the urban geometry but can recognize the three-dimensional urban surface 

(Kusaka & Kimura 2004). In the street canyon, an additional wind profile description 

file is specified, taking into account the effects of shadow, reflection and capture on 

radiation. The predicted variables include surface temperature (calculated from the 

surface energy balance) and temperature profile (calculated from the heat conduction 

equation) of roof, wall and road surfaces. The sensible heat flux of each surface was 

calculated using Monin-Obukhhov similarity theory and Jurges formula. The total 

sensible heat fluxes of roofs, walls, roads, and city blocks are transmitted to the WRF-

NOAH model. The total frictional velocities of aggregated urban and non-urban 

surfaces are transmitted to the WRF boundary layer scheme. Consideration of 

anthropogenic heat and its diurnal variation needs to be considered in the aggregate 

sensible heat flux output of the urban canopy model (Mukul et al., 2007). In total, 

SLUCM takes into account about 20 parameters. (Hashim et al., 2012; Ahmed et al., 
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2015; Morris et al., 2015). 

Anthropogenic heat is mainly produced by human production and living and 

biological metabolism. For example, in industrial production, the heat released by fossil 

fuels in the combustion of gas stoves and internal combustion engines and other 

equipment, air temperature regulation equipment and vehicle exhaust heat are the most 

significant causes of anthropogenic heat. Likewise, a dense residential population 

directly contributes a large amount of anthropogenic heat. The effect of anthropogenic 

heat on urban heat balance mainly depends on the geographical location of the city, the 

size of the construction scale of the city, the level of population density, the level of 

energy consumption per person, the nature of the city and regional climate conditions, 

including seasonal and diurnal variations (Li et al, 2015). 

At present, the energy inventory method, energy balance method and building 

energy efficiency modelling method are the main methods to study urban anthropogenic 

heat emission. The energy inventory method is a practical, reliable, and widely used 

method, which estimates anthropogenic heat emissions based on energy consumption 

in statistical yearbooks. In this method, anthropogenic heat is divided into three aspects: 

industrial anthropogenic heat emission, transportation anthropogenic heat emission and 

residents anthropogenic heat emission (Wang et al., 2011; Lu et al., 2014). 

The calculation formula of annual anthropogenic heat emissions 𝐸𝐸𝑖𝑖  from industrial 

sources is as  

𝐸𝐸𝑖𝑖 = 𝐶𝐶𝑖𝑖 × 𝜀𝜀𝑒𝑒  

Where 𝐶𝐶𝑖𝑖  is annual consumption of standard coal in industry and 𝜀𝜀𝑒𝑒  is Calorific 

value of standard coal (29306 kJ/kg).  

The calculation formula of annual anthropogenic heat emissions 𝐸𝐸𝑖𝑖   from 

transportation sources is as 
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𝐸𝐸𝑖𝑖 = 𝐶𝐶𝑔𝑔 × 𝜀𝜀𝑔𝑔 + 𝐶𝐶𝑑𝑑 × 𝜀𝜀𝑑𝑑 + 𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿 × 𝜀𝜀𝐿𝐿𝐿𝐿𝐿𝐿  

Where the C represents fuel consumption, ε is Calorific value and subscript g, d and 

LPG are gasoline, diesel, and liquefied petroleum gas, respectively. 

The calculation formula of annual anthropogenic heat emissions 𝐸𝐸𝑟𝑟  from residents’ 

sources is as  

𝐸𝐸𝑟𝑟 = 𝐶𝐶𝑟𝑟 × 𝜀𝜀𝑒𝑒  

Where 𝐶𝐶𝑟𝑟 is annual consumption of standard coal in residents and 𝜀𝜀𝑒𝑒 is Calorific 

value of standard coal.  

The annual coal consumption can be obtained directly from The Shanghai 

Municipal Bureau of Statistics, while the transportation fuel consumption needs to be 

estimated approximately by data. Li estimated the anthropogenic heat in Shanghai in 

2015(Li et al., 2015) and proved the data that the average AH applicable to WRF model 

should be 120Wm-2 in downtown Shanghai, based on which the reasonable AH value 

setting for other years can be calculated. 

130 Wm-2, 90 Wm-2 and 50 Wm-2 are set for year 2017, year 2010 and year 2000, 

respectively. 

For model physical setting, the Yonsei University scheme (Hong et al., 2006) is 

employed. A combination of YSU scheme with the coupled NOAH/UCM land surface 

model is deemed to perform well in high resolution urban climate applications (Hong 

et al., 2006; Lin et al., 2008). Other physical settings including the microphysics scheme 

of single-moment six-class microphysics scheme (Hong et al., 2006; Dudhia et al., 

2008), and a surface-layer scheme based on the Monin-Obukhov similarity theory are 

used. For radiation, the Dudhia shortwave radiation scheme (Dudhia 1989), and the 

RRTM longwave scheme (Mlawer et al., 1997) are applied for all domains. While the 

Kain-Fritsch convective cumulus parameterization scheme (Kain et al., 2004) are 
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applied only on the D01 and D02. D03 do not need any cumulus parameterization as it 

is able to resolve updrafts and downdrafts in such a sufficiently refined resolution. 

 

Figure 5.3 Domain setting of the simulation and terrain height of simulation area 
 

A 3 one-way nested simulation is used in this simulation, shown as in Figure 5.3 

The horizontal grid resolution is 9km for D01 (out domain), 3km for D02 (middle 

domain) and 1km for the finest domain as D03 in the centre. There are 128 × 128 grids 

for D01, which covers the most area of Southeast China. D02 with 118 × 118 grids are 

mainly Yangtze River Delta, while D03 covers only the whole central area as our main 

study interest. For the vertical setting, there are 34 hydrostatic-pressure levels to resolve 

vertical layers for all domains, with 15 of the levels are reserved below 850 hPa to 

further resolve turbulence and frequent changes of atmospheric variables within the 

lower planet boundary layer (PBL) and top at 100hpa. Further, these lower levels would 

be helpful illustrating the small-scale feature near Earth’s surface (Morris et al., 2016) 

To explore the impact of urbanization on local climate in Shanghai, three cases of 

Shanghai underlying surface data in different years are simulated, namely, the 

underlying surface data in 2000, 2010 and 2017, which are converted into static data 

sets that could be directly read and used by WPS according to the classification model 
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of MODIS-33 category system. Figure 5.4 is a visual representation for the 

compositions of land use classes for different years. 

Except for the static data set, other physical parameters and simulation settings 

remain constant. Such sensitivity tests are used to investigate the impact of urbanization 

and urban expansion in Shanghai on local climate since the 21st century. 

In addition, a control group was set up in the simulation where all impervious 

materials in urban area are replaced by vegetation cover such as cropland, which is used 

as an ideal experiment to explore the spatial distribution of urban heat island effect. 

This research method can effectively reduce the convection due to ambient heat flow 

through the surface, and advection due to radiation flux (Li et al., 2013). 

 

Figure 5.4 Land use and Land cover map for year 2000 (top left), year 2010 (top right), 

year 2017 (bottom left), Control case – no Urban (bottom right) 
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The simulation duration is set to 288 hours after the beginning of 0000 UTC on July 

21st, 2017, during which an extreme heat event lasted for several days, and a relatively 

stable weather process was maintained for most of the time of the simulation. The first 

24 hours of the simulation were set to spin-up time. The lateral boundary conditions 

data during the simulation are FNL reanalysis data provided by US National 

Environmental Forecasting Centre with a resolution of 0.25°×0.25° updated every 6 

hours (NCEP, 2000). 

5.2.3 Observation data for validation 

Observation data used is hourly data from Surface Meteorological Stations in China. 

In this case, there are 11 national observation stations in Shanghai and the real time data 

is quality controlled at an overall 99% accuracy standard. The information from 

observation stations can be found in table 4.1 and Figure 5.5 Model validations and 

analyses are conducted using this observation data on corresponding results from d03, 

unless stated otherwise. 

Table 5.1 Observation stations information 

Station Name Station ID Longitude (°) Latitude (°) Elevation(m)  

Minhang 58361 31.10 121.37 5.5 

Baoshan 58362 31.40 121.45 5.5 

Jiading 58365 31.37 121.25 4.4 

Chongming 58366 31.67 121.50 4.3 

Xujiahui 58367 31.20 121.43 4.6 

Nanhui 58369 31.05 121.78 5.0 

Pudong 58370 31.23 121.53 4.4 

Jinshan 58460 30.82 121.27 - 

Qingpu 58461 31.13 121.12 4.0 

Songjiang 58462 31.03 121.23 4.2 

Fengxian 58463 30.88 121.50 4.6 
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Figure 5.5 Observation station location map 
 

5.3 Model evaluation 

The biggest problem of the numerical simulation is inherent deviation caused by 

unreasonable parameterization of the real physical process. Therefore, statistical 

verification of simulation results and observation data is necessary. In this study, the 

following 8 indicators will be calculated to evaluate the coincidence of the model with 

the observed data, namely, mean value, MBE, MAE, RMSE, R, R2, HR, and IOA. 

MBE is used to measure the tendency of the model to overestimate or underpredict 

the predicted events. It cannot be used to reflect the typical error of the simulation itself, 

and therefore cannot be used as an indicator of accuracy (Moriasi et al., 2007). MAE, 

on the other hand, is more commonly used to indicate the typical size of the prediction 



92 
 

error (Wilks 2006). 

RMSE is generally used to measure model accuracy and precision (Willmott et al., 

1985) and aggregate the size of prediction errors of various time series into a single 

measure of predictive power related to model prediction (Murphy, 1988; Lundy et al., 

2001). Smaller numbers of MBA, MAE, and RMSE represent simulations that are 

closer to reality. 

Both R and R2 are values in the range of 0~1. The higher the value of R (close to 

1), the stronger the linear relationship between the prediction variable and the observed 

variable, while the higher R2 represents the smaller the fluctuation between the 

prediction variable and the observed variable (Wilks, 2006). R and R2 are generally 

used to represent the acceptability of model predictions (Santhi et al., 2001; Liew et al., 

2003). However, because these two parameters are too sensitive to the abnormal 

deviation value of the model, HR and IOA need to be introduced as further indicators 

(Legates and McCabe 1999). 

HR is one of the standards to measure the reliability of prediction. By calculating 

the frequency of deviation less than the threshold value, it represents the probability of 

correct 'yes' event obtained from simulation results. IOA is also known as the original 

Willmott index is used to measure how well model results simulate observed data 

(Willmott, 1984). IOA is a dimensionless number ranging from 0 to 1. The closer it is 

to 1, the better the model simulation is (Pereira et al., 2018). 

The HR threshold value is set as 1.5°C (Cox et al., 1998) for 2-m temperature, 1.0 

m/s (Kulkarni et al., 2008) for 10-m wind speed and 5% (Lawrence, 2005) for relative 

humidity as the desired accuracy. 

5.3.1 Near-surface urban climate parameters 

The verification of the model performance is evaluated by comparing the simulation 
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results of D03 in the 2017 case with data from 11 observation stations. The simulation 

time started on July 21, 2017. Since the difference between local time and World 

Standard time is 8 hours, the actual corresponding time would be 8000 local time on 

July 21, 2017. The first 24 hours of simulation are abandoned as spin-up time, and the 

subsequent simulation results are averaged within a standard day (24 hours). 

Table 5.2 land use types at each station 

Station Name Station ID Classification in Model 

Minhang 58361 Urban(HIR) 

Baoshan 58362 Urban(HIR) 

Jiading 58365 Urban(HIR) 

Chongming 58366 Rural (Cropland) 

Xujiahui 58367 Urban(HIR) 

Nanhui 58369 Sub urban (LIR) 

Pudong 58370 Urban(HIR) 

Jinshan 58460 Sub urban (LIR) 

Qingpu 58461 Sub urban (LIR) 

Songjiang 58462 Urban(HIR) 

Fengxian 58463 Rural (Cropland) 
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Figure 5.6 Observation station location with land use classification (Red: Urban, Yellow: 

Sub-urban and Green: Rural) 

 

In order to verify the reliability of spatial distribution of simulation results, the 

underlying surface of 11 observation stations is classified as follows according to the 

underlying surface data of simulated cases in 2017 as indicated in table 4.2 and 

Figure5.6 Minhang, Baoshan, Jiading, Xujiahui, Pudong and Songjiang stations are 

classified as urban areas due to the land cover information in WRF is high intensity 

residential area, while Nanhui, Jinshan and Qingpu station are Sub-urban (or low 

intensity residential area in WRF). The Rural area stations are Chongming and 

Fengxian station as cropland land cover in WRF. 
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Figure 5.7 Model validation for near-surface urban climate variables: (a) 2-m 

temperature, (b) 2-m relative humidity, (c) 10-m wind speed 
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Table 5.3 Model evaluation statistics for near surface variables 

Variables Statistics Indicators Urban Sub Urban Rural 

T2m (°C) MBE -0.503 -1.343 -1.446 

 MAE 0.503 1.343 1.446 

 RMSE 0.551 1.432 1.505 

 R 0.998 0.997 0.995 

 R2 0.996 0.995 0.99 

 IOA 0.988 0.916 0.933 

 HR 0.958 0.542 0.5 

RH (%) MBE -5.683 -3.136 -2.101 

 MAE 5.683 4.184 2.21 

 RMSE 5.899 4.99 2.648 

 R 0.99 0.992 0.994 

 R2 0.981 0.983 0.987 

 IOA 0.934 0.951 0.99 

 HR 0.5 0.583 0.958 

WS10m (ms-1) MBE 1.203 0.888 0.896 

 MAE 1.203 0.919 0.903 

 RMSE 1.351 1.072 1.004 

 R 0.85 0.691 0.828 

 R2 0.723 0.478 0.685 

 IOA 0.456 0.585 0.655 

 HR 0.417 0.5 0.542 

 

In general, the model can successfully capture the diurnal variation curve of 2-m air 
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temperature (Figure 5.7 and Table 5.3). The simulation corresponds with the observed 

2-m air temperature. Particularly, the simulation result match with the urban area with 

only 0.551 RMSE. However, the result for sub-urban and rural areas are slightly inferior 

to urban area, with RMSE of 1.432 and 1.505 respectively. It is worth noting that the 

simulated temperature is generally observed to be smaller than the observed value in 

the three different scenarios, and such underestimation is more obvious in the area with 

lower urban coverage (MBE -0.503, -1.343 and -1.446 for urban, sub-urban and rural, 

respectively). For the urban area, the underestimation of air temperature may be due to 

the insufficient estimation of AH or the underestimation of the re-reflected energy flux 

in UCM model. The underestimation result of rural areas, however, may be since the 

observation stations are still being influenced by the underlying surface of urban area. 

For the simulation of relative humidity, a similar conclusion can be obtained; the 

simulation has a good grasp of the diurnal profile of relative humidity. However, the 

overall relative humidity is still underestimated, which is more obvious with the 

increase of urban coverage (MBE for urban is -5.683, for sub-urban as -3.136 and for 

rural as -2.101). This may be due to the overestimation of impervious underlying 

surface coverage in the model, especially in the main urban area, which fails to fully 

consider the spatial heterogeneity of urban fractions. For sub-urban and rural space, the 

simulation effect is better, with RMSE being 5.899, 4.99 and 2.648 for 3 different cases. 

