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Abstract 

Identification of periodicities in hydrological time series and evaluation of their statistical significance are not only 
important for water‑related studies, but also challenging issues due to the complex variability of hydrological pro‑
cesses. In this article, we develop a “Moving Correlation Coefficient Analysis” (MCCA) method for identifying periodicities 
of a time series. In the method, the correlation between the original time series and the periodic fluctuation is used as 
a criterion, aiming to seek out the periodic fluctuation that fits the original time series best, and to evaluate its statisti‑
cal significance. Consequently, we take periodic components consisting of simple sinusoidal variation as an example, 
and do statistical experiments to verify the applicability and reliability of the developed method by considering vari‑
ous parameters changing. Three other methods commonly used, harmonic analysis method (HAM), power spectrum 
method (PSM) and maximum entropy method (MEM) are also applied for comparison. The results indicate that the effi‑
ciency of each method is positively connected to the length and amplitude of samples, but negatively correlated with 
the mean value, variation coefficient and length of periodicity, without relationship with the initial phase of periodic‑
ity. For those time series with higher noise component, the developed MCCA method performs best among the four 
methods. Results from the hydrological case studies in the Yangtze River basin further verify the better performances 
of the MCCA method compared to other three methods for the identification of periodicities in hydrologic time series.
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Introduction
Hydrological processes are influenced by both deter-
ministic and stochastic factors (Mehdizadeh et  al. 2017; 
Rios and de Mello 2013; Stojkovic et al. 2017) along with 
uncertainty (Coulibaly and Baldwin 2005; McCuen 2003; 
Sang et al. 2017). Some observed hydrological time series 
usually include deterministic components (as “signals”), 
such as periodic fluctuation of the water level (or stream-
flow) of a river in the annual, interannual and larger 

timescales. They also include random fluctuations, just as 
“noise” (Sang et al. 2009). Detecting, extracting and eval-
uating those “signals” with useful information can help 
us to identify the variability of hydrological process with 
physical causes, and dealing with stochastic modeling 
(Bordi et al. 2004; Rao et al. 1992).

Periodicity is an important type of hydrological sig-
nals, and it is mainly caused by the Earth revolution 
and rotation, geological processes, human activities 
and other physical factors (Hao et  al. 2016; Kottegoda 
1980). According to the number of periodic compo-
nents, if there is a periodicity only at one frequency, it 
will be called simple periodicity, and periodicities at two 
or more frequencies are namely, compound periodici-
ties (Siegel 1980). Also, there are more complex periodic 
variations like quasi-periodicity (Nigmatullin et al. 2014). 
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Periodicity-related research is mainly concerned with 
two problems, identification of the periodic component 
and evaluation of its statistical significance.

Several methods have been applied in identifying the 
hydrological periodicities. They originate from the spec-
tral analysis in signal processing, dealing with problems 
of signals and noise (Zhou and Sornette 2011). The har-
monic analysis (Nuttle 1997; Steele 1982), as to perform 
the classical spectral analysis, was early probed to inter-
pret the periodicity in time series. Developed from the 
Fourier analysis, the periodic component is represented 
by a set of sinusoidal functions which is an accurate 
mathematical concept, but it cannot avoid computa-
tional burden. The fast Fourier transform (FFT) (Cooley 
and Tukey 1965), aiming at a faster Fourier transform, 
is a relatively more powerful approach improving the 
time series to transfer from time domain to frequency 
domain. Periodogram investigates the periodicity by esti-
mating the power spectral density (PSD) using the time 
series directly (Schuster 1898; Thomson 1982). Though 
there are attempts of smoothing the periodogram (Bar-
tlett 1950; Kay 1988; Welch 1967), the incompatibility 
between high spectral resolution and low ‘power leak-
age’ still limits its application to yield the true spectrum 
of time series. Correlogram (Ghil and Taricco 1997), as 
another most commonly used power spectrum estima-
tion based on autocorrelation function, has the same 
defects as those exposed by periodogram. All these con-
ventional methods are limited by short sample length. 
Modern techniques of identifying and extracting periodic 
components have developed and some have been applied 
in the field of hydrological science. Continuous spectral 
analysis like maximum entropy method (MEM) (Burg 
1975) was developed to overcome the preceding draw-
backs. With high resolution and sharp peaks for shorter 
data length (Cao et  al. 1997; Kay 1988), the MEM has 
been widely used, but its sensitivity to noise constrains 
its wide applications (Jaynes 1982). Apart from that, the 
algorithm is based upon assuming the data conform to 
the AR (autoregressive) model and determining the order 
by various criteria, such as the final prediction error cri-
terion (FPE) (Akaike 1970), the Akaike Information Crite-
rion (AIC) (Akaike 1974; Sakamoto and Kitagawa 1987) 
and the Bayesian Information Criterion (BIC) (Tamura 
et al. 1991). The choice of proper criteria must be treated 
with caution (Padmanabhan and Rao 1988), as a wrong 
order will cause potential influences on the accuracy of 
results.

Another primary problem in periodicity analysis is 
quantitatively assessing the statistical significance of the 
identified component. In recent decades, studies mainly 
focus on the improvement (Yuan et al. 2016), comparison 
(Yang 2015) and application of periodicity identification 

methods (Stosic et  al. 2016; Wu et  al. 2016), but lesser 
focused on significance assessment. Popular methods 
of significance assessment are developed on statistical 
hypothesis tests, mainly as one-tailed tests (Siegel 1980), 
comparing the identified periodicity with a non-periodic 
component. They could only give qualitative evaluation 
like “significant” or “not significant” based on a certain 
significance level and statistical threshold. The periodic 
component being more significant outweighs other com-
ponents in the whole series and has more contribution 
to the variability of hydrological process. Lacking precise 
classification of significance levels leads to insufficient 
understanding of the degree of periodicity variation, 
which is not favored to the assessment of impact and 
risk of potential consequences dominated by this peri-
odic pattern. An intuitive index to reflect the significance 
of a periodic components is the amplitude, while the 
value of the amplitude varies theoretically from negative 
to positive infinity. Instead, the correlation coefficient 
(CC) changes within a certain range of − 1 to 1 (McCuen 
2003; Troch et al. 2013). And the correlation between the 
periodic component and the original series can gener-
ally represent the effect of this component on the whole 
original series. In such case, if the mathematical rela-
tionship between the amplitude and CC can be estab-
lished, this can contribute to quantitative assessment of 
the significance of periodic components. The CC-aided 
idea has once been applied to jump points detection 
(Wu et al. 2019). As different variability types (like jump 
and periodicity) have completely different mathematical 
expressions, the application of CC-based method to the 
detection of periodicity still needs new derivation and 
demonstration.

