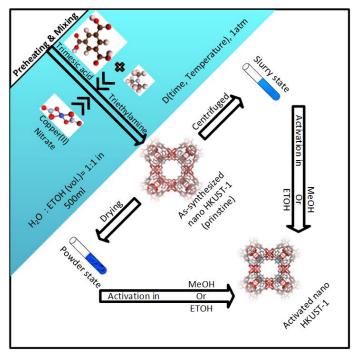


University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo, 315100, China

First published 2018

This work is made available under the terms of the Creative Commons Attribution 4.0 International License: <u>http://creativecommons.org/licenses/by/4.0</u>

The work is licenced to the University of Nottingham Ningbo China under the Global University Publication Licence:


https://www.nottingham.edu.cn/en/library/documents/researchsupport/global-university-publications-licence.pdf

1 Optimized synthesis of nano-scale high quality HKUST-1 under mild conditions

2 and its application in CO₂ capture

- 3 Xueliang Mu^{1,2}, Yipei Chen^{1,3}, Edward Lester³, Tao Wu^{1,2,*}
- ⁴ ¹New Materials Institute, The University of Nottingham Ningbo China, Ningbo 315100, P. R. China
- ²Municipal Key Laboratory of Clean Energy Conversion Technologies, The University of
 Nottingham Ningbo China, Ningbo 315100, P. R. China
- 7 ³Department of Chemical and Environmental Engineering, The University of Nottingham,
- 8 Nottingham NG7 2RD, P. R. China
- 9 * Corresponding author: <u>Tao.Wu@nottingham.edu.cn</u>

10

11

12 Highlights

- A fast and efficient method was developed for the synthesis of HKUST-1
- Synthesis was conducted under low temperature and atmospheric pressure
- The MOFs was synthesized in nano-scale with high BET surface area and high yield
- Activation agent has shown significant influence on BET surface area of the MOFs
- 17 The HKUST-1 prepared shows excellent CO₂ uptake capacity

18

19 Abstract

20 This study was focused on the development of an optimized method for the rapid synthesis of 21 nano-scale HKUST-1 with high yield, high surface area and high CO₂ uptake capacity but under 22 mild conditions. A series of HKUST-1 were synthesized under different conditions, such as 23 preparation time, temperature, activation method, etc. It was found that the nano-scale HKUST-1 MOFs (T85-3-Pm4-120) was successfully synthesized at a high yield (87%) under low 24 temperature (85°C) using a mixture of Triethylamine(TEA), Cu²⁺ and trimesic acid (TMA) with a 25 26 molar ratio of 6:3:2. The highest porosity was achieved via this pristine HKUST-1 being activated 27 (powder activation, drying at 120 °C) four times using methanol to remove impurities trapped in 28 the pores. The best HKUST-1 MOFs (T85-3-Pm4-120) hereby prepared was then tested in CO₂ 29 adsorption and exhibited an adsorption capacity of 2.5 mmol/g. It is therefore demonstrated that 30 the new approach proposed in this study is a rapid and effective way to synthsize highly porous 31 HKUST-1 MOFs under mild conditions, which is of comparable surface area and CO₂ uptake 32 capacity with those MOFs prepared under harsh conditions.

