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Abstract 12 

A novel municipal solid waste (MSW)-based power generation system was proposed in this study, 13 

which consists of a bubbling fluidized-bed (BFB)-plasma gasification unit, a high-temperature solid 14 

oxide fuel cell (SOFC), a chemical looping combustion (CLC) unit and a heat recovery unit. Process 15 

simulation was conducted using Aspen PlusTM and validated by literature data. The energetic and 16 

exergetic assessment of the proposed system showed that the net electrical efficiency and exergy 17 

efficiency reached 40.9 % and 36.1 %, respectively with 99.3 % of carbon dioxide being captured. It 18 

was found that the largest exergy destruction took place in the BFB-Plasma gasification unit (476.5 19 

kW) and accounted for 33.6 % of the total exergy destruction, which is followed by the SOFC (219.1 20 

kW) and then CLC (208.6 kW). Moreover, the effects of key variables, such as steam to fuel ratio 21 

(STFR), fuel utilization factor (Uf), current density and air reactor operating temperature, etc., on 22 

system performance were carried out and revealed that the system efficiency could be optimized 23 

under STFR = 0.5, Uf = 0.8 and air reactor operating temperature of 1000 ºC. Furthermore, the 24 
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proposed process demonstrated more than 14% improvement in net electrical efficiency in 25 

comparison with other MSW incineration and/or gasification to power processes.  26 

Keywords: MSW; bubbling fluidized-bed-plasma gasification; thermodynamic analysis; solid oxide 27 

fuel cell; chemical looping combustion  28 

Nomenclature  W Power, kW 

∆G0 

Gibbs free energy at 

standard pressure and 

temperature, J mol−1 

Abbreviations  

Aa Active surface area, m2 AR Air reactor 

C10H8 Naphthalene  ASU Air separation unit 

C2H6 Ethane BFB 
Bubbling fluidized-bed 

gasifier 

C3H6 Propene CC Combined cycle 

C3H8 Propane CLC 
Chemical looping 

combustion 

CH4 Methane FR Fuel reactor 

CO Carbon monoxide GT Gas turbine 

CO2 Carbon dioxide HE Heat exchanger 

E Cell voltage, V HRSG 
Heat recovery and steam 

generation 

E0 Nernst voltage, V LCA Life cycle analysis  

ER Equivalence ratio LHV Lower heating value 

Ex Exergy, J mol−1 MSW Municipal solid waste 

F 
Faraday’s constant, C 

mol−1 
RDF Refused derived fuel 

H2 Hydrogen SOEC 
Solid Oxide Electrolyser 

Cell 

H2S Hydrogen sulfide SOFC Solid oxide fuel cells 

I Current, A ST Steam turbine 
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i Current density, A m−2 VOC 
Volatile organic 

compounds 

m Mass flow rate, kg s-1 Greek symbols  

n Molar flow rate, mol s-1 β Coefficient 

Ni Nickle η Efficiency 

NiO Nickle oxide Subscripts  

NO Nitric Oxide act Activation polarization 

NO2 Nitrogen dioxide com 
Concentration 

polarization 

R 
Universal gas constant, J 

mol−1K−1 
DC 

Power generated by the 

SOFC 

S Sulfur en Energy 

SO2 Sulfur dioxide ex Exergy 

STFR Steam to fuel mass ratio ohm Ohmic polarization 

T  Temperature, oC react 
Reacted molar flow rate 

of the gas species  

Uf Fuel utilization factor   

 29 

1. Introduction 30 

The generation of solid wastes along with the economic development has become an 31 

environmental challenge in the 21st century. In China, the municipal solid waste (MSW) production 32 

in the 214 major cities rised from 168.1 million tons in 2014 to 235.6 million tons in 2020 [1]. Although 33 

the percentage of MSW being treated has reached 99.7 wt% in 2020 in China, landfill and incineration 34 

still account for 45.6 wt% and 50.6 wt% of the treated MSW, respectively [2], which are also 35 

associated with environmental issues, such as the emission of uncontrolled greenhouse gases, 36 

ground water and soil pollution, and the release of gaseous carcinogens [3]. Besides, the energy 37 

efficiency of incineration technology is normally low while the cost is high, which render it less 38 
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economically viable. Thus, the development of energy-efficient and environmental-friendly 39 

alternatives to enhance MSW energy recovery is of great importance.  40 

Gasification technology is of great potential in the treatment of MSW with less pollution and 41 

higher efficiency as compared with conventional MSW treatment technologies. In addition, ,it could 42 

generate syngas that could be used in the synthesis of a variety of products [4, 5]. Compared with 43 

other types of gasifiers, bubbling fluidized-bed gasifiers (BFB) have excellent heat and mass transfer 44 

capacity and can be used to handle a wide range of feedstocks [6, 7]. The operating temperature of 45 

BFB gasifiers is usually less than 900 ºC, which allows the discharge of slag in solid state. These 46 

characteristics make BFB gasifiers a suitable option for the gasification of MSW [6]. However, a major 47 

challenge in the BFB gasification of MSW is the generation of high content of tar (up to 11.2% of the 48 

total produced gas) [8]. But the emerging of plasma gasification provides another viable option for 49 

the thorough conversion of MSW to high quality syngas with low levels of pollutants under extreme 50 

high temperature (up to 5000 ºC) [9-11]. Nevertheless, it was estimated that the electricity 51 

consumption of the plasma torch accounts for about 32% of the total energy contained in MSW for 52 

a stand-alone plasma gasification [12]. Therefore, there is a need for the development of a novel 53 

plasma gasification technology to realize the tar-free syngas generation at relatively low power 54 

consumption to improve the economy of the MSW treatment process. 55 

Recently, a demonstration plant, which employed a BFB gasifier to gasify refused derived fuels 56 