Therefore, research on periodicities is still worth 
exploring. The main objective of this study is develop-
ing a new moving correlation coefficient-based analysis 
(MCCA) method for the identification of periodicities 
and evaluation of their significance levels with a more 
precise criterion. It is based on the correlations between 
the potential periodic component and the original time 
series. By deducing the relationship between the correla-
tion coefficient and amplitude of periodicity mathemati-
cally, the MCCA method singles out the most probable 
periodicity by virtue of the correlation coefficient and 
characterizes the periodic component with necessary 
information like the cyclic period(s), the amplitude, the 
mean value of the observed data and other parameters 
and the significance level (Nuttle 1997). “Methods” sec-
tion proposes the MCCA method through formula 
deduction, and gives the principle of periodicities iden-
tification and its significance gradation using correla-
tion coefficient in detail. Besides, synthetic time series 
are used to verify the rationality and to investigate the 
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influence of several factors on the efficiency of MCCA 
method, with three other methods being compared. 
“Study area and data” section describes the annual runoff 
and precipitation data used in this study. The periodici-
ties of runoff and precipitation in the Yangtze River basin 
are analyzed in “Results and discussion” section to fur-
ther verify the MCCA method, and this manuscript will 
be ended by conclusion.

Methods
Relationship between the correlation coefficient 
and the half‑amplitude of periodicity
To characterize the fluctuation degree of a periodic com-
ponent using the correlation coefficient, a periodic pro-
cess needs to be firstly constructed. Simple periodicity 
is of particular interest because of the simplicity to illus-
trate the rationale of the proposed method. Now taking 
the sinusoidal wave as an example, which is simple but 
general, we shall consider a time series x(t) (t = 1, 2,…, n) 
be measured as

where T is the length of the periodicity, t0 is the initial 
phase varying from 0 to 2π, η(t) is a random residual, A 
is the mean value of time series x(t), and B is the half-
amplitude. If combining A and η(t) as the random part 
of x(t), denoted as u(t), Eq. (1) can be expressed in linear 
superposition form:

where z(t) = sin

(

2π
T t + t0

)

 , u(t) = A+ η(t) . The corre-
lation coefficient for quantifying the relationship between 
the original time series x(t) and the periodic component 
y(t) = Bz(t) can be expressed as:

For specific half-amplitude B, periodicity length T and 
initial phase t0 , the correlation coefficient (CC) in Eq. (3) 
can be rewritten as:

(1)x(t) = A+ B sin

(

2π

T
t + t0

)

+ η(t),

(2)x(t) = Bz(t)+ u(t),

(3)r =

n
∑

t=1

(x(t)− x)(y(t)− y)

√

n
∑

t=1

(x(t)− x)2
n
∑

t=1

(y(t)− y)2

.

(4)r =

n
∑

t=1

(x(t)− x)(z(t)− z)

√

n
∑

t=1

(x(t)− x)2
n
∑

t=1

(z(t)− z)2

,

where x(t) is the original hydrologic time series, z(t) 
represents the periodic part, x = 1

n

∑n
t=1 x(t) and 

z = 1
n

∑n
t=1 z(t) are the mean values of x(t) and z(t) , 

respectively.
For hydrologic time series with an unknown periodicity, 

suppose a periodicity length T and an initial phase t0 , when 
CC between the generated periodic component 
z(t) = sin

(

2π
T t + t0

)

 and the original time series x(t) 
reaches its maximum, that is, the sinusoid comes closest to 
the real fluctuation of the periodicity in time series x(t), and 
correspondingly the assumed periodicity length T and the 
initial phase t0 are the best results expected. Finally, A and 
B could be obtained by the least square method:

Thus, Eq.  (1) representing a simple periodicity can be 
determined as a result.

Since the amplitude of a periodic component reflects its 
significance and the correlation coefficient can quantify the 
significance level, the significance of a periodic component 
can be graded to different levels, if the relationship between 
the correlation coefficient and the amplitude is deduced. 
Substituting Eq. (5) into Eq. (3), then,

where σx and σz are the standard deviation of xt and 
zt , respectively. According to the theory of Stochastic 
Hydrology (Machiwal and Jha 2012; Sang et  al. 2012), 
different components composed in hydrologic times 
series xt conform to the linear superposition principle. 
Therefore, the random component and the periodic com-
ponent are thought as independent, and σ 2

x  can be repre-
sented by the sum σ 2

z  and σ 2
u as:

Substituting Eq. (8) into Eq. (7):

where the standard deviation σz is influenced by the sam-
ple length n, the periodicity length T and the initial phase 
t0 , which is expressed as:

(5)B̂ =

n
∑

t=1

(x(t)− x)(z(t)− z)

n
∑

t=1

(z(t)− z)2
,

(6)Â = x − B̂z.

(7)r = B
σz

σx
,

(8)σ 2
x = B2σ 2

z + σ 2
u .

(9)r2 =
1

1+
σ 2
u

B2σ 2
z

,
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And σu is affected by the mean value u and the varia-
tion coefficient Cvu of the random component:

Given T and t0 , the standard deviation σ 2
z  and σ 2

u are 
known. Hence, the correlation coefficient r and the half-
amplitude B show positive correlation with each other. 
The bigger absolute value of the correlation coefficient 
is, the bigger the amplitude of the periodic component 
is, which reflects more significant periodicity in the time 
series.

Correlation coefficient‑based approach 
for the identification of periodicities
The specific steps of the identification of periodicity and 
its significance gradation by the proposed method are 
described as follows:

1. For the hydrologic time series x (t) to be analyzed, 
construct a periodic component based on the sinu-
soidal function z(t) = sin

(

2π
T t + t0

)

;
2. Change the periodicity length T from 2 to n/2 by step 

l1, where n is the sample length. The initial phase is 
set to change from − π to π by step l2, thus we get M 
sets of time series z(t) 

(

M =
(

n/2−2

l1
+ 1

)

× 2π
l2

)

 . 
Step length l1 = 1 and l2 = 0.001π are usually set as 
defaults and will vary depending on the demanded 
accuracy.