33 Keywords:

34 HKUST-1, nano scale, fast synthesis, mild synthesis condition, CO₂ adsorption

35

36 **1. Introduction**

Metal–organic frameworks (MOFs) are hybrid crystalline compounds consisting of organic ligands bridging inorganic moieties. MOFs exhibit unique structure and outstanding properties in porosity, pore size and surface area and have been used in various fields such as gas storage, adsorption, separation, and catalysis¹. Recently, more and more effort has been made to explore the application of nano-scale MOFs in areas, such as liquid phase catalysis²⁻³, adsorption⁴ and drug delivery⁵, etc. 43 HKUST-1, a copper-based MOF, is one of the first reported MOFs⁶ whose structure is based on 44 Cu²⁺ ions linked with 1,3,5-benzenetricarboxylate struts. The conventional solvothermal method 45 for the preparation of HKUST-1 involves heating the solution up to 180 °C to form crystalline Cu₃ (BTC)₂⁷. The Cu₃ (BTC)₂, synthesized at 75–120 °C, has to be kept in an autoclave for a long period, 46 47 varying from 1 day up to a few weeks, to remove impurities that are trapped in the pores ⁸. 48 Although slow diffusion techniques require significantly long time for the synthesis of MOFs, it is 49 still the preferred method for the synthesis of MOFs due to its tunable reaction conditions, such 50 as, the control of the rate of nucleation and crystal growth by the control of concentration gradient (temperature gradient)⁹⁻¹³. Normally, the synthesis of MOFs with good thermal stability 51 52 has to be conducted under hydro/solvothermal conditions. To date, commonly adopted methods for the rapid preparation of HKUST-1 include microwave heating, ultrasound irradiation, 53 54 mechanochemistry, and solvothermal synthesis, which are summarized in Table 1. Normally, 55 conventional solvothermal and electrochemical methods require long time to synthesize HKUST-1 with high surface area. Although mechanochemical, microwave heating and ultrasound 56 57 irradiation methods can be used to produce HKUST in much shorter time, the surface area of the 58 MOFs prepare is not high enough (<1500 m²/g). In addition, the size of HKUST-1 particles 59 prepared via these methods is in micron scale and cannot meet some special requirements in 60 catalysis when nano particles are preferred to enable higher mass transfer rate or to achieve higher thermal resistance ¹⁴⁻¹⁵. Because of this, there has been numerous work being carried out 61 on the synthesis of nanoscale MOFs ¹⁶⁻¹⁸. However, there is still a need to develop cost-effective 62 techniques for the preparation of nanoscale HKUST-1 MOFs under mild conditions, which are 63 able to produce MOFs with high surface area (>1500 m^2/g). 64

Table 1 MOFs prepared und	ler Different Methods
---------------------------	-----------------------

Method	Microwave heating ¹⁹	Ultrasound irradiation ¹⁹	Mechano- chemical ²⁰	Conventional solvothermal ²¹	Electro- chemical ²²
Surface area (m ² /g)	1080	1156 ¹⁹	1421	1000-1800	1500- 2100*
Particle Size (µm)	10	0.2-0.4	>50 ^a	1.5–3.5	15.9*
Temperature (°C)	140	25-40	-	100-180	-
Synthesis Time (min)	60	1	20	720-4320	150

⁶⁶ * Basolite C300, Sigma-Aldrich. ^a from SEM image²⁰

In this study, the effort was made to develop and optimize a new method for the preparation of HKUST-1 MOFs in a fast and efficient manner. Attempts were also made to control the MOFs in nanoscale with high surface area and high yield. The preparation conditions were optimized to enable the preparation of nanoscale HKUST-1, which was further studied to show its potential in CO₂ capture.

72 2. Experiment

73 2.1. Preparation of HKUST-1

74 In this study, a novel hydro/solvo-thermal method was developed for the rapid preparation of 75 porous HKUST-1 MOFs. Firstly, 0.03 mole of copper nitrate trihydrate (Sigma Aldrich, 98%) was dissolved in a 250 ml of deionized water to form Solution A, while 0.02 mole of trimesic acid (TMA) 76 77 (Sigma Aldrich, 95%) and 0.06mol Triethylamine (TEA) (Sigma Aldrich, 99.8%, anhydrous) were 78 added in a 250 ml of ethanol (Sigma Aldrich, 99%) to form Solution B. These two solutions were 79 then mixed and heated under constant stirring to the pre-set temperature level, i.e., 25, 50, 75, 80 80, 85°C, and kept isothermal for a period of time (3, 6 or 9 h). The solution was then cooled 81 down to room temperature in an ice bath and centrifuged to produce pristine HKUST-1, which 82 was activated using slurry state activation, powder state activation or slurry-powder state

activation to remove internal impurities. The slurry state activation refers to the activation of the 83 84 centrifuged HKUST-1 after synthesis; the powder state activation refers to activation of the dried 85 centrifuged HKUST-1; while the slurry-powder state activation refers to the slurry state activation 86 followed by drying and further activation of the HKUST-1 powder. In this research, the activation 87 agents used are ethanol and methanol. The activation process was performed in a reflux 88 condenser. The amount of ethanol or methanol used was kept at the same level as 62.5 ml per 89 gram of pristine HKUST-1. The activation process was conducted for 3 h. After that, the activated 90 solution was centrifuged to obtain precipitation and dried at 120 °C to obtain final HKUST-1 91 powder. The sample being activated by slurry/powder state activation method using 92 ethanol/methanol as the agent is denoted as Se/Pe or Sm/Pm ('S and P' stands for slurry state and powder state, while 'e and m' stands for ethanol and methanol). A suite of samples was 93 94 screened under different conditions, such as reaction period (3, 6, and 9 h), reaction temperature 95 (25, 50, 75, 80, 85°C), activation methods, and drying temperature (120 or 180°C) and are named as based on preparation conditions. For example, T85-3-Sm1Pm1-120 stands for a HKUST-1 being 96 97 prepared under 85 °C for 3 hour, followed by firstly slurry state activation with methanol as the agent and drying at 120 °C using an air dryer, and then undergoing powder activation using 98 99 methanol as the agent followed by drying at 120 °C.