(RDF) at 650-800 ºC followed by a plasma converter operating at 1200 ºC, was commissioned [13] 57 

and showed that tar was completely converted to syngas and the carbon conversion efficiency was 58 

raised to be over 96.9%, which is higher than the efficiency of a single-stage BFB gasification (80-92%) 59 

[14]. Im et al. [15] experimentally investigated the syngas production behaviors fed by high density 60 
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polyethylene (HDPE) under a gasification-plasma hybrid system operating at 623 oC and found that 61 

syngas composition and yield were enhanced compared with those of the conventional fluidized bed 62 

gasification. Lately, Evangelisti et al. [16] conducted a life cycle analysis (LCA) of an integrated 63 

gasification and plasma cleaning process for power generation. The net electricity efficiency was 64 

found to change in the range of 20 to 35% for different waste feedstock. 65 

Solid oxide fuel cells (SOFC) are efficient energy conversion devices that directly produce 66 

electricity from fuel gases via electrochemical reactions [17]. The SOFC typically operates at a 67 

temperature between 500 and 1000 ºC and the maximum theoretical efficiency can reach up to 60% 68 

[18]. The integration of coal and/or biomass gasification with SOFC to achieve high energy efficiency 69 

has been extensively studied [19-21]. However, studies on the SOFC based power generation system 70 

driven by MSW gasification are rarely reported. Galeno et al. [22] designed a RDF plasma gasification 71 

system integrated with a SOFC power generation unit and showed that this integrated system had a 72 

net power efficiency of 33%. Recently, Perna et al. [9] proposed two novel configurations that 73 

combined a waste to energy scheme together with an electric storage system. Thermodynamic 74 

analyses suggested that the power generation efficiency was in the range of 35-45% and the energy 75 

storage efficiency was 72-92%. 76 

In addition, the chemical looping combustion (CLC) has attracted increasing attentions as an 77 

effective and inherent CO2 mitigation strategy without extra energy penalty [23], which could also 78 

lead to the reduction of NOx emission and exergy losses [24, 25]. The applications of CLC in power 79 

plants have been tried with a wide spectrum fuels including natural gas, coal and/or biomass derived 80 

syngas [24, 26, 27].  81 
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However, to the best of our knowledge, no attempt has been made so far to integrate SOFC and 82 

CLC with BFB-plasma gasification for highly efficient power production as well as CO2 capture. 83 

Therefore, this work is set out to study the feasibility of such a novel process and to gain insights of 84 

its thermodynamic performance.  85 

2. System description  86 

Fig.1 shows the schematic of the proposed BFB- plasma gasification of MSW that is integrated 87 

with SOFC and CLC for highly efficient power generation and CO2 capture. 88 

As shown in Fig.1, such a process consists of four main sub sytems, namely BFB-plasma gasification, 89 

solid oxide fuel cell, chemical looping combustion and heat recovery and steam generation (HRSG) 90 

together with combined cycle (CC). Solid waste is initially converted to raw syngas containing tar and 91 

condensable contaminants in the bubbling fludized bed gasifier using steam and oxygen as the 92 

gasification agent. The raw syngas is then treated in the plasma converter to crack tar and organic 93 

containiments into small molecules. After the hot gas cleaning, the syngas from the plasma converter 94 

is fed to the SOFC, in which the syngas is directly reacted with O2- to generate electricity. At the 95 

downstream of the SOFC, the anode gas and depleted air are directed to the fuel reactor and air 96 

reactor, respectively, and burned. Then, the flue gas from the chemical looping system is processed 97 

in HRSG to recovery heat. The detailed configuration of the proposed process is illustrated in Fig.2. 98 

The detailed description of each subsystem is presented in following sections. 99 

 100 
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Fig.1. Schematic of the proposed BFB- plasma gasification of MSW integrated with SOFC and CLC for power 101 

generation and CO2 capture. 102 
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Fig.2. Detailed configuration of the proposed process. 104 

2.1 BFB- plasma gasification 105 

The pre-treated MSW is crushed into 10 to 25 mm and fed into the fluidized-bed gasifier together 106 

with oxygen and steam. The amount of oxygen and steam is controlled to maintain autothermal state 107 

with the operating temperature in the range of 650 to 800 ºC and to achieve a higher carbon 108 
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conversion [8, 28]. A higher gasification temperature is beneficial for the promotion of syngas yield 109 

but is also associated with a higher mineral melting possiblity that leads to the agglomeration and 110 

defluidization of the gasifier, which subsequently causes the blocakge accident. In this study, the 111 

oxygen equivalence ratio (ER) and steam to fuel mass ratio (STFR) are adopted to quantify the feeding 112 

rate of the gasification agent. The ER and STFR parameters can be calculated as follows: 113 

𝐸𝑅 =
(𝑛𝑂2 𝑛𝑀𝑆𝑊⁄ )

(𝑛𝑂2 𝑛𝑀𝑆𝑊⁄ )
𝑠𝑡𝑜𝑖𝑐

     (1) 114 

𝑆𝑇𝐹𝑅 =
𝑚𝑠𝑡𝑒𝑎𝑚

𝑚𝑀𝑆𝑊
        (2) 115 

Oxygen needed for the fluidized-bed gasifiction is supplied from a cryogenic air separation unit 116 

(ASU), while steam is extracted from the HRSG. In the gasifier, carbon, oxygen and steam are 117 

contacted and reacted intensively to convert the solid into syngas. The detailed chemcial reactions 118 

in the gasifer can be referred in [29] .The crude gas from the gasifier mainly contains CO,CO2,CH4, 119 