3. Calculate the correlation coefficient r between z(t) 
and x(t) by Eq.  (4). The periodicity length corre-
sponding to the maximum absolute value denoted as 
|r|max is the identification result.

4. Do the hypothesis test to evaluate the significance 
of the simulated periodic components (Xie et  al. 
2018). Given the significance level α and β, and 
α > β , when 0 ≤ |r| < rα , the value of |r| is not sig-
nificant at level α and the null hypothesis that there is 

(10)

σ 2

z =
1

2
−

cos
[

2π
T
(n+ 1)+ 2t0

]

sin
2πn
T

2n sin
2π
T

−

[

1− cos
(

2π
T
n+ 2π

T
+ 2t0

)](

1− cos
2πn
T

)

2n2
(

1− cos
2π
T

) .

(11)σu = uCvu.

no significant periodic component can be accepted; 
when rα ≤ |r| < rβ , it indicates that |r| is significant 
at level α but not at level β, then the significance of 
the periodic component in this interval is divided 
to “weak”. In the case where |r| belongs to the range 
rβ ≤ |r| < 0.6, it is categorized into moderate signifi-
cance level. When 0.6 ≤ |r| < 0.8, the significance 
level is “strong”. Besides, when 0.8 ≤ |r| ≤ 1 , we use 
“dramatic” to describe the fact that the periodic com-
ponent is the most significant. The CC thresholds for 
the significance gradation of periodicities are shown 
in Table 1.

5. When x(t) contains multiple periodic components, 
loop step (1)–(4) for several times to find all sig-
nificant periodic components in it. For round i, 
the identified periodic component zi is removed 
by direct subtraction, and the left time series 
xi = xi−1 − zi + xi−1 (i = 1, 2, 3, …, n) is the new 
input series to identify other periodicities in it. The 
correlation coefficient between zi and the original 
time series x(t) is used to evaluate its significance 
level. The identification of periodicities can stop 
when no more significant periodicity can be found.

Verification of the proposed MCCA method
This section is subdivided into two parts. In the first part, 
we use the synthetic time series to validate the MCCA 
method, and in the second part we investigate the iden-
tification efficiency (IE) of the proposed MCCA method 
with several parameters’ changes.

Synthetic data analysis
Hydrologic time series are affected by various factors and 
contaminated with different kinds of noise, which is usu-
ally subject to the Pearson type III (PT-III) distribution 
(Singh 1998) in China. Therefore, the synthetic time 
series are generated by Monte Carlo method (Peres and 
Cancelliere 2016; Salas 1993) here by considering two 
parts: (1) the periodic component which need the param-
eters B, T and t0 in the function y(t) = B sin

(

2π
T t + t0

)

 ; 
and (2) the stochastic component, which obeys the PT-III 

Table 1 Thresholds of correlation coefficient r used for the gradation of significance level of the periodic component in hydrologic 
time series

a α and β are both significance levels and α > β

Significance level No Weak Moderate Strong Dramatic

Correlation coefficient 0 ≤ |r| < rα
a

rα ≤ |r| < rβ
a rα ≤ |r| < 0.6 0.6 ≤ |r| < 0.8 0.8 ≤ |r| ≤ 1
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distribution and is determined by the mean value u the 
variation coefficient Cvu and the skewness coefficient Csu.

The rationality of Eq. (9) needs to be confirmed first by 
the following simulated experiments. Statistical tests are 
conducted with 30 groups of half-amplitude increasing 
gradually. The procedures are explained as follows:

1. Generate 30 time series xi with the sample length 
n = 100, the mean value u = 100 , the variation 
coefficient Cvu = 0.2 and the skewness coefficient 
Csu = 0.4 . For the periodic component Bi sin

π
5
t 

( Bi = i , i = 1, 2… 30), the periodicity length is set 
as T = 10 and the initial phase t0 = 0 . With these 
parameters above, the standard deviation σ 2

z = 0.5 
and σ 2

u = 400 can be determined by Eqs.  (10) and 
(11), respectively.

2. Apply Eq. (4) to calculate the correlation coefficient r 
between Bi sin

π
5
t and xi

3. Repeat each test for 10,000 times, then we get the 
series xij and the mean value ri = 1

10000

∑10000
j=1 rij in 

each group, where i = 1, 2, 3… 30, j = 1, 2, 3… 10,000.

We use the significance levels α = 0.05 and β = 0.01 
in this paper, which are also widely used in hydro-
logical time series analysis. When B is determined, 
we can get the theoretical correlation coefficient ra by 
Eq.  (9). Compare ra with ri by using the relative error 
δ = |ri−ra|

ra
× 100(%) as criterion. The experimental data 

are recorded in Table 2. It shows that among 30 groups of 
δ , 27 of them are within 1% and even the maximum value 
of δ is only 1.67%. The correlation coefficients got from 
the test and those from Eq. (9) are close to each other. It 
is thought that the results obtained from Eq. (9) are reli-
able, and the correlation coefficient can be used as an 
effective index to grade the significance levels of perio-
dicities in hydrologic time series.

Then three sinusoidal functions and a random compo-
nent are synthetized as the tested time series. This test 
is designed for two purposes: validating that the MCCA 
method can identify each periodic component and giving 
the correct significance gradation corresponding to the 
original setting. Parameters of the stochastic part u(t) are 
the same as the previous statement, while the periodic 
component consisting of three true periodicities is set as

and the synthetic time series 
x0(t) = u(t)+ z0(t), t ∈ [1, 100] . For round i, the identi-
fied periodic component pi is removed by direct subtrac-
tion and the left series xi = xi−1 − pi + xi−1 is the new 
input series to analyze the other periodicities of x0(t) . We 
also define the relative error δi =

|Ti−T ′
i |

Ti
× 100 (%) (i = 1, 

2, 3,…, n) to evaluate the accuracy of the results, where T 
is the theoretical value and T′ is the calculated value.