100 2.2. Characterization

101 Morphology and particle size of the synthesized HKUST-1 MOFs were analyzed by using a 102 Scanning Electron Microscope (SEM, ZEISS Sigma VP/Oxford Instruments). The high quality SEM 103 images, which show around 100 particles, were processed using ImageJ to find out particle size 104 distribution (particle size is determined based on the Feret's dimension). Structure of the solid

105 phase and crystallinity were analyzed by using a Powder X-ray diffraction (XRD) with a scanning 106 rate of 0.02°/s (2 θ) using monochromatic CuK_{α} radiation (Bruker D8 A25) at 40kV and 35mA. 107 The surface area (Brunauer–Emmett–Teller, BET) and pore size of the HKUST-1 were measured 108 using a Micromeritics Tristar 3020 following the method described elsewhere ²³. Thermal 109 decomposition behavior was studied using a thermogravimetric analyzer (TGA, NETZSCH STA49 110 F3), which involved the heating of the sample from 35 to 900 °C at a heating rate of 10 °C/min 111 under N₂ atmosphere ²⁴. The pH value of the solution was measured by using a METTLER TOLEDO 112 pH analyzer (FiveEasy Plus- FE28). The crystallinity of each sample was studied to distinguish any 113 possible variation of the crystal pattern. The crystallinity percentage (%C) was defined as the ratio 114 of the sum of the relative intensity of the five most intense peaks and can be calculated using Eq.(1)²⁵. 115

116 %Crystallinity =
$$\frac{\sum_{i=1}^{5} I_{relsample}}{\sum_{i=1}^{5} I_{relsample} of reference} \times 100$$
 (Eq. 1)

In this calculation, the C300 (C300 is commercial product acquired from Sigma) was used as the
 reference (100% crystallinity).

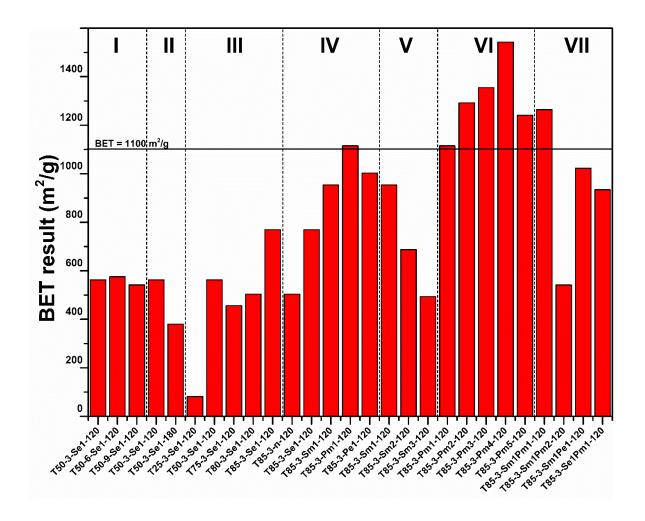
119 • CO₂ adsorption testing

120 CO₂ adsorption was conducted in a TGA system (NETZSCH STA49 F3) following the procedures 121 adopted by others²⁶. Initial treatment of the activated sample was carried out in N₂ at 150 °C for 122 12 h. The adsorption was carried out using ultra purity CO₂ and N₂ (99.999%). A gas mixture of 123 133 mL/min of CO₂, 100 mL/min of N₂ and 100 mL/min of protective gas (N₂) was introduced into 124 the sample chamber. Temperature and pressure of the adsorption chamber was maintained at 125 27 °C and 1 bar, respectively. 126 CO₂ isotherm of the HKUST-1 MOFs at 27 °C was obtained using the Micromeritics ASAP 2020.
127 The degas of the activated sample was conducted at 150 °C for 12 h. The adsorption pressure
128 varied from 2.7 mbar to 1100 mbar, as described elsewhere²⁷.