H2O and H2 in conjunction with a certain amount of tar and char. Besides, ash and inorganic material 120 

can also be brought out with the raw syngas. Then, the crude gas is sent to the readily-controllable 121 

plasma converter where complex organics are exposed to the ultra violet light induced by a carbon 122 

plasma electrode and cracked into CO and H2 at the uniform temperature of 1200 ºC. At the same 123 

time, particulate materials in the raw gas enters to the centrifugal designed plasma converter where 124 

they are converted into molten slag. The outlet syngas exits the plasma converter and is cooled in 125 

the heat exchangers (HE1 and HE2) followed by a gas cleaning unit, in which the contaminates and 126 

sulphide are removed by a ceramic filter and a sorbent bed respectively [9, 22]. The clean syngas is 127 

heated up and fed to the SOFC subsystem. Table 1 illustrates the ultimate and proximate analysis of 128 

the selected minicipal solid waste employed in this study. The main operating conditions of the two 129 

stage fluidized-bed plasma gasification subsystem are shown in Table 2. 130 
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 131 

Table 1 132 

Ultimate and proximate analyses of the selected solid waste (as received) [8]. 133 

Ultimate analysis (wt%) Proximate analysis (wt%) 

C 41 Moisture 14.9 

H 5.7 Volatile 59.6 

N 1.2 Fixed carbon 6.4 

S 0.2 Ash 19.1 

O (by difference) 17.5 LHV(dry basis,MJ/kg) 19.99 

 134 

Table 2 135 

Main operating parameters and assumptions for the two-stage fluidized-bed plasma gasification unit [8, 30, 31]. 136 

Unit Specification  

Feedstock Inlet temperature: 25 ºC 

Mass flow rate : 0.117 kg/s 

ASU Air composition: N2 (79 vol%)+O2 (21 vol%) 

Oxygen purity: 95% 

Power consumption:0.325 kWh/kg O2 

O2 delivery pressure: 4 bar 

Fluidized bed gasifier Operating pressure: 3.5 bar 
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Operating temperature: 800 ºC 

ER:0.37 

STFR:0.2-0.6 

Heat loss: 2.5% HHV fuel 

Plasma converter Operating temperature: 1200 ºC 

Operating pressure:3.25 bar 

Slag cooling method: water 

Total carbon conversion: 96.9%  

 137 

2.2 Solid oxide fuel cell 138 

In this study, the clean syngas that consists of CO, H2 and CH4 is used as the feedstock to the 139 

SOFC system. At the anode side of the SOFC, H2 is considered as the only fuel participating the 140 

electrochemical reaction with O2-. This assumption is reasonable since water shift reaction (CO + H2O 141 

⇌ CO2 + H2) and methane steam reaction (CH4 + H2O ⇌ CO + 3H2) take place very fast at high 142 

temperatures and are shifted to the right side as hydrogen is consumed [9]. Table 3 shows the main 143 

operating parameters and assumptions for the SOFC subsystem.  144 

The power generated by the SOFC is calculated by the multiply of cell voltage (E) and current (I) 145 

which is presented as follows: 146 

𝑊𝐷𝐶  =  𝐸 × 𝐼 (3) 147 



11 

The cell voltage (E) is calculated by the difference between ideal Nernst voltage (E0) and the 148 

voltage losses including ohmic polarization (Eohm), activation polarization (Eact) and concentration 149 

polarization (Econ). The equation of E is expressed as [32]:  150 

𝐸 =  𝐸0 − 𝐸𝑜ℎ𝑚 − 𝐸𝑎𝑐𝑡 − 𝐸𝑐𝑜𝑛 (4) 151 

The equation for the calculation of Nernst voltage is defined as [33]: 152 

𝐸0 = −
∆𝐺0

2𝐹
+

𝑅𝑇

2𝐹
𝑙𝑛 (

𝑝𝐻2𝑝𝑂2
1/2

𝑝𝐻2𝑂
) (5) 153 

where ∆𝐺0 (J/mol) stands for the molar free Gibbs energy change for the H2 electrochemical 154 

reaction. F is the Faraday’s constant, F= 96 485 C/mol. T (K) is the average temperature of the SOFC 155 

stack. 𝑅  represents universal gas constant, R=8.314 J/(mol·K). 𝑝𝐻2 , 𝑝𝑂2 ,  𝑝𝐻2𝑂  are the partial 156 

pressures of average H2, O2, H2O in the anode side of the SOFC. 157 

The molar Gibbs free energy change ∆𝐺0 is correlated with average operating temperature of 158 

SOFC using the following equation [32]: 159 

∆𝐺0 = 0.005275𝑇2 + 44.28𝑇 − 242200 (6) 160 

While the detailed expressions for voltage losses of Eohm, Eact, Econ due to the resistance of 161 

electrolyte, slow reaction rate on the electrodes and mass transfer limitations in the porous 162 

electrodes can be referred to [34]. 163 

The current of the SOFC generated is calculated by [34]: 164 

𝐼 = 2𝐹𝑈𝑓(𝑛𝐻2 + 𝑛𝐶𝑂 + 4𝑛𝐶𝐻4) (7) 165 

where 𝑛𝐻2, 𝑛𝐶𝑂 , 𝑛𝐶𝐻4 are the molar flow rate supplied to the SOFC. 𝑈𝑓  represents the fuel 166 

utilization coefficient and the equation is expressed as [32]: 167 

𝑈𝑓 =
(𝑛𝐻2+𝑛𝐶𝑂+4𝑛𝐶𝐻4)react

(𝑛𝐻2+𝑛𝐶𝑂+4𝑛𝐶𝐻4)
 (8) 168 
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Where the subscript ‘react’ represents the reacted molar flow rate of the gas species in the SOFC 169 