The simulation for wind profile is not so satisfactory as that for the previous 2 near-

surface urban climate parameters. The simulation results show that there is a persistent 

overestimation of wind speed, especially in the afternoon. This may be because of the 

low complexity of the urban underlying surface considered in the single-layer canopy 

model, which makes the drag effect of buildings on wind speed unable to be effectively 

reflected. In addition, observation stations in the main urban area are in relatively 
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complex urban environments, which is more difficult to be reflected by the current 

model. Nonetheless, an overall correlation coefficient is obtained with 0.85 for urban, 

0.69 for sub-urban and 0.828 for rural areas, which indicates the model still serve as an 

accurate representation of the simulated case. 

In conclusion, the WRF/Noah LSM/UCM model can reflect the daily variation 

curves of near-surface urban climate parameters, such as temperature, relative humidity 

and wind speed. Additionally, the simulation results are consistent with observed data 

in spatial distribution. 

LULC Maps of 2000 and 2010 are also imported into WRF in subsequent 

experiments. A sensitivity analysis is presented aiming to explore the specific impact 

of urbanization on local climate in Shanghai since the 21st century. 

5.4 Results and Discussions 

5.4.1 LULC change 

One noteworthy feature of so-called urbanization is the land cover change of 

cropland area from vegetation and permeable soils to urban and semi-urban forms with 

impervious surfaces. As opposed to interactions of solar radiation, the physical 

properties change of land use and land cover largely determines the surface energy 

balance of the region. This is due to the different physical and chemical properties of 

the constituent materials. It is therefore appropriate to carefully identify rural and urban 

land with relevant characteristics when investigating urban climate and related 

phenomena such as surface temperature, moisture availability, relative humidity, and 

urban heat island, urban dry island, and planetary boundary layer height in the region. 
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Figure 5.8  Land use and Land cover map for year 2000 (left), year 2010 (middle) and 

year 2017 (right) 

 

The LULC data shown in Figure 5.8 are different data sets of 2000, 2010 and 2017 

obtained from Landsat 8 remote sensing images and processed by ArcGIS (Xu et al., 

2018). The data set is provided by Data Centre for Resources and Environmental 

Sciences, Chinese Academy of Sciences. 
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Figure 5.9 (a) coverage of each LULC in 2000, 2010 and 2017 (b) change of each LULC 

class 

 

Figure 5.9a shows the percentage of area occupied by each specific land use 

classification. with similar classifications reclassified as cropland, forests and grass 

land, water bodies, and urban area to simplify the comparison. Figure 5.9b shows the 

proportion of values of specific changes in 2010 and 2017. 

The increase of urban land use mainly comes from human transformation of urban 

environment, that is, transforming natural green cover into urban engineering surface. 

From 2000 to 2010 to 2017, urban coverage increased from 18% to 27% and 36%, 
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respectively. The proportion of farmland decreased from 57% in 2000, 49% in 2010 

and finally to 42% in 2017. The water bodies in urban area also decreased year by year, 

from 24% in 2000 to 19% in 2017. The sharp loss of water bodies and farmland is 

attributed to the rapid construction of buildings, roads, urban pavements, and pedestrian 

paths that are ongoing in the area. It should be noted that there was some improvement 

in vegetation coverage, such as parks within the urban area, from 1% in 2000 to 3% in 

2017, but such changes may not be obvious to the results due to the low static resolution 

of WRF data(1km×1km). 

As can be seen from Figure 5.8, compared with 2000, the development direction in 

2010 mainly focused on the southward expansion of the city, while a large number of 

low-density urban areas were built up in the west part of Shanghai, while the east of the 

Huangpu River did not see much change. However, LULC in 2017 highlights the trend 

of Shanghai's westward development, with almost all low intensity residential area 

being replaced by high intensity areas, except for the traditional downtown area. For 

example, Baoshan, Jiding, Qingpu and Minhang have all been developed into high 

intensity urban areas. The east bank of the Huangpu River has evolved into the Pudong 

New Area with higher urban coverage. Low-density urban areas are scattered on the 

southern side of Shanghai. 

Impacting of such changes in land use and land cover over a period on air 

temperature, UHI distribution, human comfort and energy balance are closely 

investigated in subsequent sections. 

5.4.2 2-m air temperature 

In the simulation of many near-ground urban climate variables, air temperature is 

often the most concerned hotspot. Figure 5.10 and Table 5.4 respectively show the 

average temperature changes and their spatial distribution in rural, sub-urban and urban 
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areas under three LULC conditions in 2000, 2010 and 2017. The influence of 

urbanization on canopy temperature is analysed. 

According to observations, the highest average temperature in urban areas was 

32.23°C in 2017, followed by 31.62°C in 2010 and 31.17°C in 2000. The average air 

temperature in the suburbs of Shanghai increased year by year from 30.26°C in 2000 

to 30.8°C in 2017, with an increase of about 0.27°C for both periods considered. This 

is consistent with the observed changes in land use distribution during corresponding 

periods. The smallest temperature change was observed in rural areas, with only about 

0.16°C, rising from 29.82°C in 2000 to 30.15°C in 2017. The small temperature 

changes observed in surviving area suggest that the impact of urbanization on air 

temperature for rural areas is much less significant than in urban area. 

 

Table 5.4 Summary of 2-m temperature for each year 

 2000 2010 2017 2017-2010 2010-2000 

Urban (°C) 31.17 31.62 32.23 0.59 0.45 

Sub-urban(°C) 30.26 30.52 30.80 0.28 0.26 

Rural(°C) 29.82 29.97 30.15 0.18 0.15 

 

In addition to the change of average temperature, the distribution of 2m temperature 

also changed with the transition of land use. As shown in Figure 5.10, the first column 

shows the average temperature distribution at all time points during the simulation, with 

the spatial distribution for 2017 at the bottom and 2000 at the top. 

An obvious difference can be seen is that with the development of urbanization, the 

area with high simulated temperature is also gradually expanding. In 2000, the high 

temperature area is concentrated in the traditional downtown urban area, and there is 



103 
 

little change in 2010 compared with 2000. However, in 2017, the area expands more 

obviously and tends to the west of Shanghai. This may be due to the fact that the urban 

area expanded in 2010 were mainly low-density urban areas, while the urban areas that 

expanded in 2017 were mainly high-density urban area. Most of the structural 

renovation and construction are represented by materials with low surface albedo, high 

surface thermal conductivity and surface heat capacity. Thus, resulting in a large 

temperature rising in 2017 case, which is also reflected in Table 4.5, that is, from 2017 

to 2010, the temperature rise in urban area was as high as 0.59°C, while in 2010, it was 

only 0.45°C. 

 



104 
 

 

Figure 5.10  First column: Average air temperature distribution of 2000 (up), 2010 

(middle), 2017(bottom); Second column: morning time – 0100 -0700 LST averaged air 

temperature distribution of 2000 (up), 2010 (middle), 2017(bottom); Third column: day time 

– 1100 -1700 LST averaged air temperature distribution of 2000 (up), 2010 (middle), 

2017(bottom); Fourth column: night time – 2000 -2400 LST averaged air temperature 

distribution of 2000 (up), 2010 (middle), 2017(bottom);  

 

Figure 5.10 also shows the distribution of 2-m temperature at different time periods 

(morning time – 0100 -0700 LST; day time – 1100 -1700 LST; night time – 2000 -2400 

LST). When solar shortwave radiation dominates the energy balance during the daytime, 

there is no obvious difference in the temperature among different underlying surfaces. 

However, a large difference in temperature between rural and urban area is seen after 
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sunset. This will be further analysed in a subsequent chapter on the heat island effect. 

Overall, the average urban temperature in 2000 was 1.04°C lower than that in 2017, 

with other conditions remaining the same but only the underlying surface and 

anthropology heart emission being modified (representing the urbanization took place 

from 2000 to 2017). This is largely due to urbanization and surface modifications 

observed in the area. It should be noted that this is only a sensitivity analysis. It is of 

particular note that with global warming, the average global temperature in 2000 was 

even lower than that in 2017, making the real temperature difference in Shanghai even 

larger. 

5.4.3 UHI and wind field 

Figure 5.10 shows the spatial distribution of 2-m air temperature in different LULC 

cases, which is able to represent the distribution of urban heat island effect to a moderate 

extent. In short, the heat island phenomenon becomes increasingly obvious with the 

development of urbanization. To further explore the heat island effect intensity, a 

control experiment was designed to replace all the urban underlying surface with 

cropland, as shown in Figure 5.4d. By comparing the 2000 case, 2010 case and 2017 

case with the control case (no_urban case), a more reasonable spatial distribution map 

of heat island intensity can be obtained. Compared with the traditional 'urban' - 

'suburban' approach, this approach has two advantages. On the one hand, it can avoid 

errors caused by the wrong classification of so called urban and suburban, and on the 

other hand, it can eliminate the influence of sea-land breezes, impacts of clouds, 

advection, heatwaves, and topography that may alter the surface temperature or other 

meteorological parameters (Bohnenstengel et al., 2011; Li et al., 2011; Wang et al., 

2014). 
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Figure 5.11 Averaged temporal variations of Urban heat island intensity 

 

In the three different cases, the time variation trend of UHII is almost identical 

(Figure 5.11). Taking 2017 as an example, the results indicate that stronger effect of 

urban heat island can be found during night time than daytime. The peak value of UHI 

occurs at time around 1900LST with a maximum magnitude of 3.32°C in 2017 case. In 

the next few hours, the urban heat island effect has been slowed down to a certain extent 

and maintained a relatively stable level before sunrise. During daytime, the Earth’s 

surface is heated by direct solar radiation and atmospheric longwave fluxes, which 

dominates the fluxes over vegetated and urban landcover; this in effect reduces the 

thermal difference between urban and vegetated surfaces during daytime. 

With the urbanization process in Shanghai, the average intensity of the heat island 

effect has gradually increased, from 1.35°C in 2000 to 2.08°C in 2017. What is of 
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greater note, is that the maximum value of UHII increased from 2.33°C to 3.41°C, 

indicating that the extreme value of the UHII is more sensitive to urban coverage. 

In 2010, as urbanization process was concentrated on suburban construction, it 

could be seen that the heat island effect of suburbs at this time had a higher 

improvement than that of 2000 (1.03°C in 2010 and 0.62°C in 2000), but with the 

gradual disappearance of rural area in 2017, such UHII changes are no longer evident. 

In addition, it should be noted that although the heat island effect in all three cases 

showed low values during daytime, the minimum heat island effect in 2017 was 

significantly higher than that in 2000 and 2010, which may be caused by the fact that 

AH still heated the underlying surface in the daytime, while AH setting in 2017 case is 

much higher than 2010 and 2000(120, 90 and 50, respectively). 

To further explore the spatial distribution of the heat island effect, Figure 5.12 

shows the spatial distribution of UHI during night (when the heat island effect is at its 

strongest). As with the development of urbanization, the coverage area will also 

gradually improve. In 2000, it mainly concentrated in downtown area, while in 2010, it 

expanded southward, which is consistent with the trend of land use change. 

Furthermore, the heat island centre in 2017 goes more western than that in 2010. 

This is close to the trend of land use change, but the heat island centre is not in the 

centre of urban development. This is mainly due to the underlying surface being 

predominantly composed of artificial materials with high thermal storage ability. The 

heat gradually releases at night, resulting in a vertical momentum that will push up the 

planetary boundary layer height. As a result, the air pressure over the urban area is 

lower than the surrounding area, resulting in heat island winds blowing toward the 

urban area. Coupled with land and sea winds blowing from the sea at night, the centre 

of the urban heat island shifts to the northwest can be observed. This simulation result 
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is also consistent with the conclusion of Hu's study on the heat island effect in Shanghai 

in 2020 (Hu 2020). 

 

Figure 5.12 Averaged UHII at 1900 LST during simulation for (a) 2000 case, (b) 2010 case and (c) 

2017 case. 

 

This is also one of the reasons for the complexity of wind field simulation in 

Shanghai. Due to the different intensity of heat island effect, it can be observed that the 

factors leading the wind field over the city in 2000, 2010 and 2017 are different. With 

the increase of urban underlying surface, the influence of heat island circulation on 

wind field simulation is gradually obvious. Even in the period of time when the heat 

island effect is strongest, the wind speed in the urban area has improved, which is one 

of the reasons why the simulation results are higher than the observation results. 

However, in general, the simulated average wind speed becomes lower with the 

advancement of urbanization, especially in urban area (3.419 m/s in 2000, 3.32m/s in 

2010, 2.96m/s in 2017, respectively). 

5.4.4 Relative humidity and human comfort 

The relative humidity value indicates the effectiveness of evapotranspiration in a 

specific location. Evapotranspiration is regulated by bulk stomatal resistance, which is 

influenced by root zone soil moisture, photosynthetically active radiation, air 
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temperature, and leaf surface relative humidity. Grid aggregate parameters for 

vegetation and soil are produced from fractional coverages of land use categories – 

urban fraction and soil texture types (Skamarock et al., 2008). Thus, the urban 

percentage is critical in influencing the fluctuation of the RH over the years studied. 

This is demonstrated in Table 4.5, where 2000 with the highest vegetation/cropland 

proportion results in the highest measured relative humidity for the whole area and for 

all cases Rural area shows higher RH value than urban area. 

Table 5.5  Mean Relative humidity of WRF simulated 

Year Urban (%) Sub-urban (%) Rural (%) 

2000 67.5 73.4 76.2 

2010 64.5 69.9 74.9 

2017 61 71.4 73.6 

 

Urbanization has a significant impact on the reduction of relative humidity, which 

is caused by gradually increasing building height, denser buildings, higher surface 

temperature and stronger heat island effect in urban area. Although the urban 

underlying surface was the same, the urban relative humidity in 2000 was much higher 

than the case in 2017. However, the change in rural areas is far less obvious because 

the change of underlying surface in rural areas is not significant, and the existing decline 

in relative humidity is more likely due to the decrease of night time relative humidity 

caused by the step effect of urban heat island effect. It is worth noting that the lowest 

suburban relative humidity occurred in 2010 due to the vigorous construction of 

suburban area, which indicates that the change of underlying surface is the biggest 

factor affecting the simulation of relative humidity. 

The relationship between local microclimate status and human thermal sensation 
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has resulted in the development of several biometeorological indices that have been 

used to define human thermal comfort levels. The thermohydrometric index, THI 

(Thom 1958), was chosen to analyse the acquired data since it is recognized to properly 

reflect variations in air temperature and humidity caused by urban landscapes. The 

temperature humidity index is easily calculated from the air temperature (°C) and 

relative humidity (%) using McGregor and Nieuwolt's equation (McGregor et al., 1998):  

𝑇𝑇𝑇𝑇𝑇𝑇 =  0.8 × 𝑇𝑇𝑎𝑎 +
𝑅𝑅𝑅𝑅 × 𝑇𝑇𝑎𝑎

500
 

where Ta is air temperature simulated in °C and RH is relative humidity in 

percentage. 