Figure  1 illustrates the time-varying characteristics 
of the synthetic series as well as the input series and 
the periodic component in each round. It is shown in 
Fig. 1a that due to the synthesis of three periodic com-
ponents and the addition of the random term, no obvi-
ous periodicity can be seen intuitively from the curve 
of the synthetic time series. After the MCCA process-
ing, in Fig.  1b–d, each periodic component can be 
observed clearly. There are periodic variations of 20.4, 
15.1 and 10, respectively, and the correlation coeffi-
cient r between pi and x0 grows with increasing ampli-
tude. Compared with initial settings, the results in each 
round are close to the real one with small relative errors 
2%, 1.3% and 0, and the accuracy is within the allowable 
range for the time interval of 1. Besides, it is obvious 

(12)

z0(t) =100+ 30 sin

(

2π

10
t +

π

2

)

+ 40 sin

(

2π

15
t +

π

6

)

+ 50 sin

(

2π

20
t +

π

3

)

,

Table 2 The theoretical value rα, the calculated value ri and the relative error δ (%) under different half‑amplitudes Bi (i = 1, 2,…,30)

a The relative error δ = |ri−ra |
ra

× 100(%)

Bi rα ri δ (%)a Bi rα ri δ (%) Bi rα ri δ (%)

1 0.0349 0.0353 1.16 11 0.3637 0.3625 0.34 21 0.5983 0.5961 0.37

2 0.0713 0.0705 1.13 12 0.3926 0.3906 0.51 22 0.6157 0.6140 0.28

3 0.1064 0.1055 0.90 13 0.4187 0.4176 0.25 23 0.6324 0.6309 0.23

4 0.1407 0.1400 0.48 14 0.4447 0.4436 0.24 24 0.6493 0.6470 0.36

5 0.1770 0.1741 1.67 15 0.4706 0.4685 0.44 25 0.6637 0.6623 0.22

6 0.2072 0.2075 0.17 16 0.4954 0.4924 0.61 26 0.6782 0.6768 0.21

7 0.2419 0.2402 0.69 17 0.5173 0.5152 0.42 27 0.6933 0.6905 0.40

8 0.2724 0.2722 0.09 18 0.5385 0.5369 0.30 28 0.7064 0.7035 0.41

9 0.3037 0.3032 0.16 19 0.5598 0.5576 0.39 29 0.7189 0.7159 0.42

10 0.3350 0.3333 0.49 20 0.5796 0.5774 0.39 30 0.7295 0.7276 0.26
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the correlation coefficient r = 0.105 in the fourth round 
is less than the lower critical value rα = 0.195 . That is 
the periodic component in this round is insignificant 
and the identification procedure can stop at round 4. 
The results are summarized in Table  3. It can be con-
cluded that the MCCA method is able to detect and 
evaluate the periodicity in these synthetic time series.

Influences of several factors on the efficiency of MCCA 
method
Through the deduction of Eq. (9), it is known that the cor-
relation coefficient between the original time series and 
the simulated periodic component may be affected by the 
following factors: the sample length n, the mean value 
u and the coefficient of variation Cvu of the stochastic 
component; the half-amplitude B, the periodicity length 
T and the initial phase t0 of the periodic component. In 
this case, the change rules of the correlation coefficient 
and the effectiveness of the proposed method are further 
discussed. By varying the values of the above parameters, 
each test is correspondingly divided into several groups 
and each group is repeated for 100 times. The parame-
ters are outlined in Table 4. Three other frequently used 
methods, power spectrum method (PSM), harmonic 
analysis method (HAM) and maximum entropy method 
(MEM) are also tested for comparison.

Denote T as the theoretical value and T′ as the 
identified value of the periodicity length, then the 
allowable error of the method can be expressed as 
�T =

∣

∣T − T ′
∣

∣ = 1 , where “1” is the unit time interval of 
the data. If there are totally N groups of simulated time 

Fig. 1 The input time series and periodicity identification result in each round. a The original synthetic series x0 mixed with periodic and stochastic 
components; b the input series x0 and the periodic compnent p1 identified in the first round; c the input series x1 and the periodic compnent p2 
identified in the second round; d the input series x2 and the periodic compnent p3 identified in the third round

Table 3 The experimental data in each round, including the 
theoretical value T, the calculated value T′, the relative error 
δ (%), the theoretical half‑amplitude B and the correlation 
coefficient r between x0 and pi (i = 1, 2, 3)

a The relative error δi =
|Ti−T

′
i |

Ti
× 100(%) (i = 1,2,3,……,n)

b The four thresholds of correlation coefficient are set as r0.05 = 0.195, 
r0.01 = 0.254, 0.6 and 0.8

Round T T′ δa B rb

1 20 20.4 2% 50 0.654

2 15 15.1 1.3% 40 0.513

3 10 10 0 30 0.406

4 – 3.4 – – 0.105
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series and M groups of them are identified to have the 
results within the allowable error, the identification effi-
ciency (IE) is defined as IE = M

N × 100%.

(1) Sample length
For a certain periodicity length T, with a larger sam-
ple size, the number of a complete periodic fluctuation 
will be larger as well; therefore, the identification will be 
more effective as the periodic component weights more 
in the whole series. It can be seen from Table  5 that as 
the sample length grows from 100 to 400, the IE of MEM 
increases as expected and for sample length larger than 
450, the IE can reach 100%, which shows that MEM is 

affected by sample length. The IE of PSM is also affected 
by the sample length, but the linear rule is not obvious 
due to the impact of the maximum time lag m (Wang and 
Me 1990). The HAM and MCCA method have higher IE 
for different sample lengths, which shows the reliability 
of the MCCA method and its stability with sample length 
changing.

(2) Mean value
It is obvious in Fig.  2a that the correlation coefficient 
decreases with the increase of the mean value, and the 
IE values of the four methods also shows a descending 
trend. The IE of MEM and PSM drop greatly from 95 
to 10% and from 85 to 5%, respectively, when u is larger 
than 150. However, the IE values of the HAM and MCCA 
method is more stable, but when the mean value is larger 
than 300, the IE of these two methods start to decrease 
and it can be noticed that the correlation coefficient is 
also smaller than the critical value. When u = 500 , the IE 
of HAM is 10% lower than that of MCCA.

(3) Coefficient of variation
The PSM and MEM methods both shift down signifi-
cantly with the increase of the coefficient of variation Cvu 
(Fig.  2b). When Cvu is larger than 0.2, the IE of PSM is 
less than 50%. By contrast, the MCCA and HAM meth-
ods show good stability and the MCCA method is the 
best among four methods. After Cvu > 0.25 , the IEs of 
the four methods all show a downward trend, especially 
the PSM and MEM drop significantly to lower than 10%.