cell. 170 

The current density (i, A/cm2) is obtained by the total current (I) divides by the active surface 171 

area (Aa). 172 

𝑖 =
𝐼

𝐴𝑎
 (9) 173 

The inverter efficiency for DC to AC conversion is assumed to be 95% [35]. Thus, the actual power 174 

output from SOFC is expressed by: 175 

𝑊SOFC = 0.95𝑊𝐷𝐶  (10) 176 

Table 3 177 

Main operating conditions and assumptions of the SOFC [18, 19, 35, 36]. 178 

Unit Specification 

Operating temperature 900 ºC 

Operating pressure 3.25 bar 

Fuel utilization factor 0.65-0.9 

Current density 1000-3500 A/m2 

Air utilization factor 0.182 

DC to AC inverter efficiency 0.95 

Pressure drop 3% of the inlet pressure 

Anode material 

Cathode material 

Electrolyte material 

Ni/GDC 

LSM-YSZ 

YSZ 

 179 
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2.3 Chemical looping combustion 180 

As mentioned above, the CLC subsystem comprises a fuel reactor (FR) and an air reactor (AR). In 181 

the FR, the unconverted syngas from anode side of SOFC reacts with the oxygen carrier which 182 

provides the lattice oxygen and completely convert into CO2 and H2O. In the AR, the depleted air 183 

composed of O2 (17 vol%) and N2 from the cathode side of SOFC contacts with the reduced oxygen 184 

carrier to realize the complete regeneration of oxygen carrier. The circulating oxygen carrier chosen 185 

in the study is NiO/Ni with supported by the inert material of NiAl2O4 to improve its mechanical 186 

behavior [37]. The reactions taken place in the CLC are referred as following equations [30]: 187 

CO + NiO → CO2 + Ni, △H298.15K = -43.1 kJ/mol (11) 188 

H2 + NiO → H2O +Ni, △H298.15K = -2.1 kJ/mol (12) 189 

CH4 + 4NiO → CO2 + 2H2O + 4Ni, △H298.15K = 156.5 kJ/mol (13) 190 

Ni + O2 → NiO , △H298.15K = -479.4 kJ/mol (14)  191 

The main operating conditions and assumptions for the CLC subsystem is presented in Table 4. 192 

In order to control temperature in the air reactor, excessive air cooling approach is employed as 193 

cooling agent to avoid agglomeration of oxygen carriers. 194 

Table 4 195 

Main operating conditions and assumptions of CLC subsystem [18, 30, 38]. 196 

Unit Specification 

Fuel reactor Operate adiabatically 

Operating pressure: 3.15 bar 

NiO/NiAl2O4 molar ratio : 0.25 

Excess ratio of NiO: 0.2 
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Air reactor Operating temperature: 850-1100 ºC (air cooling) 

Operating pressure: 3.15 bar 

Pressure drop: 10% 

 197 

2.4 HRSG and combined cycle 198 

The effluent gases from the FR and AR are at high temperature and pressure states and they are 199 

directly sent to the CO2 gas turbine and air gas turbine for the additional power generation. Then, 200 

the gases from the two turbines are forwarded to HRSG unit to recovery heat for steam generation. 201 

The different pressure steam streams produced from the HRSG are led to steam turbines for power 202 

generation. After the heat recovery in HRSG, the stream initially from FR is cooled to 30 ºC and water 203 

is separated from this stream. The CO2 rich stream is then directed to a four-stage intercooled 204 

compressor to the pressure of 120 bar which is ready for the pipeline transportation. Table 5 presents 205 

the main specifications adopted in this subsystem. 206 

Table 5 207 

Main operating parameters and assumptions in the HRSG & GT/ST subsystem [39]. 208 

Unit Specification 

Air gas turbine Discharge pressure:1.01 bar 

Isentropic efficiency: 88% 

Mechanical efficiency: 99%  

CO2 gas turbine Discharge pressure:1.01 bar 

Isentropic efficiency: 88% 

Mechanical efficiency: 99% 
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HRSG & CC Pinch temperature: 10 ºC 

Pressure loss: 8% 

HP steam:120 bar 

MP steam:30 bar 

LP steam:4 bar 

Condenser pressure: 0.05bar 

Steam turbine isotropic efficiency:88% 

Steam turbine mechanical efficiency: 99% 

Reheated temperature: 540 ºC 

 209 

3. Methodology 210 

3.1 Simulation 211 

The complete process shown in Fig. 2 is simulated using the Aspen PlusTM software [40, 41]. The 212 

global physical properties are calculated using Peng-Robinson equation. The MSW and ash are 213 

considered as non-conventional components in the Aspen PlusTM. The other components such as CO, 214 

H2, H2O, CO2, C2H6, C3H6, C3H8, O2, N2, S, H2S, SO2, NO, NO2, et al., are treated as conventional species, 215 

while carbon, Ni, NiO, NiAl2O4 are classified as the solid type. Since tar is a commonly seen complex 216 

substance generated during gasification, during the simulation, naphthalene (C10H8) is used as the 217 

representative. 218 

The simulation of BFB- plasma gasification subsystem mainly includes two reactors, namely a 219 

fluidized-bed reactor and a plasma converter. In the fluidized-bed reactor, the solid fuel is initially 220 

pyrolyzed into gases and char and then the gases and char are gasified under the gasification agent 221 
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of oxygen and steam. The built-in reaction modules of RYield, RStoic and RGibbs are adopted to 222 

simulate solid waste pyrolysis, hydrocarbons conversion and tar formation, and equilibrium 223 

gasification with oxygen and steam respectively [42]. Several correlation equations which connect 224 

the hydrocarbons conversion (CH4, C2H4, C2H6, C3H6, C3H8 and C10H8) with gasification temperature 225 

are incorporated in Aspen Plus using Fortran codes [43, 44]. Besides, the carbon conversion is also 226 

controlled by Fortran code. The simulation of plasma converter is based on RGibbs module in which 227 

all the reactions are considered to reach an equilibrium state at the plasma induced temperature of 228 