The CO₂ and N₂ adsorption–desorption cycle at 27°C was obtained using the TGA. Approximately 130 10 mg HKUST-1 MOFs was pre-treated at 150°C for 2 h in a nitrogen environment. The 131 adsorption-desorption cycle was carried out at a flowrate of 60 mL/min of CO2 (99.999%) gas 132 and 40 mL/min of N2 (99.999%), respectively.

133 3. Results & Discussion

134 **3.1.** Screening synthesis of HKUST-1


135 In this study, the effect of synthesis temperature, time, pretreatment temperature and activation 136 methods on the synthesis of HKSUT-1 MOFs was investigated. The first attempt was made to find 137 out an optimal reaction duration and temperature for the synthesis of MOFs. From Fig. 1, it can be seen that the variation in reaction time from 3 h to 9 h showed no significant impact on the 138 139 specific surface area for samples in Region I. That means 3 hours provide sufficient time to allow 140 the synthesis reaction to complete, which is shorter than the time required for conventional 141 HKUST-1 synthesis (\ge 24h)²¹. This is due to the addition of the alkaline TEA, wich is consistent 142 with the finding that the alkaline TEA could accelerate the deprotonation of H₃BTC and promote the nucleation of particles into nanoscale²⁸. Furthermore, in Region II, the pristine HKUST-1 had 143 144 gone through the pretreatment in an air dryer under two different temperatures, 120 and 180 145 °C. The results indicated that 120°C does not have a negative effect on the pores in the HKUST-1.

146 It can be seen from Fig. 1 that in Region III, the two samples prepared at 50 and 85°C showed 147 significantly different BET surface areas. It is obvious that 85°C favors the formation of HKUST-1 148 with large BET surface area. This low temperature (85°C) is much lower than the temperature 149 (180 °C) adopted for the synthesis of HKUST-1 MOFs by Chui et al.⁷ The low temperature level 150 can inhibit the formation of the by-product (Cu₂O) and therefore contribute to a high selectivity 151 and yield.

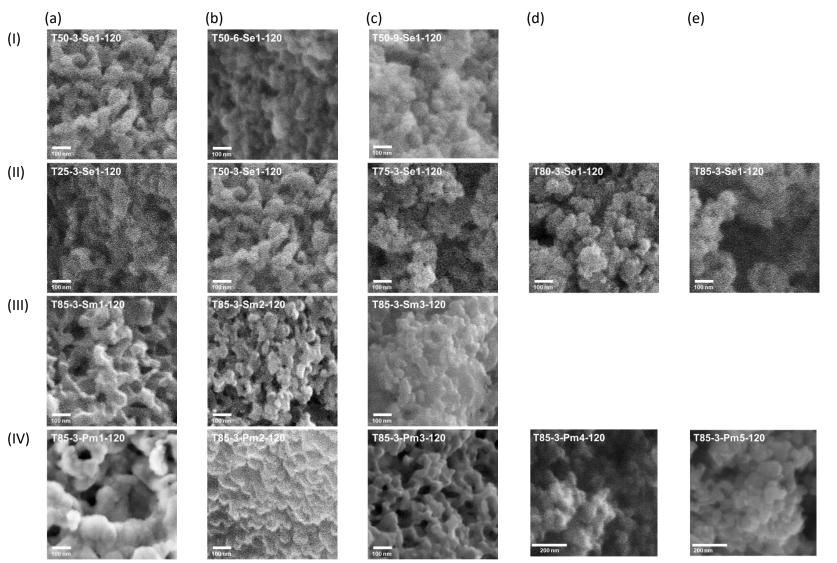
152 After synthesis, the pristine HKUST-1 has to be activated to remove the impurities (unconverted 153 reactant or byproduct) that are trapped in the pores. The activation can also activate the metal 154 sites, which are always surrounded by water and other gas molecules. As shown in Region IV, pristine HKUST-1 was activated via either slurry state or powder state activation by ethanol or 155 156 methanol. The BET surface area of T85-3-Se1-120 and T85-3-Pe1-120 was lower than that of T85-157 3-Sm1-120 and T85-3-Pm1-120. It is reported that that methanol is a better activation agent and 158 can remove more impurities than ethanol²⁹. It is clear that the BET surface area of T85-3-Pe1-120 159 and T85-3-Pm1-120 was higher than that of T85-3-Sm1-120 and T85-3-Pe1-120, which suggests 160 that powder state activation is more efficient in the removal of impurities from pores.