However, the temperature and humidity index (THI) is the only human comfort 

index considered in this study due to its ability to capture land use and land cover-

induced changes in air temperature and humidity that frequently affect people's comfort. 

Monitoring human comfort variances across different land use categories is critical for 

urban planning and environmental protection. 
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Figure 5.13 Averaged THI in 24 hours for: 2000(up left), 2010(middle left) and 

2017(bottom left); 0800-1600LST averaged THI for: 2000(up left), 2010(middle left) and 

2017(bottom left) 

 
Figure. 5.13 shows the spatial distribution of THI in three different cases. The 

average THI shows a synchronous change in the distribution of underlying surface 

(LULC). With the change of underlying surface from 2000 to 2017, average THI over 

30 is only seen in the urban area. Table 4.6 shows the categories of The 

Thermohydrometric Index (THI) (Kyle 1994). According to the classification in the 

table, almost all urban areas in 2017 cases are in hot state during the day time. This 

would increase outdoor work in Shanghai's urban and suburban areas which is 

unnecessarily dangerous and difficult and would also significantly increase the energy 
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consumption of air conditioners used by urban residents to keep their indoor 

temperatures down (Biometeorol et al., 1999; Samuel 2017). 

 

Table 5.6 The categories of the thermohydrometric index (THI) (Kyle 1994) 

Category THI Value 

Very cold -9.9 to -1.8 

Cold -1.7 to 12.9 

Cool 13 to 14.9 

Comfortable 15 to 19.9 

Hot 20 to 26.4 

Very hot 26.5 to 29.9 

Torrid Over 30 

 

Reducing THI to improve residents' comfort not only requires reducing air 

temperature, but also increasing relative humidity. As such, increasing urban vegetation 

coverage is a relatively effective approach, which is also consistent with the widely 

accepted measures to reduce the heat island effect (Yamamoto 2006; Moris et al., 2016). 

The impact of extreme heat on the human health cannot be ignored, including 

increased hospitalizations and emergency department visits, increased deaths from 

cardiopulmonary and other diseases, adverse pregnancy and childbirth outcomes, and 

other vulnerable groups that are more vulnerable to extreme heat. More than 356,000 

deaths were linked to heat in 2019, and the number is expected to grow as global 

temperatures rise (Ebi et al., 2021; Jay et al., 2021). Zhao et al. (2017) calculated the 

number of hospitalized patients and the frequency of extreme weather in Shanghai and 

concluded that the average number of hospitalized patients will increase by 1.266 (95% 

confidence intervals: 1.074 -- 1.493) after the temperature exceeds 33.1°C.  
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Figure 5.14 Averaged extreme event (air temperature over 33°C) coverage area (km2) 

during simulation 

 
Therefore, variation of urban area with simulated temperature over 33℃ over time 

in different cases are shown in Figure 5.14. It can be seen that in the simulation of 2017, 

not only is the occurrence of extreme high temperature weather is more frequent, so is 

the occurrence area range of extreme weather events is rapidly expanding with the 

development of urbanization. In the 2000 case, no extreme weather was observed 

during seven hours of the night (0100 LST-0700 LST), while in the 2017 case, the gap 

was only 0400 LST-0600 LST. Meanwhile, in terms of coverage area, extreme weather 

only covered 6,694 km2 at 1300LST in 2000, while this value increased to 7,316 km2 

in 2017. It should be noted that due to sensitivity experimental design, such changes in 

results only come from changes in underlying surface coverage and AH release values. 

With the worsening of global warming, the future summers will likely be accompanied 

by higher frequency and greater coverage of extreme heat events. 
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5.4.5 Energy Balance and PBLH 

 
Table 5.7 Summary of mean sensible heat flux and latent heat flux from model 

simulations 

Year Urban Sub-urban Rural 

 SH (W/m2) LH (W/m2) SH (W/m2) LH (W/m2) SH (W/m2) LH (W/m2) 

2000 149.7 19.6 88.7 85 57.8 132.2 

2010 162.7 20.1 84.7 91.2 56.6 134 

2017 179.9 20.4 87 88.5 55.3 134.9 

 

In general, the surface energy balance is not sensible to the land use and land cover 

change, especially for the latent heat flux. LH remains a relatively stable range for all 

3 cases in different year during the simulation. Nonetheless, the sensible heat flux 

shows dependence on the urbanization process, especially in urban areas, where the 

average flux increased from 149.7 W/m2 in 2000 to 162.7W/m2 in 2010 and 179.9 W/m2 

in 2017. This is mainly due to the expansion of the underlying surface, which makes 

the urban area absorb more short-wave radiation and store more heat during the day. 

The temperature difference between the surface and the air brought by this heat is an 

important source of sensible heat flux. 

 

Figure 5.15 Mean diurnal profile of surface energy components: SH (left), LH (right) 

 



115 
 

This is also reflected in Figure 5.15 as an example diurnal profile of both SH and 

LH for urban area. The SH gains significantly from the growth in urban surface area, 

which results in fast fluctuations in surface heat content with sun irradiation during 

daytime. The maximum sensible heat flux level is recorded between 1200 and 1300LST 

at 392 W/m2, 368 W/m2, and 365 W/m2 for 2017,2010 and 2000, respectively, followed 

by a decline in all magnitudes. This is understandable since sensible heat is generated 

solely by shortwave solar radiation and atmospheric longwave fluxes, and the 

temperature differential between the ground and atmosphere steadily decreases 

throughout the night. This also explains that after sunset, the SH values of the 2017 and 

2010 cases and the 2000 cases began to differ significantly. Although urbanization is 

increasing, LH is mainly affected by parameters related to vegetation cover, which has 

changed little for urban areas in these 3 cases. Therefore, the simulation does not 

observe drastic changes in LH, or in urban areas. 
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Figure 5.16  First column: Average PBLH distribution of 2000 (up), 2010 (middle), 

2017(bottom); Second column: 2000 - 0700 LST averaged PBLH distribution of 2000 (up), 

2010 (middle), 2017(bottom); Third column: 0800 - 1900 LST averaged PBLH distribution of 

2000 (up), 2010 (middle), 2017(bottom) 

 

The variation trend of PBLH is close to that of 2-M temperature, especially on the 

diurnal variation curve. During the day, the earth's surface receives short-wave solar 

radiation and long-wave atmospheric flux. These fluxes heat the surface and increase 

the surface temperature, resulting in vertical and horizontal transport of heat flux (SH). 

The time growth of PBLH is influenced by the thermodynamics of solar radiation, 

atmospheric long-wave flux, and the interaction of sensible and latent heat flux. 

Therefore, the change in the maximum value was not significant, only rising from 

1530m in 2000 to 1619m in 2017. 
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However, the change of PBLH spatial distribution obviously depends on the 

expansion of urban areas, that is, the development of urbanization. This is more obvious 

from the spatial distribution figure of 0800-1900 LST (right column of Figure 5.16). 

With the expansion of urban area, high PBLH gradually spreads to the west side of 

Huangpu River. This lowers the pressure in the overlying area below, which is 

consistent with the wind field explained above. 

5.5 Conclusion 

A network of observed data from 11 local observation station is used to evaluate 

our simulation model. The results are corroborated by the observed data, especially for 

2-m air temperature. RMSE, MBE, and R2 of 1.16ºC, -1.10°C, and 0.99; 4.51%, -3.64%, 

and 0.98; 1.14 m/s, 0.99 m/s, and 0.63, are observed for 2-m temperature, relative 

humidity, and wind speed, respectively. 

In this study, the thermal urban climate of Shanghai was successfully identified. 

The model results show that the distribution of 2m temperature is extremely sensitive 

to the changes of underlying surface caused by urbanization. By comparing the 

no_urban method, the heat island effect is investigated and gradually increases of UHII 

is seen with urbanization process, from 1.35°C in 2000 to 2.08°C in 2017. The 

frequency and intensity of extreme weather events also increased, with such cases 

covering 11.2% larger acreage in 2017 than in 2000 and lasting two hours longer after 

sunset. An increase in THI is found to be also a greater threat to the health of the citizens. 

In the sensitivity experiment, the energy balance, especially the latent heat flux did 

not change much. Nonetheless, the change of urban underlying surface still has an 

impact on the maximum sensible heat flux. In addition to the influence of land - sea 

wind and lake wind, the simulation of wind speed also shows the influence of heat 

island wind on the wind field in the urban area, which is clearly reflected in the case of 
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2017. 

In order to further improve the performance of the model, a more detailed LULC 

map is needed, especially in downtown, urban areas. The local climate zone model can 

be considered as a direction, but due to the introduction of too many variables, it may 

be necessary to run further tests in order to verify with reality and obtain more accurate 

simulation results. Most significantly, the simulation reveals the severe heat island 

effect and adverse impact on residents' health brought by urbanization. It is therefore 

critical to consider how to mitigate the heat island effect in the development of 

Shanghai. 
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6 Projection of urban climate in the 2030s of Shanghai under 

different PCR scenarios and development pathways 

 

6.1 Introduction 

Today, more than half of the human population lives in urban areas, and this 

proportion is expected to increase to 66% by 2050; an additional 2.5 billion people are 

predicted to relocate to cities (United Nations, 2014). The impact of urbanization is 

mostly on local and regional climate. Nonetheless the process of urbanization has a 

significant impact on the global-scale climate change. The relationship between 

urbanization and global-scale climate change is intricate. Cities, regardless of their 

trivial spatial extend, exert an influence on global-scale climate change (Masson et al., 

2020). Identifying the individual and combined effect of climate change and 

urbanization would provide opportunities for effective planning of urban adaptation 

strategies to curb the future impact of climate change and urbanization on urban areas.    

Shanghai has been one of the largest metropolises in China ever since 1843. Due to 

its unique geographical and climatic advantages, the city has been endowed with 

unlimited development potential and opportunities, gradually replacing Guangzhou as 

the centre of foreign trade. Since 1990, a large amount of arable land was occupied by 

building land, which has resulted in the total area of construction land in Shanghai being 

tripled compared to 30 years ago. Now, the total construction land of this city is as high 

as 46% of the land area, far more than Tokyo, Paris and other international metropolises. 

Numerical studies on the impact of future urbanization have been conducted. 

Georgescu et al. (2014) attempted to simulate the sensitivity of temperature to the future 

expansion of cities in the United States. Doan et al. (2016) evaluated the impact of 

future urbanization in the case of HCM City, Vietnam. However, there are few studies 



120 
 

on the future urban climate in Shanghai. This study will propose two different RCP 

development paths in 2030, to simulate and analyse the climate of Shanghai in the 

summer of 2030 by making different RCP scenarios and using dynamic downscaling 

method under the premise of considering the development of urbanization. 

6.2 Methodology 

6.2.1 Study region 

Shanghai is in the eastern part of China, at the lower reaches of the Yangtze River, 

between 120.87° E -122.2° E and 30.67° N-31.88° N, with a total area of 6,340 km2. 

As a part of the Yangtze River delta impact plain, Shanghai has a dense network of 

rivers and abundant water systems, and the terrain is vast and low, with an average 

altitude of only 2.19 meters above sea level, the highest point of which is 103.7 meters 

above sea level on Da Jinshan Island in Jinshan District. Shanghai's climate is mild and 

humid, with distinct seasons, short spring and autumn but long winter and summer. 

Shanghai has plenty of sunshine and rainfall, with south easterly winds prevailing in 

spring and summer, and northerly winds in autumn and winter, making it a very typical 

subtropical monsoon climate. 
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Figure 6.1 administrative divisions of Shanghai 
 

The administrative divisions of Shanghai are shown in Figure 6.1, among which 9 

core urban areas are generally considered as the main urban areas, such as Huangpu, 

Luwan, Xuhui, Changning, Jing 'an, Putuo, Zhabei, Hongkou and Yangpu. The other 

nine counties far from the city are Baoshan, Minhang, Jiading, Jinshan, Songjiang, 

Qingpu, Fengxian, Pudong New Area and Chongming county. 

Economic growth and industrialization stimulated rapid urbanization and 

population growth in Asia (Jago-on et al., 2009). From 1949 to 2020, the total 

population and population density of Shanghai changed significantly with the rapid 

industrialization and urbanization. The population increased from 5.03 million in 1949 

to 24.28 million in 2020, (Shanghai Bureau of Statistics, 2020). And with the 

industrialization and urbanization of Shanghai, land resources are under increasingly 

severe spatial and environmental pressure. Due to rapid economic development, 
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Shanghai has one of the highest rates of LULC change in the last 30 years, which is 

mainly manifested by urban expansion and decrease of cultivated land. From 1949 to 

2020, the largest area of cultivated land was 417,100 hectares in 1990 and only 117,400 

hectares in 2020. From 1990 to 2000, cultivated land decreased significantly at a rate 

of 158,300 ha/ decade, and in the last 10 years, it has rapidly decreased at a rate of 

83,800 ha / decade. 

With the development of urbanization, Shanghai Urban Master Plan (2017-2035) 

was announced in 2017 (Shanghai government, 2017), which presents a clear plan for 

the path of urban development and provides the basis for the subsequent research in 

this study. This study chooses Shanghai as the main research area and compares the 

measured land use data of Shanghai in 2015 and forecast in 2030 to explore the impact 

of urbanization under different the future scenarios of Shanghai 

 

6.2.2 Land use and land cover dataset in 2030 

The land use and land cover data using in this study is from the Mega-cities Project 

led by University of Tsukuba (Murayama et al, 2015). The data is obtained from 

satellite imageries of different resolutions, for instance, MODIS, Landsat and 

QuickBird. Landsat images at 30m resolution are mainly used in most cases. The 

images from satellite sensors are then processed by certain re-classification methods 

such as Pixel-based classification and object-based classification (Hay and Castilla 

2008; Blaschke et al., 2014), Random Forests classification (Breiman 2001) and 

Support Vector Machine classification (Brian et al., 2011). The final product is re-

classified into eight LULC classes: urban dense, urban sparse, forest, cropland, 

grassland, bareland, water and other land (Murayama et al, 2015). 
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Figure 6.2 Land use and Land cover map of (a) current case (left panel), (b)2030 projected case 
(right panel) 

 

Figure 6.2a shows the LULC map of Shanghai area in 2015 while Figure 6.2b shows 

the projected LULC map of shanghai in 2030 based on the known development path of 

Shanghai in previous observation study. Furthermore, the urban area in 2030 LULC 

case are considered as 3 different types: urban dense, urban sparse and new built-up 

urban, the urban dense and urban spare are same with 2015 and new built-up urban is 

apparently the additional urban area in 2030 compared with 2015 case. 

It is fully acknowledged that such classification cannot accurately represent the land 

use of Shanghai in 2030. For example, some old urban areas may be renovated, or 

residential areas may be transformed into parks. Such improvement of city appearance 

cannot be predicted, so the underlying surface of the prediction of 2030 in this study 

can only be approximated in this way. 