1200 ºC. The simulated syngas compositions are compared with the experimental values carried out 229 

by Materazzi et al. [8]. The clean-up section is simulated as a black-box where the separation 230 

efficiencies of each component are assumed.  231 

The simulation of anode and cathode in the SOFC are based on RGibbs module and Sep module, 232 

respectively. The O2 split ratio in the cathode is controlled by using a Calculator based on the Uf. 233 

Besides, the air inlet molar flow is calculated using a Design-Spec block according to the oxygen 234 

consumption. In addition, another Calculator block is incorporated in the Aspen Plus to compute the 235 

Nernest voltage, voltage losses due to polarizations, current, and electricity power according to the 236 

Eq. (5) to Eq. (12). 237 

For the simulation of chemical looping combustion subsystem, the RGibbs and SSplit are adopted 238 

as modules to model the fuel and air reactors, gases and oxygen carrier separation, respectively. The 239 

air turbine, CO2 turbine and steam turbine are simulated as the Comp module with the selection of 240 

turbine sub-option. The HRSG is modeled using MheatX module whereas the heat exchangers are 241 

shifted to the HeatX module.  242 

 243 
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3.2 Thermodynamic performance indicators 244 

The overall net electrical efficiency (ηen) of the proposed process is expressed as [36]: 245 

𝜂en =
𝑊SOFC+𝑊GT+𝑊ST−𝑊pump−𝑊ASU−𝑊compressor−𝑊plasma

𝑚MSW∙LHVMSW
  (15) 246 

where the subscripts of SOFC, GT, ST, pump, ASU, compressor, and plasma indicate the SOFC, 247 

gas turbines, steam turbines, pumps, air separation unit, syngas compressor, and plasma torch 248 

respectively. 249 

The exergy balance of an individual system is expressed as [45]: 250 

∑ 𝐸𝑋𝑖𝑛 = ∑ 𝐸𝑋𝑜𝑢𝑡 + 𝐸𝑋𝑑𝑒𝑠/𝑙𝑜𝑠𝑠 (16) 251 

where the ∑ 𝐸𝑋𝑖𝑛 denotes the overall input exergy including chemical exergy, physical exergy 252 

and heat exergy; and 𝐸𝑋𝑑𝑒𝑠/𝑙𝑜𝑠𝑠 denotes the exergy destruction due to irreversibility and loss. The 253 

calculation expressions of chemical and physical exergy of conventional streams and heat exergy can 254 

be seen elsewhere [46]. 255 

The overall exergy efficiency of the process is calculated as: 256 

𝜂𝑒𝑥 =
𝑊SOFC+𝑊GT+𝑊ST−𝑊pump−𝑊ASU−𝑊compressor−𝑊plasma

EXMSW+ EXwater+ EXair
 (17) 257 

where EXMSW is chemical exergy of MSW which can be deduced according to a common exergy 258 

formula (O/C mass ratio ≤2) as follows [47]: 259 

EXMSW = 𝛽𝑚MSW ∙ LHVMSW (18) 260 

𝛽 =
1.044+0.016

ℎ

𝑐
−0.3496

𝑜

𝑐
(1+0.0531

ℎ

𝑐
)+0.0493

𝑛

𝑐

1−0.4124
𝑜

𝑐

 (19) 261 

where h, c, o, n stand for the mass fraction of H, C, O, N in the solid waste (see Table 1), 262 

respectively. 263 

 264 
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4. Results and discussion 265 

4.1 Model validation 266 

Fig. 3 presents the comparison of the outlet gas composition of this study against experimental 267 

values and modelling results reported by Materazzi et al. [8]. For the BFB gasifier outlet gas 268 

composition (Fig. 3a), the current simulation is closer to experimental results. Besides, the current 269 

simulation of the gas compostion at the outlet of the plasma coverter is totally consistent with the 270 

results of the experiment (Fig.3b). As the outlet syngas from the converter is fed to the downstream 271 

system for furthur processing, the constructed model for the simulation of BFB- plasma gasification 272 

is appropriate and can be employed to predict the syngas performances. It is also clear from Fig. 3 273 

that the H2 and CO contents increased to 32.2 and 26.8%, respectively, after the processing of the 274 

converter. Simultaneously, the water and volatile organic compounds (VOC) decreases to 29.71 and 275 

0.63%, respectively. This can be attributed to the enhanced endothermal reactions of hydrocarbon 276 

steam reforming at 1200 ºC enabled by the plasma torch. 277 
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Fig.3. Comparison of the outlet gas composition of current simulation values with experimental data and 

modelling results of Materazzi et al. [8]. Simulation condition: Feedstock: 50kg/h; ER:0.37. 
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The aforementioned SOFC model is validated by the comparison between literature data and 278 

current simulation values regarding the anode inlet gas, anode outlet gas, voltage, current density 279 

and gross efficiency at same operating conditions referred in [34, 48]. As shown in Table 6, a good 280 

agreement is achieved between our simulation data and reported value. The deviation is found to be 281 

in the range of 0 to 5.8%, which indicates the SOFC model developed in this study is reliable. 282 