161 In Region V, it shows that repeated slurry activation resulted in lower BET surface area, which 162 might be due to the destruction of micropores to form larger pores and subsequently result in 163 lower BET surface area. However, repeated powder state activation shows different impacts on 164 BET surface area, as shown in Region VI. Four times of powder state activation result in the 165 highest surface area around 1542.4 m²/g. 166 The combination of slurry-powder state activation was applied to activate pristine HKUST-1 and 167 the BET surface area of individual samples is shown in Region VII in Figure 1. It is found that the 168 BET surface area of T85-3-Sm1Pm1-120, T85-3-Se1Pm1-120 and T85-3-Sm1Pe1 was higher than 169 that of their respective samples being activated once via slurry state activation. For example, T85-3-Sm1Pm1-120 has a BET surface area of 1264.6 m²/g, which is higher than that of T85-3-Sm1-170 171 120 (954.4 m²/g). In addition, it was found that the BET surface area of T85-3-Sm1Pm1-120 was 172 higher than that of T85-3-Sm1Pe1-120 (1022.7 m²/g), which again proves the powder state 173 activation using methanol as the activation agent is a reliable and efficient method. However, the 174 BET surface area of one more times of powder activation by methanol (T85-3-Sm1Pm2-120) was 175 reduced. Therefore, it can be concluded that slurry state activation removes the impurities in the pores but does not significantly contribute to the formation of higher BET surface area. 176

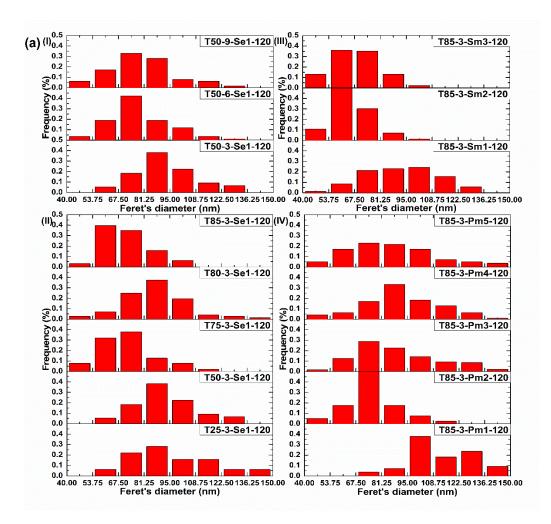
Among the 17 samples prepared, the highest BET was found for T85-3-Pm4-120, which is 1542.4m²/g. There are also other five samples, i.e., T85-3-Pm1-120, T85-3-Pm2-120, T85-3-Pm3-120, T85-3-Pm5-120, and T85-3-Sm1Pm1-120, that have BET surface area greater than 1100 m²/g. The highest BET surface area is attributed to the cleaning of pores, which is associated with a final HKUST-1 yield of 67%.

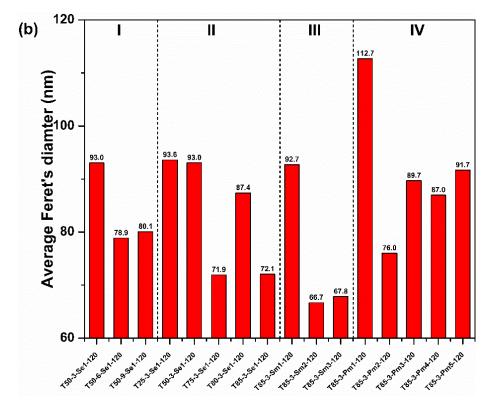
183 Fig. 1 Screening of HKUST-1 with large specific surface area. I, reaction period; II, Drying 184 temperature; III, synthesis temperature; IV, slurry/powder state activation using 185 methanol/ethanol as the activation agent; V, repeated slurry state activation using methanol 186 as the activation agent; VI, repeated power state activation using methanol as the activation 187 agent; VII combination of slurry and powder activation. (T25, T50, T75, T80, T85-A stand for 188 reaction temperature at 25, 50, 75, 80, 85°C. T50-3, T50-6, T50-9 stand for reaction duration of 189 3, 6, and 9 h at 50°C, respectively. T50-3-Se1-180 indicate the pristine HKUST-1 yielded at 50°C 190 with a duration of 3 h was activated once using slurry state activation method and dried at 180°C. 191 Sm1 means slurry state HKUST-1 was washed by using methanol. Pe1 means powder state

HKUST-1 was washed by using ethanol once. Sm1Pm1 means slurry state washing firstly, andthen followed by powder state washing.)