Table 4 Groups of six parameters, the sample length n, the mean value u and the variation coefficient Cvu of the stochastic 
component, the half‑amplitude B, the periodicity length T and the initial phase t0 of the periodic component, used in statistical tests 
for investigating their influences on the identification of periodicities

a The half-amplitude should be comparable with the stochastic fluctuation. Therefore, let B = A × M, where A = |quantile (x(t), 3/4) − quantile (x(t), 1/4)|. The quantile 
(x(t), 1/4) and quantile (x(t), 3/4) here are the upper and lower quartiles of time series x(t), respectively. M is a coefficient representing multiple relation between B and 
A
b As t0 = π and t0 = − π represent the same phase for the sinusoidal function, only t0 = π is tested

Test N u Cvu B T t0

1 100, 150, 200, 250, 300, 350, 
400, 450, 500

100 0.2 30 25 0

2 200 100, 150, 200, 250, 300, 350, 
400, 450, 500

0.2 30 25 0

3 200 100 0.1, 0.15, 0.2, 0.25, 0.3, 
0.35, 0.4, 0.45

30 25 0

4 200 100 0.2 1.0, 1.5, 2.0, 2.5, 
3.0a

25 0

5 200 100 0.2 30 5, 10, 15, 20, 
25, 30

0

6 200 100 0.2 30 300 0, ± 0.25π, 
± 0.5π, 
± 0.75π, πb

Table 5 The periodicity identification efficiency (IE) (%) of four 
methods power spectrum method (PSM), harmonic analysis 
method (HAM), maximum entropy method (MEM) and moving 
correlation coefficient‑based analysis (MCCA) under different 
sample lengths

Sample length PSM MEM HAM MCCA 

100 0 30 100 98

150 0 64 99 100

200 49 78 100 100

250 100 86 100 100

300 92 91 100 100

350 96 95 100 100

400 34 96 100 100

450 100 100 100 100

500 100 100 100 100
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By comparing Fig.  2a, b, it is obvious that these two 
figures show a consistent pattern of change, which is the 
result that the mean value u and the coefficient of varia-
tion Cvu both have impact on the dispersion degree of the 
time series. The more obvious the random fluctuation is, 
the less significant the periodic component is, which will 
cause difficulty in the identification and lead to low IE of 
the methods used.

(4) Amplitude
It can be seen from Fig.  3a that the IE of each method 
increases with the increase of half-amplitude. PSM is the 
worst among the four methods. MEM has low IE when 
the half-amplitude is small, but it gets better with the 
half-amplitude increasing to 1.5A (M = 1.5), which is 
approximate to the results of MCCA and HAM. MCCA 
has the best performance among the four methods, and 
the correlation coefficient is positively correlated with the 
amplitude. The half-amplitude represents the significant 
degree of periodic fluctuation in the time series. With 
the increase of half-amplitude, the proportion of periodic 
components in the series increases, which makes it easier 
to be identified.

(5) Periodicity length
In Fig. 3b, The IE of PSM decreases with the increase of 
the periodicity length T  except when T = 20. The IE of 
MEM has the same variation as that of PSM, but with 
more moderate extent of change. The common defect of 
PSM and MEM is that consideration cannot be given to 
both the high and low frequency. The IE is higher in short 
T  while longer T  will lead to the identification of pseudo-
periodic components. For HAM and MCCA, the IE is 
not affected by T  and both are 100%.

In order to analyze the performance of the two meth-
ods in detail when T  changes, a box diagram with 100 
sets of data of each group is given in Fig. 4. It shows that 
the mean value connecting line in Fig.  4a is smoother 
than that in Fig. 4b. The mean value lines in Fig. 4a are 
exactly corresponding to the theoretical values T ′ and the 
maximum and the minimum line also have no deviation 
or small deviation. While in Fig. 4b, when the theoretical 
value T = 15 , the mean value line of T′ is higher than 15; 
when T = 30 , it is lower than 30 and the maximum line 
points to T ′ = 33 . The overall comparison indicates that 
the identification results of the MCCA method are more 
accurate than the HAM method.

Fig. 2 The periodicity identification efficiency (IE) of four methods power spectrum method (PSM), harmonic analysis method (HAM), maximum 
entropy method (MEM) and moving correlation coefficient‑based analysis (MCCA) and the corresponding correlation coefficient under different a 
mean values u and b coefficients of variation Cvu
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(6) Initial phase
From the results shown in Fig. 3c, it is obvious that the 
change of t0 has little influence on IE. The IE of MCCA 

and HAM both reach 100% with different initial phases 
while the IE of MEM and PSM are around 70% and 45%, 
respectively. To explain this difference more clearly, the 

Fig. 3 The periodicity identification efficiency (IE) of four methods power spectrum method (PSM), harmonic analysis method (HAM), maximum 
entropy method (MEM) and moving correlation coefficient‑based analysis (MCCA) under different periodic component parameters a half‑amplitude 
B (the abscissa axis M refers to the coefficient and larger M means larger amplitude); b length of periodicity T and c initial phase t0

Fig. 4 The box diagram of periodicity identification results T′ of two methods a moving correlation coefficient‑based analysis (MCCA) method and 
b harmonic analysis method (HAM) under different periodicity lengths T (the result for each T corresponds to a hundred sets of data)
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test data of MEM and PSM are given in the form of box 
diagram in Fig.  5. The mean value connecting line in 
Fig. 5a represents that T ′ identified by MEM are slightly 
higher than 20, while those of PSM are generally smaller 
than 25 in Fig. 5b. If the range of the allowable error is 
extended to �T =

∣

∣T − T ′
∣

∣ = 2 , the IE of MEM can 
increase to 85–90% and the IE of PSM can reach about 
60%, which indicates that the IE values of these two 
methods are interfered by PT-III noise and the results are 
not accurate enough. Besides, there are minimum values 
lower than 5 and maximum values T ′ = 40 in Fig. 5b, and 
the existence of these pseudo periodicities also indicates 
the distortion of the identification results when methods 
are disturbed by noise.

In summary, the result shows that among these four 
methods, PSM and MEM have the worst performances; 
HAM and MCCA have similarly higher IEs (identifica-
tion efficiency), especially for the MCCA method with 
the best performance. As the tests are on the synthetic 
time series, both the parameters of pure random compo-
nent and periodic component will have impacts on the 
IE. When the periodic component gets insignificant due 
to the change of parameters, correspondingly, the IE of 
each method decreases. Specifically, the IE is positively 
correlated with the amplitude and sample length while 
negatively correlated with the mean value, coefficient of 
variation of stochastic components and length of perio-
dicity, and almost independent of the initial phase when 
other factors are fixed. Based on the correlation coef-
ficient criterion, the IE of the MCCA method decreases 
when the correlation coefficient becomes lower, espe-
cially when it is less than the critical value. When the 
periodicity is buried in much noise, the MCCA method 

still shows its superiority compared with other three 
methods.