Through the comparison of LULC map, it can be found that the future land use 

change in Shanghai is mainly concentrated in the direction of southeast, accompanied 
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by urban area expansion and further decrease of cultivated land area. At the same time, 

it can be expected that the parallel renovation of the new and old urban areas will bring 

about further changes in the underlying surfaces, such as an increase in the average 

building height and an increase in the intensity of anthropogenic heat release. This will 

be reflected in subsequent simulation Settings 

 

6.2.3 Representative Concentration Pathways scenarios 

The Representative Concentration Pathways describe the different Pathways of 

greenhouse gas emissions, air pollutant emissions, land use and atmospheric 

concentrations evolve in the 21st century. It was developed by Integrated Assessment 

Models as input to extensive climate model simulations to predict their consequences 

on the climate system. These climate prediction simulations are in turn used for impact 

and adaptation assessments. RCPs are a good representation of the broader range of 

greenhouse gas emissions in the literature, which includes a strict mitigation scenario 

RCP2.6, two intermediate scenarios RCP4.5 and RCP6.0, and a very high GHG 

emission scenario RCP8.5 (IPCC, 2021). Different RCP development paths will have 

different impacts on future global climate, as shown in Figure 6.3. It is generally 

thought that the worst-case scenario represented by RCP8.5 would be if governments 

did nothing to limit their emissions (IPCC, 2014). As the world attach more importance 

to environmental issues, a more reasonable development path should be RCP4.5 or 

RCP6, depending on the implementation of energy conservation and emission 

reduction of each country in the future. 
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Figure 6.3 Time series of global annual change in different factors for 4 RCP scenarios (IPCC, 2014) 
 

Although different RCP models provide approximate climate change pathways, and 

the Global Circulation Model simulates future environmental changes based on pre-set 

pathways. However, in the specific GCM simulation results, different GCM outputs 

still have significant differences, which will introduce a certain degree of systematic 

error. To eliminate such error, hence, a bias correction method is needed (Holland et 

al.,2010; Xu and Yang 2012; Done et al.,2013). 

The specific operation method is to divide the prediction results of GCM into two 

parts: 

𝐺𝐺𝐺𝐺𝐺𝐺 =  𝐺𝐺𝐺𝐺𝐺𝐺������ + 𝐺𝐺𝐺𝐺𝐺𝐺′ … … … … … … … … … … … … (1) 

Where the GCM is decomposed into a seasonally averaged climatological 
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component 𝐺𝐺𝐺𝐺𝐺𝐺������ and a perturbation term 𝐺𝐺𝐺𝐺𝐺𝐺′. 

And same process is done to the observation data as followed: 

𝑂𝑂𝑂𝑂𝑂𝑂 =  𝑂𝑂𝑂𝑂𝑂𝑂������ + 𝑂𝑂𝑂𝑂𝑂𝑂′ … … … … … … … … … … … … (2) 

Where OBS is reanalysis data from observation and  𝑂𝑂𝑂𝑂𝑂𝑂������ is mean climatological 

component. 

The bias corrected climate data is eventually calculated by replacing the GCM 

climatological mean from Eq. 1 with the OBS mean from Eq. 2: 

𝐺𝐺𝐺𝐺𝐺𝐺∗ =  𝑂𝑂𝑂𝑂𝑂𝑂������ + 𝐺𝐺𝐺𝐺𝐺𝐺′ … … … … … … … … … … … … (3) 

These bias-corrected climate data thus combine a seasonally varying climate with 

the six-hourly weather from the GCM. This approach also retains the GCM longer-

period climate variability and climate change (Bruyère et al., 2014; Bruyère et al., 2015). 

Following this method, the European Centre for Medium-Range Weather Forecasts 

Interim Reanalysis (ERA-Interim; Simmons et al., 2006 and Dee et al., 2011) fields for 

1981-2005 are used as 𝑂𝑂𝑂𝑂𝑂𝑂������ and NCAR's Community Earth System Model (CESM; 

Hurrell et al., 2013) output results are used as 𝐺𝐺𝐺𝐺𝐺𝐺′ to generate a six-hourly based, 

with 26 pressure levels and of horizontal resolution of approximately 1° dataset in this 

study. 

In this study, two time periods are selected, one in July 2017 and the other in July 

2030. The time period of July 2017 is used to verify the reliability of the model and 

data set, while the time period of July 2030 is used to reflect the thermal environment 

of Shanghai in 2030s. 

In order to reflect the difference in future global warming predicted by RCP path 

selection, two different development paths: RCP4.5 and RCP8.5 are used to drive WRF 

simulation in 2030, and comparative analysis are carried out in later subchapters. 

In general, the driving data can be divided into the following three types: July 2017, 
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July 2030 (RCP4.5) and July 2030 (RCP8.5). It should be noted that for the dataset of 

July 2017 are also synthesized by observation data and GCM simulation results from 

1981 to 2005. Therefore, this dataset also belongs to the "predicted result" (from late 

20 century), thus the data in July 2017 under the RCP8.5 path is selected in this study 

as the driving data to verify the model reliability. 

 

6.2.4 Numerical settings and model initialisation 

A 3 one-way nested simulation is used in this simulation, shown as in Figure 6.4 

The horizontal grid resolution is 9km for D01, 3km for D02 and 1km for the finest 

domain as D03. There are 120 × 120 grids for D01, which covers the most area of 

Southeast China. D02 with 160 × 160 grids are dominant by Yangtze River Delta, while 

D03 covers only the whole central area as our main study interest. For the vertical 

setting, there are 34 hydrostatic-pressure levels to resolve vertical layers for all domains, 

with 15 of the levels are reserved below 850 hPa to further resolve turbulence and 

frequent changes of atmospheric variables within the lower planet boundary layer (PBL) 

and top at 100hpa. Further, these lower levels would be helpful illustrating the small-

scale feature near Earth’s surface (Morris et al., 2016) 
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Figure 6.4 Domain setting of the simulation and terrain height of simulation area 
 

Table 6.1 Main Physical parameterization setting 
 

 D01 D02 D03 

Microphysics Scheme single-moment six-class 

(WSM-6) microphysics 

scheme 

single-moment six-

class (WSM-6) 

microphysics scheme 

single-moment six-

class (WSM-6) 

microphysics scheme 

Longwave Radiation 

Scheme 

Long-wave Rapid 

Radiative Transfer 

Model (RRTM) 

Long-wave Rapid 

Radiative Transfer 

Model (RRTM) 

Long-wave Rapid 

Radiative Transfer 

Model (RRTM) 

Shortwave Radiation 

scheme 

Dudhia cloud radiation 

scheme 

Dudhia cloud 

radiation scheme 

Dudhia cloud 

radiation scheme 

Surface-layer Scheme Monin-Obukhov 

similarity theory 

Monin-Obukhov 

similarity theory 

Monin-Obukhov 

similarity theory 

Planetary Boundary 

scheme 

Yonsei University 

(YSU) scheme 

Yonsei University 

(YSU) scheme 

Yonsei University 

(YSU) scheme 

Convective Cumulus 

Parameterization 

Scheme 

Kain-Fritsch convective 

cumulus 

parameterisation 

N/A N/A 

Urban Canopy Model N/A N/A SLUCM 



129 
 

Physical parameterizations used are listed in table 4.2, including the microphysics 

scheme of single-moment six-class microphysics scheme (Hong and Lim 2006; Dudhia 

et al., 2008), and a surface-layer scheme based on the Monin-Obukhov similarity theory. 

For radiation, the Dudhia shortwave radiation scheme (Dudhia 1989), and the RRTM 

longwave scheme (Mlawer et al., 1997) was used. On the D01, the Kain-Fritsch 

convective cumulus parameterization scheme (Kain, 2001) was applied. D02 and D03 

does not need any cumulus parameterization as it is able to resolve updrafts and 

downdrafts in such a sufficiently refined resolution. 

 The UCM as single layer urban canopy model was used to consider the effects of 

urban geometry on surface energy balance and wind shear for urban regions (Kusaka 

et al., 2001; Kusakaand Kimura, 2001).This model includes shadows from buildings，

canyon orientation，diurnal variation of azimuth angle, reflection of short and long 

wave radiation, wind profiler in the canopy layer, anthropogenic heating associated 

with energy consumption by human activities and multi-layer heat transfer equation for 

roof, wall, and road surfaces (Chen et al., 2011). 

Anthropogenic heat is mainly produced by human production and living and 

biological metabolism. For example, in industrial production, the heat released by fossil 

fuels in the combustion of gas stoves and internal combustion engines and other 

equipment, air temperature regulation equipment and vehicle exhaust heat are the most 

significant causes of anthropogenic heat. Likewise, a dense residential population 

directly contributes a large amount of anthropogenic heat. The effect of anthropogenic 

heat on urban heat balance mainly depends on the geographical location of the city, the 

size of the construction scale of the city, the level of population density and energy 

consumption per person (Li et al., 2015). 

In this study, anthropogenic heat is estimated by three aspects: industrial 
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anthropogenic heat emission, transportation anthropogenic heat emission and residents 

anthropogenic heat emission based on the method of estimating total coal consumption 

number from official statistic yearbook (Wang et al., 2011; Lu et al., 2014). The AH 

max value for urban dense area in 2017 is 120 Wm-2 and 180 Wm-2 for 2030 case. 

Considering that anthropogenic heat release has a relatively obvious diurnal variation 

pattern, and industrial emissions occupy the main source of AH, the change curve of 

AH built into WRF is changed to figure 6.5, which is closer to the overall anthropogenic 

heat release pattern in Shanghai (Li et al., 2015). 

 

 

 

Figure 6.5 The diurnal profile of AH intensity used in the UCM 
 

The total duration of the simulation is 10 days, starting at 1200 UTC on July 20 and 

ending at 1200 UTC on July 30 (both 2017 and 2030), where the simulation results of 

the first 20 hours are discarded as spin-up time. If not noted, the data below will average 

the results of the simulations over a period of 24 hours to obtain the average results of 
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the simulations for analysis. 

In this study, a total of 4 different experimental combinations were designed, as 

shown in Table 6.2 

 

Table 6.2 Four cases settings in this study 
 LULC map Lateral Boundary data 

Case0 Current 2017 RCP 8.5 hindcast 

Case1 Current 2030 RCP 8.5 prediction 

Case2 2030 prediction scenario 2030 RCP 4.5 prediction 

Case3 2030 prediction scenario 2030 RCP 8.5 prediction 

 

Case0 is mainly used to verify the consistency of hindcast data and real observation 

data, and to represent the reliability of the WRF/Noah/UCM model and input data. 

The difference between Case3 and Case1 can be used to represent the impact of 

urbanization development on climate change in Shanghai in the future while the 

difference between Case3 and Case2 can be used to characterize the future climate 

change of Shanghai under different global warming models. The transaction from 

Case0 to Case2 and Case3 represent the final urban climate change under different 

development scenarios. 
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6.3 Model Validation 

To verify the accuracy of the 2017 hindcast dataset as WRF lateral boundary data, 

observations from 11 observation sites of Shanghai in July 2017 were compared with 

the simulation results. The 11 observation stations are located as figure 6.6 shows. 

 

 

Figure 6.6 Observation station location with land use classification (Red: Urban, Yellow: Sub-
urban and Green: Rural) 

 

Due to the fixed location of observation stations, the verification results obtained 

from a single station are relatively accidental. Therefore, the 11 stations are classified 

into three categories according to the underlying surface corresponding to the 

simulation, namely, urban area, suburb and rural area. 

Among them, 58361-Minhang, 58365-Jiading, 58362-Baoshan, 58367-Xujiahui, 

58462-Songjiang, 58370-Pudong are urban areas, 58460-Jinshan, 58461-Qingpu and 

58369-Nanhui are suburban areas, finally 58366-Chongming and 58463-Fengxia are 

classified as rural station. 
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In this study, the following 7 indicators will be calculated to evaluate the 

coincidence of the model with the observed data, namely, MBE, MAE, RMSE, R, R2, 

HR and IOA. The HR threshold value is set as 2°C (Cox et al., 1998) for 2-m 

temperature and 10% (Lawrence, 2005) for relative humidity as the desired accuracy. 

 

Figure 6.7 Model evaluation for case 0 in averaged 24 hours 
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Table 6.3 Model evaluation statistics for near surface variables 
Variables Statistics Indicators Urban Sub Urban Rural 

T2m (°C) MBE -1.475 -0.832 -1.215 

 MAE 1.52 0.864 1.297 

 RMSE 1.87 1.026 1.511 

 R 0.991 0.993 0.986 

 R2 0.982 0.986 0.972 

 IOA 0.988 0.927 0.894 

 HR 0.583 1 0.667 

RH (%) MBE 10.461 4.617 8.521 

 MAE 10.461 4.617 8.57 

 RMSE 10.793 4.805 9.333 

 R 0.984 0.99 0.981 

 R2 0.968 0.98 0.962 

 IOA 0.773 0.936 0.853 

 HR 0.416 1 0.583 

 

In general, the model can successfully capture the diurnal variation curve of 2-m air 

temperature (Figure 6.7 and Table 6.3). In terms of correlation coefficient, R for urban 

as 0.991, Suburb as 0.993 and Rural as 0.986 reflect that the model can well capture the 

temperature variation trend of three different underlying surface types in Shanghai. 

However, it should also be noted that there are temperature underestimates (MBE value 

-1.475, -0.832 and -1.215 for urban, suburban and rural, respectively) in all three cases. 

This is more evident in urban areas, where RMSE is 1.87, higher than 1.026 of suburbs 

and 1.511 of rural areas. The underestimation result of rural areas, however, may be 
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since the observation stations are still being influenced by the underlying surface of 

urban area. 

For the simulation of relative humidity, a similar conclusion can be obtained; the 

simulation has a good grasp of the diurnal profile of relative humidity. However, the 

overall relative humidity is still underestimated, which is more obvious with the 

increase of urban coverage (MBE for urban is -5.683, for sub-urban as -3.136 and for 

rural as -2.101). This may be due to the overestimation of impervious underlying 

surface coverage in the model, especially in the main urban area, which fails to fully 

consider the spatial heterogeneity of urban fractions. For sub-urban and rural space, the 

simulation effect is better, with RMSE being 5.899, 4.99 and 2.648 for 3 different cases. 

On the other hand, the overall underestimation of temperature may also be caused 

by the lateral boundary data itself. This is because the boundary data is based on the 

observation data from 1981 to 2015 plus the fluctuation value predicted by GCM. The 

time selection of the base data has a great influence on the results, while WRF is highly 

sensitive to the boundary data. If there is a large deviation between the driving data and 

the observation data, it may lead to systematic error of the simulation results. 

For the simulation of relative humidity, a similar conclusion can be obtained; the 

simulation has a good grasp of the diurnal profile of relative humidity. However, the 

overall relative humidity is still overestimated, which is more obvious within the urban 

area (MBE for urban is 10.461, for sub-urban as 4.617 and for rural as 8.521). The 

underestimation of relative humidity in urban areas may be due to the low simulated 

temperature. For sub-urban and rural space, the simulation effect is better, with RMSE 

being 10.793, 4.805 and 9.333 for 3 different cases.   