Table 6 283 

Comparison the SOFC simulation values with literature data. 284 

Item Literature value [34] Current simulation Error/% 

Anode inlet gas/ vol%    

H2 26.9 27.4 1.85 

CO 5.6 5.7 1.78 

CH4 10.4 9.8 5.77 

H2O 27.8 27.9 0.36 

CO2 23.1 23.2 0.43 

N2 6.2 6.1 1.61 

Anode outlet gas/ vol%    

H2 11.6 11.6 0 

CO 7.4 7.4 0 

H2O 50.9 50.9 0 

CO2 24.9 25 0.4 

N2 5.1 5.1 0 

Voltage/V 0.683 0.692 1.32 
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Current density/(A/m2) 1821 1804 0.93 

SOFC gross efficiency/% 51.28 51.58 0.58 

 285 

Table 7 lists dry gas composition at the outlet of FR for both simulation values and experimental 286 

data at the operating temperature of 700 and 800 ºC. The experiment was carried out in a 10 kW CLC 287 

plant with natural gas as the fuel and NiO/NiAl2O4 as the oxygen carrier [49]. As indicated in Table 7 288 

that the simulation value is nearly identical to the experimental data and the relative difference is 289 

very small (<10%) which shows the simulation methodology of CLC is appropriate/acceptable.  290 

Table 7 291 

Comparison of the dry gas composition at the outlet of FR between the simulation values and experimental data. 292 

Syngas composition/vol% 

TFR:700 ºC TFR:800 ºC 

Experimental Simulation Error/% Experimental Simulation  Error/% 

CO2 94.47 95.3 0.9 96.41 96.3  0.1 

CO 1.32 1.2 9.1 1.11 1.1  0.9 

H2 3.58 3.3 7.8 1.82 1.95  7.1 

 293 

4.2 Simulation results 294 

The proposed process was simulated according to the basic operating conditions shown in Table 295 

1 to Table 5. At the conditions of STFR =0.5, fuel utilization of 0.8, current density of 2200 A/m2 and 296 

operating temperature of AR of 1000 ºC, the simulation results, such as temperature, pressure, mass 297 

flow and molar composition for the key state points (see Fig.2), are listed in Table 8. 298 
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To improve power generation efficiency of the HRSG & CC subsystem, pinch analysis was 299 

conducted by adjusting the steam flow rates of high pressure, medium pressure and low pressure to 300 

construct the hot and cold composite curves with a minimum approach temperature of 10 ºC. Fig.4 301 

presents heat composite curves for HRSG2. As can be observed from this figure that the maximum 302 

heat recovered from the stream of 15 and 18 is about 782 kW. The pinch point shows up at the heat 303 

duty of 156 kW and the corresponding temperature of 145 ºC, which represents the initial 304 

evaporation temperature (bubble point) of the low-pressure steam. 305 

Table 8  306 

Key flow streams of the proposed process. 307 

Flow no.  Temperature Pressure Mass flow molar composition 

 [C] [Bar] [kg/h] H2 CO CO2 N2 O2 H2O NiO Ni NiAl2O4 

1 25 1.00 421.2           

2 25 1.00 209.9     0.05 0.95     

3 283.9 4.00 170.0       1.0    

4 1200 3.5 727.0  0.323 0.264 0.099 0.008  0.294    

5 791 3.45 717.8  0.327 0.268 0.1 0.008  0.298    

6 25 1.00 7179.6     0.79 0.21     

7 650 3.45 7179.6     0.79 0.21     

8 900 3.25 1018.8  0.069 0.05 0.317 0.008  0.555    

9 900 3.25 6878.6     0.821 0.179     

10 980.5 2.75 1090.9  0.003 0.002 0.365 0.008  0.622    

11 980.5 2.75 4338.2        0.04 0.16 0.8 
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12 1000 2.75 6806.5     0.829 0.171     

13 1000 2.75 4410.2        0.2  0.8 

14 749.8 1.01 6806.5     0.829 0.171     

15 367.9 1.01 6806.5     0.829 0.171     

16 90 1.01 6806.5     0.829 0.171     

17 800 1.01 1090.9  0.003 0.002 0.365 0.008  0.622    

18 90 1.01 1090.9  0.003 0.002 0.365 0.008  0.622    

19 40 120 647.5  0.007 0.006 0.965 0.022      

20 37.9 0.05 697.0       1    

 308 

 309 

Fig.4. Heat composite curve for the HRSG2 310 

After the pinch analysis, the energy and exergy performances of the proposed process are 311 

computed and presented in Table 9. The net electricity generated in this process is 815.7 kW with a 312 
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net electrical efficiency of 40.9%. The total exergy fed into the process is 2223.9 kW resulting in the 313 

exergy efficiency of 36.7%. It can also be noticed from this table that the electricity generated by 314 

SOFC shares largest proportion of the total gross electricity, accounting for 42%. The air gas turbine 315 

contributes to 552.3kW electricity due to the expansion of large amount of depleted air. 316 

While from the electricity consumption perspective, the air compression unit takes up largest 317 

share of 325.9 kW because of ample air requirements in SOFC unit as the air utilization factor of 18.2% 318 

(see Table 3). The electrical consumption of plasma torch is determined to be 226.3 kW which is 319 

tantamount to 11.3% of the input LHV of MSW and this proportion decreases significantly in 320 

comparison with that of 32% [12] in a stand-alone plasma gasification system. Besides, the CO2 321 

capture efficiency (defined as the CO2 molar flow rate in stream 19 to the molar flow rate of both CO 322 

and CO2 in the stream 4) is 99.3% and the CO2 compression unit consumes about 76.7 kW. The high 323 

CO2 capture efficiency is mainly because of the employment of chemical looping combustion which 324 

converts the CO into CO2 with lattice oxygen provided in NiO in the fuel reactor. In this study, the 325 

electricity penalty due to CO2 capture and compression accounts for approximately 3% which is lower 326 

than that of conventional amine CO2 capture technologies with 8-10% penalty [50]. 327 