Study area and data
The Yangtze River is the largest river in China and the 
third largest river in the world. The Yangtze River basin 
(YRB, excluding Taihu Lake basin) includes 11 sub-basins 
linking southwest, central and eastern China (shown 
in Fig. 6). They are upper reaches of Jinsha River, lower 
reaches of Jinsha River, Mintuo River, Jialing River, Wu 
River, reaches from Yibin to Yichang, Dongting Lake 
system, Han River, Poyang Lake system, reaches from 
Yichang to Hukou and below Hukou, respectively.

We use the observed annual precipitation and annual 
runoff data from 1956 to 2017 to investigate the periodic-
ities in the Yangtze River basin (YRB). The observed data 
is far more complicated than the generated synthetic time 
series because of the environmental and anthropologi-
cal influences. Mixed with jump, trend, dependence or 
other types of variation, results of the periodicity identi-
fication will be interfered (Sang et al. 2009). For instance, 
a downward jump might be a section of a trough in the 
periodic fluctuation. Therefore, the jump or trend com-
ponents in these runoff and precipitation time series are 
already subtracted before periodicity identification. We 
take Jialing River sub-basin as an example to illustrate the 
subtraction process. As plotted in Fig. 7, the mean value 
of series before 1993 and after 1993 (the red solid line in 
Fig. 7a, also defined as “jump”) are not at the same level. 
This downward jump at 1993 could be removed by first 
subtracting the value of jump component from the origi-
nal series, and then adding the mean value of the series 
before 1993 to the whole series. Finally, the series after 

Fig. 5 The box diagram of periodicity identification results T′ of two methods a maximum entropy method (MEM) and b power spectrum method 
(PSM) under different initial phases t0 (the result for each t0 corresponds to a hundred sets of data)
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Fig. 6 The Yangtze River basin (YRB, excluding Taihu Lake basin) and its 11 sub‑basins: (1) upper reaches of Jinsha River (above Shigu), (2) lower 
reaches of Jinsha River (below Shigu), (3) Mintuo River, (4) Jialing River, (5) Wu River, (6) reaches from Yibin to Yichang, (7) Dongting Lake system, (8) 
Han River, (9) Poyang Lake system, (10) reaches from Yichang to Hukou and (11) reaches below Hukou

Fig. 7 The subtraction of jump components (Jialing River is taken as an example) from the original annual runoff series (the black dot dash line): a 
the jump component (the red line) and b the new annul runoff series after jump subtraction (the black solid line). Data in the figures are time series 
divided by mean value of the original annual runoff series
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1993 is raised to the same mean value level as the series 
before it, which eliminates the impact of jump (as shown 
in Fig.  7b). The correlation coefficient thresholds for 
evaluating the significance of periodicities in the data are 
shown in Table 6.

Results and discussion
Identification of periodicities in runoff
Because of the important role in the distribution and 
management of water resources at regional scales and 
even the whole country, several studies have focused on 
the periodicities of runoff and precipitation in the YRB, 
where different temporal and spatial scales were con-
cerned (Dai and Zhang 2013; Zhou et  al. 2014). It has 
been confirmed that for precipitation in the YRB, it has 
periodicities of 4–7a, which is connected to the ENSO (El 
Niño–Southern Oscillation) (Yang et  al. 2016), and also 
periodicities of 16a and about 20a, distributed along the 
lower reaches of Jinsha River and the upper reaches of 
the Yangtze River (Sun et al. 2012; Wang 2009; Yang et al. 
2016). Runoff has a periodicity of 7–9a in the YRB, and a 
periodicity of 3–5a and about 20a in the upper reaches 
of the YRB (Chen et al. 2010; Wang and He 2004; Yang 
et  al. 2016). Not many researches are on the analysis of 
the periodicity and its significance in the whole YRB.

In this study, the first dominant periodicity in the 
annual runoff time series in each sub-basin in the YRB is 
identified by the MCCA method, and other three com-
monly used methods PSM, HAM and MEM are also 
used in this section for comparison and verification. 
Given the poor performance of PSM in statistical experi-
ments, the possible dominant periodicities are obtained 
by being calculated under several maximum lag m values 
ranging from 1/10n to 1/4n (n is the sample length 62 
and m ranges from 6 to 15). The scoring criterion is set 
for MCCA method, 1 point if the periodicity identified 
by the MCCA has its counterpart in possible periodici-
ties given by other three methods and otherwise 0 point. 
This scoring standard is to confirm the results of MCCA 
through the same results identified by other methods. A 
summary of results is shown in Table 7.

First of all, Table 7 shows that the performances of four 
methods are consistent with the conclusion of statistical 
experiment overall. To be specific, as for the periodicity 

identification of runoff, we can see that MEM only give 
results of sub-basin No. 1, 7, 9, 10 and 11 and the peri-
odicities of them are all 2 years except sub-basin No. 1. 
Since the observed data are discretely sampled time 
series, in this paper, we tend to regard the periodicity of 
2 years as random component in the case of annual time 
scale. It is also noteworthy that the results of PSM cor-
responding to different time lag m values are different. 
Multiple m values need to be tested to get reliable results, 
which increase its computation burden and the uncer-
tainty of the results conversely. This reflects that these 
two methods are more inclined to be influenced by the 
stochastic characteristic of the time series than HAM 
and MCCA.