Although there may be systematic deviations, from the overall trend, 

WRF/Noah/UCM can still accurately grasp the daily variation of 2-m temperature and 
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2-m relative humidity under this set of driving data, and systematic deviations can be 

eliminated to a certain extent by making differences between cases, which is also the 

basis of subsequent experimental results. 

6.4 Results and discussion 

6.4.1 2-m Temperature and 2-m relative humidity 

 

 

Figure 6.8 Mean diurnal profile of (a) 2-m Temperature (Up panel), (b) 2-m Temperature 
difference (bottom panel) 
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The 2-m air temperature mean diurnal profile of the four cases are shown in Figure 

6.8a. It can be seen that the 2m temperature of Case123 is higher than that of case0 

representing the current case, and Case3 (2030 LULC+2030 RCP8.5) is the highest of 

all time. This is followed by Case1 (2017LULC+2030RCP8.5) and Case2 

(2030LULC+2030RCP4.5). According to the diurnal variation curve, case3 and Case1 

adopting the RCP8.5 development path not only have higher daytime temperature, but 

also have an obvious higher temperature compared with Case2 and Case0 during night 

time. This indicates that when carbon emission is completely uncontrolled, the 

temperature in the urban area will be higher than the controlled scheme of all the time. 

Meanwhile, the temperature of Case3 and Case1 drops more slowly after sunset. The 

result is that due to the aggressive carbon emission development path of RCP8.5, the 

temperature in the peripheral areas of the city also increases sufficiently so that the heat 

absorbed during the day within the urban area cannot be released in time. The 

subsequent spatial distribution of the UHI corroborates this result. 

The contribution of global temperature background and urban development to local 

climate change of Shanghai in the future can be inferred from Figure 6.8b: The average 

temperature difference between Case3 and Case1 is 0.58°C. As the same 2030 RCP 8.5 

scenario is used as lateral boundary condition for Case3 and Case1, this part of 

temperature difference (0.58°C) completely comes from the future urbanization process 

in 2030. Similarly, the average difference between case1 and case0 is 1.95°C, which 

comes from the difference between the current lateral boundary condition and 2030 

RCP 8.5 pathway. By comparing the two results, it can be inferred that under the 

RCP8.5 development path, 23% of the temperature increase in July in 2030 in Shanghai 

will be contributed by urbanization on average, while 77% will be contributed by global 

warming. This result is consistent with Doan s prediction of Ho Chi Minh City in the 
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2050s (Doan and Kusaka, 2019). 

 On the other hand, compared with the case representing the current situation, the 

average temperature rise of Case 3 is 2.53°C, while the average temperature rise of 

Case 2 is only 0.72°C. The huge difference between the two case3 is due to different 

RCP global warming pathway. This fully shows that if carbon emissions can be gently 

controlled as RCP4.5, future threats to urban climate will be greatly reduced. 

 

 

Figure 6.9 Spatiotemporal variation of 2-m air temperature difference of case3 and case0 above the 
area during: (a) 24h averaged time (b) morning: 0000-0700LST (up right figure), (c) day time: 0800 -

1500LST (bottom left figure) and (d) night time: 1600-2300LST (bottom right figure) 
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Figure 6.9a shows the spatial distribution of 2-m air temperature difference of case3 

and case0. Generally speaking, the region with greater temperature increase is 

concentrated in Pudong area, and the temperature rise gradient gradually decreases 

westward. Figure 6.9b represents the temperature change before the sun rises, and the 

overall temperature rise is the lowest among the three periods. From the spatial 

distribution at noon (Figure 6.9c), the large cropland area in the west of Shanghai 

showed barely change in temperature difference, indicating that the rural area far away 

from the city had no significant effect on global warming compared with the urban area. 
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Figure 6.10 Spatiotemporal variation of 2-m air temperature difference of case3 and case1 above 
the area during: (a) 24h averaged time (b) morning: 0000-0700LST (up right figure), (c) day time: 0800 

-1500LST (bottom left figure) and (d) night time: 1600-2300LST (bottom right figure) 
 

The lateral boundary conditions of 2030 RCP 8.5 are applied in both Case3 and 

Case1, thus the spatial variation is completely caused by the further development of 

urbanization (i.e., the change of LULC). It can be clearly seen from Figure 6.10 that the 

temperature difference is almost completely concentrate upon the newly added urban 

areas, which is also in line with expectations. In terms of temporal variation, Figure 

6.10d shows the largest temperature difference, indicating a huge temperature rise of 

newly added urban areas after sunset, which is mainly because land use in this area 
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changes from cropland to urban area. Given that urban surface materials are known for 

high thermal diffusivity and heat retention, it is resealable to notice such a temperature 

increasement. 

 

 

Figure 6.11 Spatiotemporal variation of 2-m relative humidity difference of case3 and case1 above 
the area during: (a) 24h averaged time (b) morning: 0000-0700LST (up right figure), (c) day time: 0800 
-1500LST (bottom left figure) and (d) night time: 1600-2300LST (bottom right figure) 

 

The variation trend of relative humidity is almost completely opposite to that of 2-

m temperature. Taking Case3-Case0 as an example (Figure 6.11), under the 

development path of RCP8.5, with the further expansion of urbanization, the relative 
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humidity in urban areas will be further reduced, especially in newly expanded urban 

areas. The centre area of relative humidity reduction is also concentrated in Pudong 

district. While in the cropland to the west of Shanghai, RH increased to some extent 

can be noticed. Relative humidity is closely related to the health of residents and 

Thermal heat index (THI). Subsequent THI analysis will further explore the changes of 

relative humidity and 2-m temperature under different conditions 

 

 

6.4.2 UHII and human comfort 

 

The difference in T2m between urban and rural areas is known as the urban heat 

island intensity (UHII). During the daytime, a certain percentage of the solar irradiation 

flux is retained on the urban surface. Through natural convection and radiation 

processes, the retained heat flux is radiated to the directly covered canopy, which is 

particularly important at night. In contrast, rural areas have higher vegetation fractions, 

higher plant respiration and transpiration, and higher surface canopy moisture 

effectiveness, which has a considerable cooling effect on the lower boundary layer. This 

leads to differences in canopy temperature between urban and rural areas. 

According to the simulation results (Figure 6.12), it can be seen that either the 

continuous expansion of urbanization or the increasingly serious global warming will 

lead to the aggravation of UHII 
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Figure 6.12 Mean diurnal profile of Urban heat island intensity (UHII) in °C 
 

Mean UHI intensities of approximately 0.88, 1.44, 1.77 and 2.06°C are observed 

for cases 0, 1, 2 and 3, respectively. Minimum (~0.27, ~0.63 ~0.69 and 1.10°C) and 

maximum (~1.47, ~2.79, ~2.65 and ~3.79°C) UHII were observed for cases 0, 1, 2 and 

3 at 0900 and around 2000 LST (Figure 6.12), respectively. 

In order to further distinguish the respective contributions of global warming and 

urbanization to UHII, the changes in heat island intensity of Case0, Case1 and Case3 

are taken as examples. The UHII increase from 0.88°C of Case0 to 1.44°C of Case1 is 

entirely due to the global warming trend under 2030 RCP 8.5 pathway, while the UHII 

development from 1.44°C of Case1 to 2.06°C of Case3 is entirely due to the further 

expansion of urbanization. Therefore, it can be inferred that the heat island effect of 

Shanghai will increase by 1.18°C on average by 2030 if the urbanization process is 

considered and the RCP8.5 path is followed, of which the contribution from 
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urbanization accounts for 52.5%(0.62°C), while the contribution from global warming 

is 47.5% (0.56°C). 

At the same time, since the trend of global warming in the RCP4.5 development 

pathway is slower than that of RCP8.5, but the absolute contribution of urbanization to 

UHII will not decrease accordingly, it can be inferred that the contribution of 

urbanization to UHII will further increase to 69.6% under the RCP4.5 development 

pathway. 

On the other hand, the expansion of urbanization can rapidly accelerate the rapid 

increase of UHI intensity. On the contrary, it can also act as an effective mitigation 

effect for UHII by curbing the rapid expansion of urban construction, i.e., increasing 

the area covered by water and vegetation, or increasing green roofs and other green 

urban facilities (Morris et al., 2016; Larsen, 2015; Papangelis et al., 2012). The 

verification of such conjecture can be further simulated by modifying the parameters of 

underlying surface or urban area. 

 

 

Figure 6.13 Spatial variation of UHII (°C) at 2000 LST for (a) Case1 (left panel), (b) Case 2 
(middle panel) and (c) Case 3 (right panel) 

 

The spatial distribution of UHI in different cases also follows certain patterns. 

Figure 6.13a represents the distribution of UHI on the underlying surface of the current 

Shanghai city, which is much smaller than Case2 and Case3 in terms of coverage area. 
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In particular, UHI in Case3 covers not only almost most urban areas of Shanghai, but 

also some suburbs at its edge. Compared with Case3, the heat island distribution of 

Case2 is more southwest, which may be caused by strong sea and land winds in the 

background field during the simulation time selection, leading downward wind shift of 

heat island centre. In general, the intensity of heat island effect increases with global 

warming and urban expansion, and the coverage area of heat island effect is more 

affected by urbanization. 

 

 

Figure 6.14 Spatiotemporal variation of temperature humidity index of case3 above the area during: 
(a) 24h averaged time (b) morning: 0000-0700LST (up right figure), (c) day time: 0800 -1500LST 
(bottom left figure) and (d) night time: 1600-2300LST (bottom right figure) 



146 
 

 

The relationship between local microclimate status and human thermal sensation 

has resulted in the development of several biometeorological indices that have been 

used to define human thermal comfort levels. The thermohydrometric index, THI 

(Thom, 1958), was chosen to analyse the acquired data since it is recognized to properly 

reflect variations in air temperature and humidity caused by urban landscapes. The 

temperature humidity index is easily calculated from the air temperature (°C) and 

relative humidity (%) using McGregor and Nieuwolt's equation (McGregor et al., 1998):  

𝑇𝑇𝑇𝑇𝑇𝑇 =  0.8 × 𝑇𝑇𝑎𝑎 +
𝑅𝑅𝑅𝑅 × 𝑇𝑇𝑎𝑎

500
 

where Ta is air temperature simulated in °C and RH is relative humidity in 

percentage. 

The thermal environment can be divided into different grades according to the 

values obtained by THI calculation. THI greater than 26.5 belongs to very hot and THI 

greater than 30 belongs to Torrid condition. 

Figure. 6.14 shows THI distribution in different time periods during case3 

simulation. Figure 6.14c is particularly noteworthy, which indicates that in case of 

Case3, Torrid Condition of a large area will appear in Shanghai during 0800-1500LST. 

In particular, the THI of the core urban areas is expected to exceed 30, and the situation 

is expected to worsen if extreme heat is considered instead of the average situation. 

The impact of extreme heat on the human health cannot be ignored, including 

increased hospitalizations and emergency department visits, increased deaths from 

cardiopulmonary and other diseases, adverse pregnancy and childbirth outcomes, and 

other vulnerable groups that are more vulnerable to extreme heat. More than 356,000 

deaths were linked to heat in 2019, and the number is expected to grow as global 
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temperatures rise (Ebi et al. 2021; Jay et al. 2021). Zhao Xinpeng calculated the number 

of hospitalized patients and the frequency of extreme weather in Shanghai and 

concluded that the average number of hospitalized patients will increase by 1.266 (95% 

confidence intervals: 1.074 -- 1.493) after the temperature exceeds 33.1°C (Zhao et al. 

2017). 

Although case3 represents a destructive development path of uncontrolled carbon 

emissions, in fact, the average THI in case2 (2030 RCP 4.5) is 2.45 lower than that in 

case3 (2030 RCP 8.5). Torrid areas also yield 35.1% less than coverage in Case3. Result 

from Case1 compared with Case3, the change of torrid coverage area is completely due 

to the expansion of urbanization, and the average THI decreased by only 1.67, which is 

less than the difference between Case2-Case3.This indicates the components of THI 

parameter are greatly affected by the global warming trend, meaning the worldwide 

energy conservation, emission reduction and carbon neutrality actions are essential to 

build a human comfort friendly environment. 

If 33°C is considered as the threshold of extreme weather, in Case3, the duration of 

the average temperature greater than 33 is from 0700LST to 2300LST, while in Case2 

it is 0800LST to 2230LST (Case1 and Case3 have the same length of time but cover a 

smaller area). Although this result is relevant to the simulation period choosing, it is 

still enough to show that the extreme weather of Case2 is less frequent than that of 

Case3, which indicates that global warming matters more even for the extreme weather 

happens to a single city like Shanghai that put threat to human thermal health. 
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6.5 Conclusion 

In this study, a dynamic downscaling method was used to simulate the future urban 

climate state of Shanghai under different development paths in 2030 with coupled 

WRF/Noah/UCM model. Lateral boundary condition dataset is made using Pseudo 

Global Warming method to eliminate system bias. Through the hindcast simulation of 

2017 data, it is confirmed that the lateral boundary driven data and model can well 

capture the current climate pattern of Shanghai. Meanwhile, it is also found that the 

simulation had a lower estimate of air temperature than the observation. 

After comparative analysis of four groups of experiments, taking the average 

simulated temperature in July 2030 as an example, RCP8.5 shows the maximum 

temperature increase of 2.53°C, which is caused by the joint effect of urbanization and 

global warming. Among them, global warming contributes more, up to 77%, while 

urbanization contributes only 23%. RCP4.5 represents a controlled carbon emission 

development path, which is widely considered to be the global maximum in 2035, in 

which the temperature increase shown in the simulation is reduced to 0.72°C. 

In the simulation of UHI, urbanization and global warming also show overlapping 

effects, while the impact of urbanization is more obvious. The impact of urbanization 

is not only reflected in the contribution of tree branches, but especially in the coverage 

area of heat island effect. Under the 2030 RCP8.5 path, UHII will increase by 1.18°C, 

52.5% of which is due to the contribution of urbanization development. On the other 

hand, this suggests that increasing the area covered by water and vegetation or 

increasing green roofs and other green urban facilities may lead to significant reduction 

of UHI. 

Residents thermal comfort condition under RCP8.5 path simulation is very 

pessimistic, although absolute numerical prediction cannot be verified, but the 
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emergence of extreme high temperature and extreme hot situation probability will be 

greater than the other 3 simulation settings. Especially in summer daytime, the whole 

city will be covered in the extreme hot environment, puts forward the severe challenge 

to outdoor work. Simulations using the RCP4.5 path showed significant relief of THI, 

with an average value of 2.45 lower than the RCP8.5 scenarios. Furthermore, sensitivity 

analysis shows that the coverage of extreme weather is related to the development of 

urbanization, but the intensity and duration of extreme weather are more affected by 

global warming. 