 328 

Table 9  329 

Energy and exergy performance of the proposed process. 330 

Units  Value/kW 

Solid waste input (LHV)  1990 

SOFC  652.5 

CO2 GT  99.3 



24 

Air GT  552.2 

HPST  28.9 

MPST  84.3 

LPST  137.6 

Pump  1.86 

CO2 compression  76.7 

Air compression  325.9 

O2 compression  9.7 

ASU   68.3 

Auxiliary  30.5 

Plasma consumption  226.3 

Net electricity   815.7 

Net electrical efficiency, 𝜂en/%  40.9 

EXsolid  2183.1 

EXwater  30.9 

EXair  9.9 

Exergy efficiency, 𝜂ex/%  36.7 

CO2 capture efficiency/%  99.3 

 331 

The exergy destruction and exergy efficiency distributions of the key components in the 332 

proposed process are presented in Fig. 5(a) and Fig. 5(b), respectively. The exergy destruction for a 333 

unit is defined as the difference between inputs exergy and output exergy, while exergy efficiency 334 
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for a unit is defined in literature [39]. It can be noticed from Fig. 5(a) that the largest exergy 335 

destruction takes place in the BFB-plasma gasification unit (476 kW), which is primarily attributed to 336 

the intrinsically irreversible gasification reactions converting from low entropy specie of carbon to 337 

high entropy species of syngas. Besides, the unconverted carbon, heat loss and mixture of gasifying 338 

agents also contribute to the exergy destruction of gasification unit. The exergy destruction of SOFC 339 

is responsible for 219.1 kW mainly caused by the irreversibility of electrochemical reactions. The CLC 340 

unit shares about 14.7% of the total exergy destruction due to the unavoidable destroy from chemical 341 

reactions. In addition, CO2 compression unit is moderately occupied 115.6 kW exergy destruction 342 

owing to the water separation during cooling and the large electricity input to the compressor of 76.7 343 

kW. The other units of ASU, HRSG2, HE2, Air compressor, HE3 and DC-AC converter are responsible 344 

for 68.2, 54.9, 47.6, 43.9, 34.7, 34.2 kW exergy destruction, respectively. 345 

As indicated by Fig. 5(b), the HRSG1 has the highest exergy efficiency of 98.2% due to the small 346 

temperature difference in heat transfer. However, the exergy efficiency in HRSG2 is about 86.1 % 347 

owing to a large temperature difference between the cold and hot streams. While the largest exergy 348 

destruction is detected in CO2 compression unit, with an exergy efficiency of 67.8%. This is because 349 

the separated CO2 is inherently of high physical exergy at high pressure compared with the state 350 

before compression. The exergy efficiencies of reactive units of BFB-plasma gasification, SOFC and 351 

CLC are 80.7, 87.7 and 89.1%, respectively. In combination with the findings in Fig.5, to improve the 352 

overall exergy efficiency of the entire process, the key is to reduce the exergy destructions of BFB-353 

plasma gasification, SOFC and CLC, which could be achieved via lowering moisture content of MSW, 354 

preheating feed gas temperature to close the operating temperature, reducing heat loss of gasifier, 355 

and circulating of the anode-off gas to anode. 356 
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Fig.5. Exergy destruction (a) and exergy efficiency distributions (b) of the key components for the proposed 360 

process. 361 
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4.3 Sensitivity analysis  362 

In this study, the influences of four key operating parameters, i.e., the steam to fuel ratio, fuel 363 

utilization factor, current density and operating temperature, on both energy and exergy efficiencies 364 

are examined. Fig. 6 shows the effect of STFR on system efficiency. It can be seen in Fig. 6 that when 365 

the STFR increased from 0.2 to 0.6, both the energy and exergy efficiencies show a moderate increase 366 

initially, and then decrease, reaching its maximum energy and exergy efficiency of 40.9 and 36.7%, 367 

respectively, at STFR =0.5. The injection of steam into the gasifier promotes the carbon conversion 368 

(C+H2O→CO+H2), which promotes the increase of the syngas flow rate. Besides, the increment of 369 

power generation is larger than the power consumption of plasma unit. Consequently, the power 370 

production is enhanced and resulted in the improvement of system performances. However, when 371 

STFR is beyond 0.5, further increase of steam requires supplementary energy to maintain the 372 

designated gasification operating temperature, leading to the decrease of system efficiencies. 373 
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Fig.6. Effect of steam to fuel ratio on system efficiency performance. 375 
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The effect of fuel utilization factor on the system efficiencies of the proposed process is shown in 377 

Fig.7. As indicated in this figure that increasing fuel utilization factor in SOFC component leads to 378 

higher energy and exergy efficiencies and then these efficiencies exhibited a decreasing tendency 379 

after Uf is beyond 0.8. At Uf =0.8, the energy and exergy efficiencies are found to be maximum and 380 

their corresponding values are 40.9% and 36.7%, respectively. This phenomenon can be explained by 381 

the enhancement of electrochemical reaction rates leading to the addition of power output from 382 

SOFC when Uf<0.8. Besides, the compression work of air is also promoted as the increase of Uf. 383 

However, the increment of power consumption is lower than that of power output. Hence, increment 384 

in both energy and exergy efficiency are expected. On the contrary, when Uf is beyond than 0.8, 385 

further increase in Uf results in less amount of syngas available in the CLC unit and causes the drop 386 

of the combustion temperature correspondingly. Therefore, the decrease of net power generation 387 

from GT and ST is the main reason responsible for the reduction of system efficacies.  388 
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Fig.7. Effect of fuel utilization factor on system efficiency performance. 390 
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Fig. 8 illustrates the effect of varying current density from 1000 to 3500 A/m2 of SOFC on both the 392 

overall energy and exergy efficiencies. Referring to Fig.8, with increasing of current density, the 393 

energy and exergy efficiencies decrease monotonously from 46.7 to 34.9% and from 41.8 to 31.2%, 394 

respectively. This is mainly due to the reduction of cell voltage leading to the decrease of power 395 

output from SOFC subsystem when the current density increases [46].  396 
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Fig.8. Effect of current density on system efficiency performance. 398 