For most sub-basins, the results given by MCCA can 
be confirmed by other methods with 9 points for annual 
runoff series. To be specific, for sub-basin No. 11, all 
these four methods reach a consensus that there is no 

Table 6 The time period and the gradation standards of annual runoff and annual precipitation time series in Yangtze River basin 
(excluding Taihu Lake basin)

a For the annual time series with the length of 62 years, the thresholds of correlation coefficient are set as r0.05 = 0.250, r0.01 = 0.325, 0.6 and 0.8 to give five-level 
assessment

Time period Significance level

1956–2017 0 ≤ |r| < 0.250a 0.250 ≤ |r| < 0.325a 0.325 ≤ |r| < 0.6 0.6 ≤ |r| < 0.8 0.8 ≤ |r| < 1

No (N) Weak (W) Moderate (M) Strong (S) Dramatic (D)

Table 7 The first dominant periodicities detected in the time 
series of annual runoff in 11 sub‑basins in the Yangtze River basin 
(YRB, excluding Taihu Lake basin) by power spectrum method 
(PSM), maximum entropy method (MEM), harmonic analysis 
method (HAM) and moving correlation coefficient‑based analysis 
(MCCA)

a The numbers from top to bottom in “No.” column refer to (1) upper reaches of 
Jinsha River, (2) lower reaches of Jinsha River, (3) Mintuo River, (4) Jialing River, 
(5) Wu River, (6) reaches from Yibin to Yichang, (7) Dongting Lake system, (8) 
Han River, (9) Poyang Lake system, (10) reaches from Yichang to Hukou and (11) 
reaches below Hukou, respectively
b Give 1 point to MCCA for having corresponding result to at least one method 
and 0 point for none

No.a PSM MEM HAM MCCA Scoreb

1 2, 9, 10, 11, 12, 13 2, 4, 11 8.9, 12.4 9.2 1

2 4, 5, 6, 7, 11, 12 – 31 29.6 1

3 6, 7, 8, 9, 10, 11, 12 – 4.8, 7.8, 12 7.5 1

4 7, 8, 9, 10, 12 – 8.9 9.3 1

5 12–16, 18, 20, 22 – 3.1, 15.5 24.6 0

6 2, 3, 8, 9, 10, 12 – 3.1, 15.5 3.1 1

7 2, 24, 26, 28, 30 2 3.6 24.1 1

8 6, 7, 8, 9 – 6.9, 8.9 6.8 1

9 3, 4 2 – 21.8 0

10 2 2 6.9 6.7 1

11 2 2 – 2 1
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significant periodic component but time series close to 
pure random component. For sub-basin No. 1, 3, 4, 6 and 
8, all three methods except MEM have the same or simi-
lar results. Besides, at least one method is approximate to 
the result of MCCA for sub-basin No. 2, 7 and 10. Only 
for sub-basins No. 5 and 9, the MCCA method does not 
reach an agreement with other three methods. For the 
results that there is no consistent conclusion, we can 
verify the MCCA method on the basis of previous study 
results. The global periodicity of 25a of sub-basin No. 
5 is given in (Xiong et al. 2010). As for sub-basin No. 9, 
according to (Liu et al. 2009; Ye et al. 2012), there are first 
dominant periodicity of 25a and secondary periodicity of 
3–4a in sub-basin No. 9. Although PSM and MCCA both 

have their corresponding results, not only the value but 
also the significance assessment of MCCA matches bet-
ter with the known one. Besides, the annual runoff series 
of these two sub-basins discussed above are plotted in 
Fig. 8 fitted with the dominant periodic component iden-
tified by MCCA method. It can be seen intuitively that 
the periodic components (red line) of MCCA have good 
fit with the fluctuation of annual runoff series.

Characteristics and spatial distribution of periodicities 
of YRB runoff series
After verifying the application of MCCA method in 
the observed hydrological series, we next give a sum-
mary of complete results of YRB runoff series by MCCA 

Fig. 8 The annual runoff series and the first dominant periodicity identified by moving correlation coefficient‑based analysis (MCCA) method of a 
sub‑basin No. 5 (Wu River) and b sub‑basin No. 9 (Poyang Lake system). Data in the figures are time series divided by mean values

Table 8 Periodicities detected in the time series of annual runoff and annual precipitation in 11 sub‑basins in the Yangtze River basin 
(YRB, excluding Taihu Lake basin), and the gradation of their significance levels based on the correlation coefficient r 

a The numbers from top to bottom in “No.” column refer to (1) upper reaches of Jinsha River (above Shigu), (2) lower reaches of Jinsha River (below Shigu), (3) Mintuo 
River, (4) Jialing River, (5) Wu River, (6) reaches from Yibin to Yichang, (7) Dongting Lake system, (8) Han River, (9) Poyang Lake system, (10) reaches from Yichang to 
Hukou and (11) reaches below Hukou, respectively
b ‘N’ refers to no periodic variation; ‘W’ refers to weak periodic variation and ‘M’ refers to moderate periodic variation. For the annual time series with the length of 
62 years (1956–2017), the thresholds of correlation coefficient are set as r0.05 = 0.250, r0.01 = 0.325, 0.6 and 0.8 to give five-level assessment

No.a Runoff Precipitation

T1 Levelb (r) T2 Level (r) T1 Level (r) T2 Level (r)

1 9.2 M (0.466) 11.9 N (0.017) 11.7 M (0.410) 4.7 N (0.012)

2 29.6 M (0.353) 4.3 N (0.156) 4.3 M (0.353) 2.8 N (0.076)

3 7.5 M (0.399) 4.8 N (0.005) 4.8 M (0.393) 7.5 N (0.011)

4 9.3 M (0.405) 7.3 N (0.053) 9.4 M (0.360) 24.8 N (0.047)

5 24.6 M (0.351) 16.1 N (0.015) 4 W (0.288) 3.1 N (0.060)

6 3.1 M (0.397) 16.1 N (0.121) 16.2 M (0.373) 3.1 N (0.062)

7 24.1 M (0.420) 6.8 W (0.266) 23.2 M (0.343) 2.5 N (0.056)

8 6.8 M (0.344) 21.5 N (0.221) 3.1 W (0.314) 9 N (0.221)

9 21.8 M (0.399) 3.6 N (0.239) 21.4 M (0.365) 3.6 N (0.129)

10 6.7 M (0.392) 2.7 N (0.247) 6.7 M (0.369) 2.7 N (0.215)

11 6.7 M (0.355) 3.3 W (0.297) 6.7 W (0.324) 3.3 W (0.308)
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including the two dominant periodicities T1, T2, and their 
significance levels graded by the correlation coefficient r 
in Table 8. Considering little practical significance of the 
periodicity less than two years, we have filtered out this 
kind of result.

Overall, as for two main periodic components of annual 
runoff series, the shortest periodicity is 2.7a while the 
longest is 29.6a. It is noteworthy that sub-basins No. 1, 3, 
4, 7, 8, 10, 11 all have significant (level W or M) periodic 
components in the range of 6.7–9.3a, which is consist-
ent with the known fact that short periodicities of 7–9a 
are in most areas of YRB. Besides, there are also quite a 
few sub-basins (No. 2, 3, 6, 9, 10, 11) with a periodicity 
of 3–5a, but they are not statistically significant (level N) 
except for sub-basins No. 11 (level W).