Findings of this study will help urban planners, designers, ecologists, and 

governmental and non-governmental bodies to plan and update current guidelines and 

design methods for building sustainable and liveable cities. 
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7 Discussion and Conclusion 

This study attempts to achieve four core research objectives :(1) to evaluate the 

suitability of WRF/NOAH/UCM coupling model for climatological investigation in 

Shanghai; (2) To investigate the urban climatology of Shanghai using the validated 

model above mentioned; (3) To study the climate change and its adaptation to 

urbanization in Shanghai since the 21st century (the impact of Shanghai urbanization 

on local climate); (4) Design ideal experiments to predict and analyse the local climate 

status in Shanghai in 2030. 

In chapter 4, the setup of coupled WRF/Noah/UCM is introduced in detail, and the 

reliability of the coupled model after replacing the underlying surface data set and other 

simulation parameters is verified by comparing the experimental and observation data 

and the results showed that the simulations were in good agreement and correlation 

with the observed data. The simulation results for Shanghai show that LULC change, 

and AH have great influence on the simulation results. The surface energy balance is 

dominated by direct solar radiation during the day, while intercepted longwave 

radiation, re-radiative heat fluxes and anthropogenic heat release are most prominent in 

the early and late hours. The average maximum UHIIs observed in the simulation is 

4.15ºC, and its daily variation is closely related to solar radiation. Areas with low urban 

settlement intensity experienced a moderate urban heat island. This is due to the 

presence of high vegetation and therefore high humidity availability (RH) relative to 

other urban layers. In this section, the first and second objectives are achieved. 

As the model performance being proved, four ideal simulation experiments are 

designed in the fifth chapter with 4 different urban underlying surface datasets in 

different year cases (2000,2010, and 2017) to represent the urbanization process of 

Shanghai. The influence of urbanization on local climate of Shanghai is comparatively 



151 
 

analysed, and the sensitivity of heat island effect and residents' comfort to urbanization 

is also analysed. In this part, the thermal urban climate of Shanghai was successfully 

identified. The model results show that the distribution of 2m Temperature is extremely 

sensitive to the changes of surface due to urbanization. UHI increased by 2.08°C during 

the simulation period. The frequency and coverage of extreme heat increased by 11.2 

percent, and the duration increased by two hours. Sensitivity analysis shows that the 

urbanization process has relatively little influence on sensible heat flux and wind speed 

in the simulated area. The simulation in this part describes the impact of Shanghai 

urbanization on local climate which is exactly the fourth goal in this research and leaves 

the problem with future projections for further discussed in chapter 6. 

Based on chapter 5, the sixth chapter simulates the urban environment of Shanghai 

in 2030.The prediction and simulation of the future climate in Shanghai in 2030 show 

that the thermal environment will face great challenges in the future, especially under 

the RCP8.5 development path. The average temperature will rise as high as 2.53°C, and 

the heat island intensity will also increase by 1.18°C, which will have a significant 

destructive impact on the thermal comfort of residents. The impact of urbanization 

development cannot be ignored, in which 23% of temperature rise and 54.5% of heat 

island intensity are caused by urbanization. In addition, the area covered by heat island 

intensity is almost entirely determined by urbanization scale. Sensitivity analysis also 

indicates that the coverage of extreme weather is more related to the development of 

urbanization, while the intensity and duration of extreme weather are mainly affected 

by global warming. Overall, the simulation results show that the RCP4.5 simulation 

results are significantly moderated compared to RCP8.5, with a significant decrease in 

both temperature rise, UHI, and the occurrence of extreme weather, which should be 

the recommended path for future world development. 
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In general, the focus of this study is to verify the simulation effect of 

WRF/Noah/UCM, to learn the urban climate of Shanghai, and to retrospectively 

analyse the impact of urbanization on the urban climate of Shanghai. Finally, the 

simulation is extended to different future scenarios in 2030. The urban climates of 

Shanghai under different urbanization pathways and different future global warming 

scenarios are analysed. 

There are still some unsolved problems in this research, such as the LULC data used 

in the fourth and sixth chapter of this thesis is not the same one in the fifth chapter, 

which makes the whole linkage relatively unclear. The reason is that it is hard to find a 

whole set of LULC dataset that covers different periods of Shanghai, especially to 

distinguish the city part between high and low density, let along the future LULC data 

projections. Therefore, each chapter has to re-validate the dataset used in this thesis.  

Local Climate Zoon dataset (Ching et al., 2018) was once considered in this 

research as it allows us to make our own LULC dataset with a more detailed description 

of the underlying surface by supervised machine learning algorism. The advantage of 

this method is that saving lots of time making a prefect LULC map for research purpose. 

But at the same time, the introduction of more physical parameters (Local climate zoon 

dataset contains 10 different city underlying types while the default number of category 

for that in WRF is only 3) may also lead to distortion of simulation results, while more 

precise models require more measured data as the basis for parameter setting. It is not 

guaranteed that the result will be better. Also, the integration of that will need some 

modification of the source code of WRF. However, in the latest update of WRF 4, there 

are APIs that allow you easily combine local climate zoon dataset with the default 

dataset together, the only problem is that you cannot generate future LULC using this 

local climate zoon method for now. As this community still growing fast, this could be 
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something to look forward to in the future study process. 

In the settings of simulations, the processing of AH is only allocated with fixed 

values in this thesis.  Although the calculation of AH is speculated based on reasonable 

conditions, such assumptions are not the most ideal way to deal with AH. A more 

detailed processing method is to make a two-dimensional discrete distribution of AH 

based on more refined LULC data, which cannot be achieved in this study as LULC 

accuracy and discrimination are not high enough. This as well could be improved along 

with better LULC dataset mentioned above. 

In terms of simulation results, because WRF has endogenous defects in the 

simulation of wind fields, especially for mesoscale simulations. Therefore, it is more 

difficult to guarantee the accuracy of the simulation effect of wind fields. In this study, 

the analysis of wind field simulation is not outstanding, and the simulation results show 

considerable uncertainty, which is different from the simulation of temperature field 

and relative humidity. For this point, a possible improvement method is to use data 

assimilation for a better result on hindcast simulations (like chapter 4 and 5), but this 

method cannot be used for future prediction (chapter 6). In order to ensure the 

coherence of the whole study, data assimilation was not used, and in this case how to 

improve the effect of wind field simulation is an important direction for further research. 

I think the study expounds the deductive process of Shanghai urban climate from 

the perspective of temporal change (past, present, and future), the analysis discusses the 

impact of Shanghai local climate from both global warming and urbanization process. 

The sensitivity analysis of future scenarios illustrates the importance of controlling the 

global warming trend for local urban climate and shows the drastic changes of residents' 

thermal comfort under different scenarios, filling the gap in this field of research. Future 

research should be directed towards more refined LULC datasets and further 
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optimization of simulation results. 

  



155 
 

8 References 

 

Adachi, S. A., Kimura, F., Kusaka, H., Duda, M. G., Yamagata, Y., Seya, H., Nakamichi, 
K. & Aoyagi, T. 2014. Moderation of summertime heat island phenomena via 
modification of the urban form in the Tokyo metropolitan area. Journal of 
Applied Meteorology and Climatology, 53, 1886-1900. 

Adachi, S. A., Kimura, F., Kusaka, H., Inoue, T. & Ueda, H. 2012. Comparison of the 
impact of global climate changes and urbanization on summertime future 
climate in the Tokyo metropolitan area. Journal of Applied Meteorology and 
Climatology, 51, 1441-1454. 

Alexader, B., Luisa, T. & Molina, M. Gauss (2016). Megacities, air quality and climate. 
Atmospheric Environment, 126, 235-249. 

Argüeso, D., Evans, J. P., Fita, L. & Bormann, K. J. 2014. Temperature response to 
future urbanization and climate change. Climate Dynamics, 42, 2183-2199. 

Balling, R. C. & Brazel, S. W. 1988. High-resolution surface temperature patterns in a 
complex urban terrain. Photogrammetric Engineering & Remote Sensing, 54, 
1289-1293. 

Bernstein, L., Bosch, P., Canziani, O., Chen, Z., Christ, R. & Riahi, K. 2008. IPCC, 
2007: climate change 2007: synthesis report. IPCC. 

Bian, T., Ren, G. & Yue, Y. 2017. Effect of urbanization on land-surface temperature at 
an urban climate station in North China. Boundary-layer meteorology, 165, 553-
567. 

Blaschke, T., Hay, G. J., Kelly, M., Lang, S., Hofmann, P., Addink, E., Feitosa, R. Q., 
Van Der Meer, F., Van Der Werff, H. & Van Coillie, F. 2014. Geographic object-
based image analysis–towards a new paradigm. ISPRS journal of 
photogrammetry and remote sensing, 87, 180-191. 

Bohnenstengel, S., Hamilton, I., Davies, M. & Belcher, S. 2014. Impact of 
anthropogenic heat emissions on London's temperatures. Quarterly Journal of 
the Royal Meteorological Society, 140, 687-698. 

Brasseur, G. P., Prinn, R. G. & Pszenny, A. A. 2003. Atmospheric chemistry in a 
changing world: an integration and synthesis of a decade of tropospheric 
chemistry research, Springer. 

Breiman, L. 2001. Random forests. Machine learning, 45, 5-32. 

Change, I. C. 2007. Synthesis Report An Assessment of the Intergovernmental Panel 
on Climate Change. IPCC Plenary XXVII: Valencia, Spain. 

Changnon Jr, S. A. 1979. Rainfall changes in summer caused by St. Louis. Science, 205, 
402-404. 



156 
 

Chapman, S., Watson, J. & Mcalpine, C. 2016. Large seasonal and diurnal 
anthropogenic heat flux across four Australian cities. Journal of Southern 
Hemisphere Earth Systems Science, 66, 342-360. 

Chapman, S., Watson, J. E., Salazar, A., Thatcher, M. & Mcalpine, C. A. 2017. The 
impact of urbanization and climate change on urban temperatures: a systematic 
review. Landscape Ecology, 32, 1921-1935. 

Chen, F., Janjić, Z. & Mitchell, K. 1997. Impact of atmospheric surface-layer 
parameterizations in the new land-surface scheme of the NCEP mesoscale Eta 
model. Boundary-Layer Meteorology, 85, 391-421. 

Chen, F., Kusaka, H., Bornstein, R., Ching, J., Grimmond, C., Grossman‐Clarke, S., 
Loridan, T., Manning, K. W., Martilli, A. & Miao, S. 2011. The integrated 
WRF/urban modelling system: development, evaluation, and applications to 
urban environmental problems. International Journal of Climatology, 31, 273-
288. 

Chen, F., Kusaka, H., Tewari, M., Bao, J. & Hirakuchi, H. Utilizing the coupled 
WRF/LSM/Urban modeling system with detailed urban classification to 
simulate the urban heat island phenomena over the Greater Houston area.  Fifth 
Symposium on the Urban Environment, 2004. American Meteorological 
Society Vancouver, BC, Canada, 9-11. 

Chen, F., Mitchell, K., Schaake, J., Xue, Y., Pan, H. L., Koren, V., Duan, Q. Y., Ek, M. 
& Betts, A. 1996. Modeling of land surface evaporation by four schemes and 
comparison with FIFE observations. Journal of Geophysical Research: 
Atmospheres, 101, 7251-7268. 

Chen, F., Yang, X. & Zhu, W. 2014. WRF simulations of urban heat island under hot-
weather synoptic conditions: The case study of Hangzhou City, China. 
Atmospheric research, 138, 364-377. 

Chen, L. & Frauenfeld, O. W. 2016. Impacts of urbanization on future climate in China. 
Climate dynamics, 47, 345-357. 

Chen, L., Jiang, R. & Xiang, W.-N. 2016. Surface heat island in Shanghai and its 
relationship with urban development from 1989 to 2013. Advances in 
Meteorology, 2016. 

Chen, Y., Bai, Y., Liu, H., Alatalo, J. M. & Jiang, B. 2020. Temporal variations in 
ambient air quality indicators in Shanghai municipality, China. Scientific 
RepoRtS, 10, 1-11. 

Chen, Y., Jiang, W., Zhang, N., He, X. & Zhou, R. 2009. Numerical simulation of the 
anthropogenic heat effect on urban boundary layer structure. Theoretical and 
applied climatology, 97, 123-134. 

Conry, P., Sharma, A., Potosnak, M. J., Leo, L. S., Bensman, E., Hellmann, J. J. & 
Fernando, H. J. 2015. Chicago’s heat island and climate change: Bridging the 
scales via dynamical downscaling. Journal of Applied Meteorology and 



157 
 

Climatology, 54, 1430-1448. 

Cui, L. & Shi, J. 2012. Urbanization and its environmental effects in Shanghai, China. 
Urban Climate, 2, 1-15. 

Darmanto, N. S., Varquez, A. C. G., Kawano, N. & Kanda, M. 2019. Future urban 
climate projection in a tropical megacity based on global climate change and 
local urbanization scenarios. Urban Climate, 29, 100482. 

Doan, Q.-V., Kusaka, H. & Ho, Q.-B. 2016. Impact of future urbanization on 
temperature and thermal comfort index in a developing tropical city: Ho Chi 
Minh City. Urban Climate, 17, 20-31. 

Doan, V. Q., Kusaka, H. & Nguyen, T. M. 2019. Roles of past, present, and future land 
use and anthropogenic heat release changes on urban heat island effects in Hanoi, 
Vietnam: Numerical experiments with a regional climate model. Sustainable 
Cities and Society, 47, 101479. 

Du, H., Wang, D., Wang, Y., Zhao, X., Qin, F., Jiang, H. & Cai, Y. 2016. Influences of 
land cover types, meteorological conditions, anthropogenic heat and urban area 
on surface urban heat island in the Yangtze River Delta Urban Agglomeration. 
Science of the Total Environment, 571, 461-470. 

Dudhia, J., Hong, S.-Y. & Lim, K.-S. 2008. A new method for representing mixed-phase 
particle fall speeds in bulk microphysics parameterizations. Journal of the 
Meteorological Society of Japan. Ser. II, 86, 33-44. 

Ebi, K. L., Capon, A., Berry, P., Broderick, C., De Dear, R., Havenith, G., Honda, Y., 
Kovats, R. S., Ma, W. & Malik, A. 2021. Hot weather and heat extremes: health 
risks. The Lancet, 398, 698-708. 

Economic, D. O. 2008. World Population Prospects: The 2006 Revision-Sex and Age 
Distribution of the World Population, United Nations Publications. 

Elmqvist, T., Fragkias, M., Goodness, J., Güneralp, B., Marcotullio, P. J., Mcdonald, R. 
I., Parnell, S., Schewenius, M., Sendstad, M. & Seto, K. C. 2013. Stewardship 
of the biosphere in the urban era. Urbanization, biodiversity and ecosystem 
services: Challenges and opportunities. Springer, Dordrecht. 

Estoque, R. C. & Murayama, Y. 2017. Trends and spatial patterns of urbanization in 
Asia and Africa: a comparative analysis. Urban Development in Asia and Africa. 
Springer. 

Fang, C., Liu, H., Li, G., Sun, D. & Miao, Z. 2015. Estimating the impact of 
urbanization on air quality in China using spatial regression models. 
Sustainability, 7, 15570-15592. 

Farrell, K. & Westlund, H. 2018. China’s rapid urban ascent: an examination into the 
components of urban growth. Asian Geographer, 35, 85-106. 