The effect of changing the air reactor temperature of the CLC on the energy and exergy efficiencies 399 

is presented in Fig.9. Based on Fig.9, when the air reactor temperature changes from 850 to 1100 ºC, 400 

both of the energy and exergy efficiencies are obtained their respective maximum values of 40.9 % 401 

and 36.7 % at the air reactor temperature of 1000 ºC. The increment of system efficiencies derives 402 

from the higher inlet temperature of air reactor turbine contributing to a significant increment of net 403 

power output [39]. Nevertheless, above 1000 ºC, the efficiencies begin to drop owing to the increase 404 

of external energy supplements for the chemical reactions heat generated in AR cannot fully meet 405 

the energy requirement to maintain the higher operating temperature. 406 
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Fig.9. Effect of air reactor temperature on system efficiency performance 408 

 409 

4.4 System performance comparison 410 

To evaluate energy recovery level of the proposed system, net energy efficiency is compared 411 

with that of MSW to power reported by other researchers. The current study considers six integration 412 

power production processes denoted as Case A to F using either combined cycle or SOFC driven by 413 

MSW incineration or gasification. The configurations of Case A to F are briefly outlined in the 414 

following:  415 

 Case A: Integrating incineration and steam power cycle [29, 51-53]. MSW mixed with air are 416 

combusted in the boiler to produce steam. Then, the steam at different pressure levels is 417 

employed to boost the steam turbines for power production.  418 

 Case B: Integrating conventional gasification and combined power cycle [53]. MSW is 419 

gasified firstly and then the syngas is fed into gas turbines followed by steam turbines. 420 
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 Case C: Integrating plasma gasification and combined power cycle [51, 54]. MSW is gasified 421 

using plasma torch and afterwards the generated syngas is sent to gas turbines combined 422 

cycle. 423 

 Case D: Integrating plasma gasification and SOFC as well as steam power cycle [22]. MSW 424 

plasma gasification is integrated with SOFC and followed by a steam cycle. 425 

 Case E: Integrating plasma gasification and SOFC as well as SOEC for power production [9]. 426 

MSW plasma gasification with oxygen-rich air or hydrogen and syngas is directed into SOFC 427 

for power generation. 428 

 Case F: Integrating BFB-Plasma gasification and combined power Cycle [16]. MSW is gasified 429 

in a bubbling fluidized-bed gasifier and then goes to a plasma converter to treatment the 430 

syngas. After that, the syngas is travelled to gas turbine combined cycle. 431 

 Present work: Integrating BFB-Plasma gasification and SOFC as well as CLC combined power 432 

cycle.  433 

Fig. 10 shows the comparison of net energy efficiency performances for the above cases. As 434 

observed from Fig. 10, the incineration system (Case A) has the lowest energy efficiency varied from 435 

15.3 to 21.3%, while the energy efficiency of the integrated conventional gasification system (Case B) 436 

with combined cycle reaches 27.2 %. This is mainly due to the combustion of syngas in gas turbine, 437 

which produces additional power. Besides, the steam cycle has a higher Carnot energy efficiency of 438 

Case B due to higher temperature of flue gas from gas turbines compared with MSW combustion 439 

system. For these systems led by one-stage plasma gasification of Cases C, D and E, the highest energy 440 

efficiency belongs to the combination of SOFC and SOEC. In addition, the energy efficiency of present 441 

work is relative at least 14 % improvement in comparison with that of Case F which also adopts the 442 
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same BFB-Plasma gasification technology. The reason of the efficiency increment can be attributed 443 

to the application of the energy-efficient SOFC unit. Furthermore, the net energy efficiency of present 444 

work is approximately 4% lower than the highest efficiency (44.9%) of Case E which employs pure 445 

hydrogen as the plasma gas in the gasification section and that hydrogen is provided by SOEC. 446 

However, the calculation of the net electrical efficiency in Case E does not previously include the 447 

electrical consumption of the hydrogen generation although the power in SOEC is supplied by a 448 

renewable energy of wind. Besides, the involvement of CO2 capture does not exist in Case E. Hence, 449 

it is reasonable to conclude that the proposed process is thermodynamically more performing and 450 

can realize low-to-zero CO2 emission. 451 
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Fig. 10. Comparison of net energy efficiency performances for different MSW combustion or gasification to power 453 

configurations 454 
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5. Conclusions 455 

In this study, BFB-Plasma gasification, SOFC, CLC and HRSG & CC subsystems are integrated for 456 

power generation using MSW as the fuel. Process simulation results showed that the hybrid system 457 

could achieve a net electrical efficiency of 40.9 % and an exergy efficiency of 36.7 % with a CO2 458 

capture efficiency of 99.3 %. Exergy destruction distribution is the largest in BFB-Plasma gasification 459 

unit accounting for 33.62 % of the total exergy destruction rates. The SOFC and CLC units are 460 

responsible for 15.45 and 14.72 % of the total exergy destruction, respectively. It is found that the 461 

optimal operating conditions are STFR = 0.5, utilization factor of 0.8 and operating temperature of 462 

CLC as 1000 ºC. Besides, it is revealed that higher current density of SOFC shows a negative impact 463 

on system efficiency. In comparison with other MSW to power processes, the proposed process 464 

reaches a higher net electrical efficiency.  465 
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