The periodicities and their corresponding significance 
levels are further analyzed from a spatial perspective. 
First, as for runoff, it is obvious that runoff centralized 
in the south of YRB has longer periodicities than that of 
north and all periodicities are significant with level M. 
This result shows the difference of river runoff between 
north and south parts of YRB in terms of periodic char-
acteristics. Sub-basins with periodicities of more than 5a 
(No. 1, 4, 5, 6, 7, 8) mostly distributed along the upper 
reaches of Yangtze River and the periodic components 
are not significant (level N) except for sub-basins No. 7 
and 11.

Combined with the results of precipitation (as shown 
in Table 8), the periodicities of about 2.5–4.7a are in the 
whole basin except for sub-basin No. 4 and those of 6.7–
9a (No. 3, 4, 8, 10, 11) are also common (Mao et al. 2014; 
Xiong et al. 2010). It is also obvious that periodicities of 
more than 5a are mostly distributed along upper reaches 
of Yangtze River. From this response, it can be concluded 
that there is a consistent one to one match between the 
periodicities of runoff and those of precipitation on the 
whole, and the precipitation mainly contributes to the 
periodic nature in runoff series in these regions (Zhang 
2014).

There are some inconsistencies for the reason that the 
formation of runoff is also affected by many other factors 
such as underlying surface changes or human activities in 
addition to the hydrological processes. Many studies have 
shown that reservoir regulations and water withdrawal 
have a big impact on the runoff variability in the Yangtze 
River basin, which caused the impacts mainly reflected in 
the total runoff volume amount. The construction of res-
ervoirs and the increase of water consumption that lead-
ing the annual runoff decline (Yang et al. 2010; Lei 2014; 
Zhang 2014; Tian 2016; Chen et al. 2018), usually shows 
as a trend or jump. This is also one of the reasons why 
the data in case study are pre-processed before periodic-
ity analysis. As for the impact on periodicity, the storage 

and discharge of reservoir mainly change the annual dis-
tribution of runoff. The reservoir regulation makes the 
runoff volume of upstream hydrological station decrease 
in flood season, and increase in non-flood season (Zhang 
and Yang 2014; Shu et al. 2016). Even for multi-year reg-
ulating reservoirs, this peaking cutting effect has little 
impact on the large timescale periodicities.

On the whole, the precipitation is still the main driv-
ing force for the interannual fluctuation of runoff (Zhang 
2014). This is also in agreement with our conclusion. The 
issue on the runoff periodicity under various driving fac-
tors is still worth further study.

Conclusions
Extraction and quantitative evaluation of the significance 
of periodic components is important for hydrological 
time series analysis. In this regard, we proposed a new 
method, called MCCA, for the identification of perio-
dicities, by utilizing the derived relationship between the 
correlation coefficient (CC) and the amplitude of perio-
dicities. This correlation-aided method identified the sig-
nificant periodicities and established a five-level criterion 
to evaluate different significance levels of periodicities.

Through investigating the influences of various sta-
tistical characteristics of data on the identification effi-
ciency (IE) of the MCCA method, it was found that IE 
varied positively or negatively with some factors, and 
other three methods (PSM, HAM, and MEM) are used 
for comparison.

Specifically, as the mean value and the coefficient of 
variation of the time series gets larger, the IE of each 
method gets smaller, reflecting the impacts of stochas-
tic term or noise on the identification of periodic com-
ponent. By contrast, the IE of each method increases 
when the sample length and the amplitude get larger. The 
correlation coefficient was also positively related to IE, 
leading to the positive correlation between CC and the 
amplitude. This proves that CC can quantify the signifi-
cance of the periodic components. PSM and MEM have 
the worst performances when the tested series are con-
taminated with much noise. HAM and MCCA had simi-
larly better performances, especially for MCCA method 
with the highest IE. Indeed, these results generally sug-
gest the superior accuracy and noise resilience character-
istics of the MCCA method proposed.

The MCCA method was also performed over annual 
runoff series of 11 sub-basins of the Yangtze River basin 
(YRB, excluding Taihu Lake basin). The results found that 
annual runoff series have significant (level W or M) peri-
odic components (6.7–9.3a) in 7 of 11 sub-basins, and 
periodicities of 3–5a are common in the rest sub-basins. 
We noticed that the sub-basins with a longer significant 
periodicity are mainly concentrated in the upper reaches 
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of the Yangtze River, and keep a good correspondence 
with the pattern of precipitation, indicating that pre-
cipitation has an important impact on the formation of 
runoff’s periodicity. For some sub-basins, inconsistencies 
of periodicities between the runoff and the precipitation 
are probably a consequence of factors such as underly-
ing surface changes or human activities in these areas. 
These results were consistent with previous studies, and 
the comparison with PSM, HAM and MEM also gave 
cogency to the results of MCCA. In this case, the pro-
posed method is verified in the application to real hydro-
logical data.

In conclusion, we confirmed that MCCA is a feasi-
ble scheme of identifying and evaluating hydrological 
periodicities. The advantage of the MCCA method is its 
simplicity of the principle and multi-level classification 
of the significance of the periodicity. Those commonly 
used methods can judge only whether the periodicity is 
significant or not at a certain confidence level, but no 
distinction based on the degree of significance. In terms 
of prediction accuracy, MCCA give a more detailed 
classification for all significant periods. In this case, the 
five-level criterion of MCCA has significant benefits for 
evaluating the impact of a periodic component on the 
time series.

However, studies probed into periodicity analysis are 
still moving forward, which also means the methods 
developed are not perfect. In terms of the periodicity 
pattern, MCCA is mainly tested for sinusoidal periodic-
ities in statistical experiments. When extended to cases 
where the periodicities are non-sinusoidal, new tech-
niques combining MCCA with some effective decom-
position methods like empirical mode decomposition 
(EMD) (Huang et  al. 1998; Huang and Wu 2008) may 
be operative. EMD can give adaptive intrinsic mode 
functions (IMFs) representing the underlying processes 
more effectively than pure sinusoids, and thus offer 
possibility for more reliable periodicity identification. 
Therefore, the MCCA method can be further improved 
in the future for its potential wide use ranges.
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