Fischer, J., Lindenmayer, D. B. & Manning, A. D. 2006. Biodiversity, ecosystem 



158 
 

function, and resilience: ten guiding principles for commodity production 
landscapes. Frontiers in Ecology and the Environment, 4, 80-86. 

Georgescu, M., Morefield, P. E., Bierwagen, B. G. & Weaver, C. P. 2014. Urban 
adaptation can roll back warming of emerging megapolitan regions. 
Proceedings of the National Academy of Sciences, 111, 2909-2914. 

Gill, S. E., Handley, J. F., Ennos, A. R. & Pauleit, S. 2007. Adapting cities for climate 
change: the role of the green infrastructure. Built environment, 33, 115-133. 

Golaz, J. C., Horowitz, L. W. & Levy, H. 2013. Cloud tuning in a coupled climate model: 
Impact on 20th century warming. Geophysical Research Letters, 40, 2246-2251. 

Goldewijk, K. K. 2001. Estimating global land use change over the past 300 years: the 
HYDE database. Global biogeochemical cycles, 15, 417-433. 

Gong, H., Simwanda, M. & Murayama, Y. 2017. An internet-based GIS platform 
providing data for visualization and spatial analysis of urbanization in major 
Asian and African cities. ISPRS International Journal of Geo-Information, 6, 
257. 

González-Aparicio, I., Baklanov, A., Hidalgo, J., Korsholm, U., Nuterman, R. & 
Mahura, A. 2014. Impact of city expansion and increased heat fluxes scenarios 
on the urban boundary layer of Bilbao using Enviro-HIRLAM. Urban Climate, 
10, 831-845. 

Grimmond, S. 2007. Urbanization and global environmental change: local effects of 
urban warming. The Geographical Journal, 173, 83-88. 

Grossman-Clarke, S., Zehnder, J. A., Loridan, T. & Grimmond, C. S. B. 2010. 
Contribution of land use changes to near-surface air temperatures during recent 
summer extreme heat events in the Phoenix metropolitan area. Journal of 
Applied Meteorology and Climatology, 49, 1649-1664. 

Guo, F., Wang, S. & Zhu, P. Numerical urban climate simulation and preliminary 
planning strategies of dalian city based on WRF model.  The 9th International 
Conference of Urban Climate, Toulouse, France, 2015. 

Hamdi, R., Giot, O., De Troch, R., Deckmyn, A. & Termonia, P. 2015. Future climate 
of Brussels and Paris for the 2050s under the A1B scenario. Urban climate, 12, 
160-182. 

Hamdi, R., Kusaka, H., Doan, Q.-V., Cai, P., He, H., Luo, G., Kuang, W., Caluwaerts, 
S., Duchêne, F. & Van Schaeybroek, B. 2020. The state-of-the-art of urban 
climate change modeling and observations. Earth Systems and Environment, 4, 
631-646. 

Hamdi, R., Van De Vyver, H., De Troch, R. & Termonia, P. 2014. Assessment of three 
dynamical urban climate downscaling methods: Brussels's future urban heat 
island under an A1B emission scenario. International Journal of Climatology, 
34, 978-999. 



159 
 

Han, L., Zhou, W., Li, W. & Li, L. 2014. Impact of urbanization level on urban air 
quality: A case of fine particles (PM2. 5) in Chinese cities. Environmental 
Pollution, 194, 163-170. 

Hay, G. J. & Castilla, G. 2008. Geographic Object-Based Image Analysis (GEOBIA): 
A new name for a new discipline. Object-based image analysis. Springer. 

Hoffmann, P. & Schlünzen, K. H. 2013. Weather pattern classification to represent the 
urban heat island in present and future climate. Journal of Applied Meteorology 
and Climatology, 52, 2699-2714. 

Hong, S.-Y., Dudhia, J. & Chen, S.-H. 2004. A revised approach to ice microphysical 
processes for the bulk parameterization of clouds and precipitation. Monthly 
weather review, 132, 103-120. 

Hong, S.-Y., Noh, Y. & Dudhia, J. 2006. A new vertical diffusion package with an 
explicit treatment of entrainment processes. Monthly weather review, 134, 2318-
2341. 

Howard, E. 1965. Garden cities of to-morrow, Mit Press. 

Ichinose, T., Shimodozono, K. & Hanaki, K. 1999. Impact of anthropogenic heat on 
urban climate in Tokyo. Atmospheric Environment, 33, 3897-3909. 

IPCC, A. 2007. REPORT OF THE NINETEENTH SESSION OF THE 
INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE (IPCC) Geneva, 
17-20 (am only) April 2002. 

IPCC, A. 2013. Climate change 2013: the physical science basis. Contribution of 
working group I to the fifth assessment report of the intergovernmental panel 
on climate change, 1535. 

Jago-On, K. a. B., Kaneko, S., Fujikura, R., Fujiwara, A., Imai, T., Matsumoto, T., 
Zhang, J., Tanikawa, H., Tanaka, K. & Lee, B. 2009. Urbanization and 
subsurface environmental issues: An attempt at DPSIR model application in 
Asian cities. Science of the total environment, 407, 3089-3104. 

Jiang, J., Zhou, T., Chen, X. & Zhang, L. 2020. Future changes in precipitation over 
Central Asia based on CMIP6 projections. Environmental Research Letters, 15, 
054009. 

Jiao, L., Gong, C., Xu, G., Dong, T., Zhang, B. & Li, Z. 2019. Urban expansion 
dynamics and urban forms in three metropolitan areas—Tokyo, New York, and 
Shanghai. Prog. Geogr, 38, 675-685. 

Jin, M., Dickinson, R., Shepherd, J., Liang, S., Shepherd, J., Dickinson, R., Vogelmann, 
A. & Zhang, D. W. Kessomkiat, and G. Pereira, 2011: Satellite-observed 
urbanization characters in Shanghai, China: Aerosols, urban heat island effect, 
and land–atmosphere interactions. Remote Sens, 3, 83-99. 

Johnson, H., Kovats, S., Mcgregor, G., Stedman, J., Gibbs, M. & Walton, H. 2005. The 



160 
 

impact of the 2003 heat wave on daily mortality in England and Wales and the 
use of rapid weekly mortality estimates. Eurosurveillance, 10, 15-16. 

Kain, J. S. 2004. The Kain–Fritsch convective parameterization: an update. Journal of 
applied meteorology, 43, 170-181. 

Kishtawal, C. M., Niyogi, D., Tewari, M., Pielke Sr, R. A. & Shepherd, J. M. 2010. 
Urbanization signature in the observed heavy rainfall climatology over India. 
International journal of climatology, 30, 1908-1916. 

Koomen, E. & Diogo, V. 2017. Assessing potential future urban heat island patterns 
following climate scenarios, socio-economic developments and spatial planning 
strategies. Mitigation and adaptation strategies for global change, 22, 287-306. 

Kusaka, H., Hara, M. & Takane, Y. 2012. Urban climate projection by the WRF model 
at 3-km horizontal grid increment: dynamical downscaling and predicting heat 
stress in the 2070’s August for Tokyo, Osaka, and Nagoya metropolises. Journal 
of the Meteorological Society of Japan. Ser. II, 90, 47-63. 

Kyle, W. The human bioclimate of Hong Kong.  Proceedings of the Contemporary 
Climatology Conference, Brno. TISK LITERA, Brno, 1994. 350. 

Larsen, L. 2015. Urban climate and adaptation strategies. Frontiers in Ecology and the 
Environment, 13, 486-492. 

Lauwaet, D., De Ridder, K., Saeed, S., Brisson, E., Chatterjee, F., Van Lipzig, N., 
Maiheu, B. & Hooyberghs, H. 2016. Assessing the current and future urban heat 
island of Brussels. Urban Climate, 15, 1-15. 

Lee, S. E. & Levermore, G. J. 2013. Simulating urban heat island effects with climate 
change on a Manchester house. Building services engineering research and 
technology, 34, 203-221. 

Lee, Y. Y., Din, M. F. M., Ponraj, M., Noor, Z. Z., Iwao, K. & Chelliapan, S. 2017. 
Overview of urban heat island (uhi) phenomenon towards human thermal 
comfort. Environmental Engineering & Management Journal (EEMJ), 16. 

Lelovics, E., Unger, J., Gál, T. & Gál, C. V. 2014. Design of an urban monitoring 
network based on Local Climate Zone mapping and temperature pattern 
modelling. Climate research, 60, 51-62. 

Li, H., Zhou, Y., Wang, X., Zhou, X., Zhang, H. & Sodoudi, S. 2019a. Quantifying 
urban heat island intensity and its physical mechanism using WRF/UCM. 
Science of the total environment, 650, 3110-3119. 

Li, R., Zhao, L., Ding, Y., Wang, S., Ji, G., Xiao, Y., Liu, G. & Sun, L. 2010. Monthly 
ratios of PAR to global solar radiation measured at northern Tibetan Plateau, 
China. Solar Energy, 84, 964-973. 

Li, X. X., Koh, T. Y., Panda, J. & Norford, L. K. 2016. Impact of urbanization patterns 
on the local climate of a tropical city, Singapore: An ensemble study. Journal of 



161 
 

Geophysical Research: Atmospheres, 121, 4386-4403. 

Li, Y., Zhang, J., Sailor, D. J. & Ban-Weiss, G. A. 2019b. Effects of urbanization on 
regional meteorology and air quality in Southern California. Atmospheric 
Chemistry and Physics, 19, 4439-4457. 

Li, Z., Zhou, Y., Wan, B., Chen, Q., Huang, B., Cui, Y. & Chung, H. 2019c. The impact 
of urbanization on air stagnation: Shenzhen as case study. Science of the Total 
Environment, 664, 347-362. 

Liang, P. & Ding, Y. 2017. The long-term variation of extreme heavy precipitation and 
its link to urbanization effects in Shanghai during 1916–2014. Advances in 
Atmospheric Sciences, 34, 321-334. 

Lin, C.-Y., Chen, W.-C., Liu, S. C., Liou, Y. A., Liu, G. & Lin, T. 2008. Numerical study 
of the impact of urbanization on the precipitation over Taiwan. Atmospheric 
Environment, 42, 2934-2947. 

Lin, X., Wang, Y., Wang, S. & Wang, D. 2015. Spatial differences and driving forces of 
land urbanization in China. Journal of Geographical Sciences, 25, 545-558. 

Lokoshchenko, M. 2014. Urban ‘heat island’in Moscow. Urban Climate, 10, 550-562. 

Lokoshchenko, M. A. 2017. Urban heat island and urban dry island in Moscow and 
their centennial changes. Journal of Applied Meteorology and Climatology, 56, 
2729-2745. 

Lowry, W. P. 1977. Empirical estimation of urban effects on climate: a problem analysis. 
Journal of Applied Meteorology and Climatology, 16, 129-135. 

Luo, J., Pan, L. L., Honomichl, S. B., Bergman, J. W., Randel, W. J., Francis, G., 
Clerbaux, C., George, M., Liu, X. & Tian, W. 2018. Space–time variability in 
UTLS chemical distribution in the Asian summer monsoon viewed by limb and 
nadir satellite sensors. Atmospheric Chemistry and Physics, 18, 12511-12530. 

Madala, S., Salinas, S. V., Wang, J. & Liew, S. C. 2019. Customization of the Advanced 
Research Weather Research and Forecasting model over the Singapore region: 
impact of planetary boundary layer schemes, land use, land cover and model 
horizontal grid resolution. Meteorological Applications, 26, 221-231. 

Mahmoud, S. H. & Gan, T. Y. 2018. Long-term impact of rapid urbanization on urban 
climate and human thermal comfort in hot-arid environment. Building and 
Environment, 142, 83-100. 

Marín, J. C., Pozo, D. & Curé, M. 2015. Estimating and forecasting the precipitable 
water vapor from GOES satellite data at high altitude sites. Astronomy & 
Astrophysics, 573, A41. 

Masson, V., Lemonsu, A., Hidalgo, J. & Voogt, J. 2020. Urban climates and climate 
change. Annual Review of Environment and Resources, 45, 411-444. 

Mccarthy, M., Harpham, C., Goodess, C. & Jones, P. 2012. Simulating climate change 



162 
 

in UK cities using a regional climate model, HadRM3. International Journal of 
Climatology, 32, 1875-1888. 

Mcdonald, R. I., Marcotullio, P. J. & Güneralp, B. 2013. Urbanization and global trends 
in biodiversity and ecosystem services. Urbanization, biodiversity and 
ecosystem services: Challenges and opportunities. Springer, Dordrecht. 

Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J. & Clough, S. A. 1997. 
Radiative transfer for inhomogeneous atmospheres: RRTM, a validated 
correlated‐k model for the longwave. Journal of Geophysical Research: 
Atmospheres, 102, 16663-16682. 

Morris, K. I., Chan, A., Morris, K. J. K., Ooi, M. C., Oozeer, M. Y., Abakr, Y. A., Nadzir, 
M. S. M. & Mohammed, I. Y. 2017. Urbanization and urban climate of a tropical 
conurbation, Klang Valley, Malaysia. Urban Climate, 19, 54-71. 

Morris, K. I., Chan, A., Ooi, M. C., Oozeer, M. Y., Abakr, Y. A. & Morris, K. J. K. 
2016a. Effect of vegetation and waterbody on the garden city concept: An 
evaluation study using a newly developed city, Putrajaya, Malaysia. Computers, 
Environment and Urban Systems, 58, 39-51. 

Morris, K. I., Chan, A., Salleh, S. A., Ooi, M. C. G., Oozeer, M. Y. & Abakr, Y. A. 2016b. 
Numerical study on the urbanization of Putrajaya and its interaction with the 
local climate, over a decade. Urban Climate, 16, 1-24. 

Morris, K. I., Salleh, S. A., Chan, A., Ooi, M. C. G., Abakr, Y. A., Oozeer, M. Y. & 
Duda, M. 2015. Computational study of urban heat island of Putrajaya, 
Malaysia. Sustainable Cities and Society, 19, 359-372. 

Murayama, Y., Estoque, R., Hou, H., Gong, H., Simwanda, M., Subasinghe, S. & Zhang, 
X. 2016. Visualization of land-use/land-cover changes in major Asian and 
African cities. Annual Report on the Multi Use Social and Economic Data Bank, 
University of Tsukuba, Japan. 

Murayama, Y., Estoque, R. C., Subasinghe, S., Hou, H. & Gong, H. 2015. Land-
use/land-cover changes in major Asian and African cities. Annual report on the 
multi-use social and economy data bank, 92. 

Murayama, Y., Kamusoko, C., Yamashita, A. & Estoque, R. C. 2017. Urban 
Development in Asia and Africa, Springer. 

Nations, U. 2014. Probabilistic Population Projections based on the World Population 
Prospects: The 2012 Revision. Popul Div Dep Econ Soc Aff. 

NCAR. 2015. “NCAR Command Language (NCL).” UCAR. 
doi:10.5065/D6WD3XH5. 

Ncep, F. 2000. National Centers for Environmental Prediction/National Weather 
Service/NOAA/US Department of Commerce. 2000, updated daily. NCEP FNL 
Operational Model Global Tropospheric Analyses, continuing from July 1999. 
Research Data Archive at the National Center for Atmospheric Research, 



163 
 

Computational and Information Systems Laboratory. 

NCEP, and DTC. 2015. “WRF-NMM Users Page | DTC.” DTC. 
http://www.dtcenter.org/wrf-nmm/users/. 

Oke, T. & Cleugh, H. GT Johnson, DG Steyn, and ID Watson, 1991: Simulation of 
surface urban heat islands under ‘ideal’conditions at night. Part 2: Diagnosis of 
causation. Bound.-Layer Meteor, 56, 339-358. 

Oke, T. R. 1981. Canyon geometry and the nocturnal urban heat island: comparison of 
scale model and field observations. Journal of climatology, 1, 237-254. 

Oke, T. R. 1982. The energetic basis of the urban heat island. Quarterly Journal of the 
Royal Meteorological Society, 108, 1-24. 

Oke, T. R. 1984. Towards a prescription for the greater use of climatic principles in 
settlement planning. Energy and buildings, 7, 1-10. 

Oke, T. R. 2002. Boundary layer climates, Routledge. 

Oleson, K. 2012. Contrasts between urban and rural climate in CCSM4 CMIP5 climate 
change scenarios. Journal of Climate, 25, 1390-1412. 

Onyango, A. O. 2018. Global and regional trends of urbanization: A critical review of 
the environmental and economic imprints. World Environment, 8, 47-62. 

Organization, W. H. 2016. Ambient air pollution: A global assessment of exposure and 
burden of disease. 

Pachauri, R. & Meyer, L. 2014. Climate Change 2014: Synthesis Report. Contribution 
of Working Groups I, II and III to the Fifth Assessment Report of the 
Intergovernmental Panel on Climate Change. 

Pachauri, R. K. & Reisinger, A. 2008. Climate change 2007. Synthesis report. 
Contribution of Working Groups I, II and III to the fourth assessment report. 

Papangelis, G., Tombrou, M., Dandou, A. & Kontos, T. 2012. An urban “green planning” 
approach utilizing the Weather Research and Forecasting (WRF) modeling 
system. A case study of Athens, Greece. Landscape and urban planning, 105, 
174-183. 

Pataki, D., Xu, T., Luo, Y. Q. & Ehleringer, J. R. 2007. Inferring biogenic and 
anthropogenic carbon dioxide sources across an urban to rural gradient. 
Oecologia, 152, 307-322. 

Peng, S., Piao, S., Ciais, P., Friedlingstein, P., Ottle, C., Bréon, F.-M., Nan, H., Zhou, 
L. & Myneni, R. B. 2012. Surface urban heat island across 419 global big cities. 
Environmental science & technology, 46, 696-703. 

Peng, Z., Wang, Q., Kan, H., Chen, R. & Wang, W. 2017. Effects of ambient 
temperature on daily hospital admissions for mental disorders in Shanghai, 
China: a time-series analysis. Science of the Total Environment, 590, 281-286. 



164 
 

Philandras, C., Metaxas, D. & Nastos, P. T. 1999. Climate variability and urbanization 
in Athens. Theoretical and applied climatology, 63, 65-72. 

Qiao, Z., Tian, G., Zhang, L. & Xu, X. 2014. Influences of urban expansion on urban 
heat island in Beijing during 1989–2010. Advances in Meteorology, 2014. 

Ren, C., Cai, M., Li, X., Zhang, L., Wang, R., Xu, Y. & Ng, E. 2019. Assessment of 
local climate zone classification maps of cities in China and feasible refinements. 
Scientific reports, 9, 1-11. 

Ren, G.-Y. 2017. Urbanization as a major driver of urban climate change. Advances in 
Climate Change Research. 

Ren, W., Zhong, Y., Meligrana, J., Anderson, B., Watt, W. E., Chen, J. & Leung, H.-L. 
2003. Urbanization, land use, and water quality in Shanghai: 1947–1996. 
Environment international, 29, 649-659. 

Robaa, E.-S. 2011. Effect of urbanization and industrialization processes on outdoor 
thermal human comfort in Egypt. Atmospheric and Climate Sciences, 1, 100. 

Rohm, W., Guzikowski, J., Wilgan, K. & Kryza, M. 2019. 4DVAR assimilation of 
GNSS zenith path delays and precipitable water into a numerical weather 
prediction model WRF. Atmospheric Measurement Techniques, 12, 345-361. 

Romero, H., Ihl, M., Rivera, A., Zalazar, P. & Azocar, P. 1999. Rapid urban growth, 
land-use changes and air pollution in Santiago, Chile. Atmospheric Environment, 
33, 4039-4047. 

Rossberg, A. 2008. Part–whole relations between food webs and the validity of local 
food-web descriptions. ecological complexity, 5, 121-131. 

Sailor, D. J. 2011. A review of methods for estimating anthropogenic heat and moisture 
emissions in the urban environment. International journal of climatology, 31, 
189-199. 

Samsonov, T. E., Konstantinov, P. I. & Varentsov, M. I. 2015. Object-oriented approach 
to urban canyon analysis and its applications in meteorological modeling. 
Urban Climate, 13, 122-139. 

Schwartz, M., Heimiller, D., Haymes, S. & Musial, W. 2010. Assessment of offshore 
wind energy resources for the United States. National Renewable Energy 
Lab.(NREL), Golden, CO (United States). 

Shahmohamadi, P., Che-Ani, A., Maulud, K., Tawil, N. & Abdullah, N. 2011. The 
impact of anthropogenic heat on formation of urban heat island and energy 
consumption balance. Urban Studies Research, 2011. 

Shanghai Municipal People’s Government. 2020. 2020 Shanghai Statistical Year Book 
[Online]. Available: http://tjj.sh.gov.cn/tjnj/zgsh/tjnj2020en.html [Accessed]. 

Shanghai Statistics Bureau. 2018. Statistical Yearbook of Shanghai,2018, China 
Statistical Press. 



165 
 

Shanghai Statistics Bureau. 2019. Statistical Yearbook of Shanghai,2019, China 
Statistical Press. 

Shanghai Statistics Bureau. 2020. Statistical Yearbook of Shanghai,2020, China 
Statistical Press. 

Shem, W. & Shepherd, M. 2009. On the impact of urbanization on summertime 
thunderstorms in Atlanta: Two numerical model case studies. Atmospheric 
Research, 92, 172-189. 

Shen, L., Wang, H., Zhu, B., Zhao, T., Liu, A., Lu, W., Kang, H. & Wang, Y. 2021. 
Impact of urbanization on air quality in the Yangtze River Delta during the 
COVID-19 lockdown in China. Journal of Cleaner Production, 296, 126561. 

Shi, P., Bai, X., Kong, F., Fang, J., Gong, D., Zhou, T., Guo, Y., Liu, Y., Dong, W. & 
Wei, Z. 2017. Urbanization and air quality as major drivers of altered 
spatiotemporal patterns of heavy rainfall in China. Landscape Ecology, 32, 
1723-1738. 

Shimadera, H., Kondo, A., Shrestha, K. L., Kitaoka, K. & Inoue, Y. 2015. Numerical 
evaluation of the impact of urbanization on summertime precipitation in Osaka, 
Japan. Advances in Meteorology, 2015. 

Shukla, P. R., Skeg, J., Buendia, E. C., Masson-Delmotte, V., Pörtner, H.-O., Roberts, 
D., Zhai, P., Slade, R., Connors, S. & Van Diemen, S. 2019. Climate Change 
and Land: an IPCC special report on climate change, desertification, land 
degradation, sustainable land management, food security, and greenhouse gas 
fluxes in terrestrial ecosystems. 

Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W. & 
Powers, J. G. 2008. A description of the Advanced Research WRF version 3. 
NCAR Technical note-475+ STR. 

Solecki, W. & Marcotullio, P. J. 2013. Climate change and urban biodiversity 
vulnerability. Urbanization, biodiversity and ecosystem services: Challenges 
and opportunities. Springer, Dordrecht. 

Song, C. & Wu, J. 2013. Junxiang Li, Cheng Li, Feige Zhu. Landscape Ecol, 28, 1545-
1565. 

Souch, C. & Grimmond, S. 2006. Applied climatology: urban climate. Progress in 
physical geography, 30, 270-279. 

Stewart, I. D. 2011. A systematic review and scientific critique of methodology in 
modern urban heat island literature. International Journal of Climatology, 31, 
200-217. 

Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M. M., Allen, S. K., Boschung, J., Nauels, 
A., Xia, Y., Bex, V. & Midgley, P. M. 2014. Climate Change 2013: The physical 
science basis. contribution of working group I to the fifth assessment report of 
IPCC the intergovernmental panel on climate change. 



166 
 

Stone Jr, B., Vargo, J., Liu, P., Habeeb, D., Delucia, A., Trail, M., Hu, Y. & Russell, A. 
2014. Avoided heat-related mortality through climate adaptation strategies in 
three US cities. PloS one, 9, e100852. 

Svirejeva-Hopkins, A., Schellnhuber, H. J. & Pomaz, V. L. 2004. Urbanised territories 
as a specific component of the Global Carbon Cycle. Ecological Modelling, 173, 
295-312. 

Takebayashi, H. & Moriyama, M. 2007. Surface heat budget on green roof and high 
reflection roof for mitigation of urban heat island. Building and environment, 
42, 2971-2979. 

Takebayashi, H. & Moriyama, M. 2009. Study on the urban heat island mitigation effect 
achieved by converting to grass-covered parking. Solar Energy, 83, 1211-1223. 

Takebayashi, H. & Moriyama, M. 2012. Study on surface heat budget of various 
pavements for urban heat island mitigation. Advances in Materials Science and 
Engineering, 2012. 

Tan, J. & Grimmond, S. 2016. Shanghai’s Urban Integrated Meteorological 
Observation Network (SUIMON): Some Case Studies of Applications. 
한국기상학회 학술대회 논문집, 390-392. 

Tan, J., Zheng, Y., Tang, X., Guo, C., Li, L., Song, G., Zhen, X., Yuan, D., Kalkstein, 
A. J. & Li, F. 2010. The urban heat island and its impact on heat waves and 
human health in Shanghai. International journal of biometeorology, 54, 75-84. 

Tecer, L. H. & Tagil, S. 2014. Impact of urbanization on local air quality: differences in 
urban and rural areas of Balikesir, Turkey. CLEAN–Soil, Air, Water, 42, 1489-
1499. 

Tewari, M., Chen, F., Kusaka, H. & Miao, S. 2007. Coupled WRF/Unified Noah/urban-
canopy modeling system. Ncar WRF Documentation, NCAR, Boulder. Citeseer. 

Thompson, H. L. 2009. Modelling the impact of urbanization on the regional climate 
of the Greater London area. University of Birmingham. 

United Nations, 2014. Trends in urbanization. https://doi.org/10.18356/7053dedb-en 

United Nations, D., 2014. World urbanization Prospects, the 2011 revision. Popul. Div. 
Dep. Econ. Soc. Aff. United Nations Secr. 

United Nations, D., 2019. World Urbanization Prospects: The 2018 Revision, World 
Urbanization Prospects: The 2018 Revision. New York. 

Wang, C., Chen, R., Kuang, X., Duan, X. & Kan, H. 2014. Temperature and daily 
mortality in Suzhou, China: a time series analysis. Science of the Total 
Environment, 466, 985-990. 

Wang, J., Da, L., Song, K. & Li, B.-L. 2008. Temporal variations of surface water 
quality in urban, suburban and rural areas during rapid urbanization in Shanghai, 



167 
 

China. Environmental Pollution, 152, 387-393. 

Wang, S., Gao, S., Li, S. & Feng, K. 2020. Strategizing the relation between 
urbanization and air pollution: Empirical evidence from global countries. 
Journal of Cleaner Production, 243, 118615. 

Wilby, R. L. 2003. Past and projected trends in London's urban heat island. Weather, 58, 
251-260. 

Wilby, R. L. 2008. Constructing climate change scenarios of urban heat island intensity 
and air quality. Environment and planning B: Planning and Design, 35, 902-
919. 

Xia, T.-Y., Wang, J.-Y., Song, K. & Da, L.-J. 2014. Variations in air quality during rapid 
urbanization in Shanghai, China. Landscape and ecological engineering, 10, 
181-190. 

Xiao, S., Dong, H., Geng, Y., Francisco, M.-J., Pan, H. & Wu, F. 2020. An overview of 
the municipal solid waste management modes and innovations in Shanghai, 
China. Environmental Science and Pollution Research, 27, 29943-29953. 

Yang, B., Yang, X., Leung, L. R., Zhong, S., Qian, Y., Zhao, C., Chen, F., Zhang, Y. & 
Qi, J. 2019. Modeling the impacts of urbanization on summer thermal comfort: 
the role of urban land use and anthropogenic heat. Journal of Geophysical 
Research: Atmospheres, 124, 6681-6697. 

Yang, L., Niyogi, D., Tewari, M., Aliaga, D., Chen, F., Tian, F. & Ni, G. 2016. 
Contrasting impacts of urban forms on the future thermal environment: example 
of Beijing metropolitan area. Environmental Research Letters, 11, 034018. 

Yang, X. L., Yang, Q. Q., Ding, J. J., Xu, Y. P. & Zhou, Y. K. Effect of Urbanization on 
Regional Precipitation in the Qinhuai River Area, East China.  Applied 
Mechanics and Materials, 2012. Trans Tech Publ, 2481-2489. 

Zhang, K., Wang, R., Shen, C. & Da, L. 2010. Temporal and spatial characteristics of 
the urban heat island during rapid urbanization in Shanghai, China. 
Environmental monitoring and assessment, 169, 101-112. 

Zhang, K. H. & Shunfeng, S. 2003. Rural–urban migration and urbanization in China: 
Evidence from time-series and cross-section analyses. China Economic Review, 
14, 386-400. 

Zhao, M., Cai, H., Qiao, Z. & Xu, X. 2016. Influence of urban expansion on the urban 
heat island effect in Shanghai. International Journal of Geographical 
Information Science, 30, 2421-2441. 

Zhou, C., Chen, J. & Wang, S. 2018. Examining the effects of socioeconomic 
development on fine particulate matter (PM2. 5) in China's cities using spatial 
regression and the geographical detector technique. Science of the Total 
Environment, 619, 436-445. 



168 
 

Zhou, S. & Wu, L. 1987. Underlying surface temperature of Shanghai and urban heat 
island. Acta Scientiae Circumstantiae, 7, 261-267. 

Zhou, S. & Zhang, C. 1982. On the Shanghai urban heat island effect. Acta 
Geographica Sinica, 37, 372-381. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



169 
 

9 Appendix 

 

Appendix 1. Some sections of the namelist.wps 
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Appendix 2. Some sections of the namelist.input 
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Appendix 3. Some sections of the GEOGRID.TBL 
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Appendix 4. Sample of Vtable file used in this research 
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Appendix 5. Sample of ncl scipt to output averaged results 
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