194 **3.2.** The nano HKUST-1 formation and its morphological features

To understand how the morphology of HKUST-1 is affected by synthesis conditions and powder activation process, SEM analysis was conducted with morphological features of different samples shown in Fig. 2 (I) – (IV). It is evident that all samples are of nano-particle size (<100 nm) but form agglomerates. In the Region I of Fig. 2 and Fig. 3, the samples synthesized under 50 °C for 3/6/9h were similar in morphology, but particle size of the samples decreased with the increase in synthesis period. That means longer synthesis period favors the formation of smaller nanoscale particle.


202 Regarding the influence of synthesis temperature on the morphology of HKUST-1, as shown in 203 Region II of Fig. 2 and Fig. 3, the samples synthesized from 25 to 85°C after 3 h demonstrated 204 differences in particle size distribution and average particle size. The SEM image (Fig. 2(II)) shows 205 similar morphology, which are featured with small spherical particles. Under low temperature 206 (25°C), it shows crystal structure with blocky shape and obvious sharp edges and has the highest 207 average particle size of 93.6 nm, whereas samples prepared under higher temperatures 208 (50, 75, 85°C) are more spherical and are of smaller particle size. It was obvious that the MOFs 209 prepared at 50 °C and 85°C formed are of similar average particle size (~72 nm) as shown in the 210 Region II of Figure 3(b). However, the peak (53.8-67.5 nm) of T85-3-Se1-120 is higher than the 211 peak (67.5-87.2 nm) of T50-3-Se1-120 in the Region II of Figure 3(a).


212 In this study, further investigation was conducted to understand the influence of powder 213 activation and slurry activation process on the samples prepared under the optimal synthesis 214 temperature of 85°C. It was found that when the pristine sample had undergone powder 215 activation using methanol as the activation agent twic, the average particle size was the smallest 216 (76.0 nm) with the peak of particle distribution in the range of 67.5-81.25nm. However, the 217 particle size increased when the sample had undergone more times of powder state activation, 218 which could be attributed to the crystal growth of the primary particle during the activation 219 process, i.e., the precursors being washed out of the pores to form new MOFs on the surface of 220 the primary MOF particle.

For comparison purpose, the slurry state activation using methanol as activation agent was also 221 222 conducted. The samples, T85-3-SmX-120 (X=1, 2, 3), were prepared and are shown in Fig. 2(III). 223 These samples showed different morphologies and demonstrated that particle size can be 224 reduced followed by the additional times of slurry state activation, which is shown in the Fig. 3a 225 (III). It can be seen from Fig. 3b (III) and (IV) that slurry state activation leads to the formation of 226 samples with samller particle size a compared with powder state activation. However, although 227 slurry activation process can lead to the formation of smaller size nano particles, it cannot form nano-scale HKUST-1 particle with BET surface area greater than 1100 m²/g (as shown in Region 228 229 V of Fig. 1). Despite the increase in particle size after 3 times of powder state activation, the specific surface area of T85-3-PmX-120 (X=1, 2, 3, 4) increased from 1115.3 to 1542.4m²/g as a 230 231 result of multiple powder state activations. Therefore, it can be concluded that to form nanoscale 232 sample with large surface area, the sample shall be prepared under 85°C and activated via 233 powder state activation for at least two times.

- Fig. 2 Morphology of HKUST-1 MOFs prepared under different preparation conditions. I, reaction time. II, synthesis temperature. III, slurry state activation.
- 236 IV, powder state activation.

240

Fig. 3 Particle size (based on Feret's diameter) of each synthesized sample vs different preparation method (results obtained from ImageJ). a, particle size distribution. b, average particle size (average Feret's diameter). I, reaction time. II, synthesis temperature. III, slurry state activation process. IV, powder state activation.

245 Table 2 Structural properties of samples prepared under 85°C

PREPARATION	S_{BET}^1	S _{LANGMUIR} ²	V _{TOTAL PORE} ³	Vmicro-pore ⁴	%V _{MICRO-PORE} ⁵	pH*
METHOD	(m²/g)	(m²/g)	(cm³/g)	(cm ³ /g)	(cm ³ /g)	
T85-3-N-120	503.5	580.1	0.31	0.20	0.65	3.63
T85-3-Se1-120	769.6	904.7	0.58	0.29	0.50	3.60
T85-3-Sm1-120	954.4	1197.7	0.49	0.40	0.82	3.86
T85-3-Pm1-120	1032.3	1235.4	0.55	0.45	0.82	7.01
T85-3-Pe1-120	1003.0	1161.1	0.47	0.38	0.81	6.07
T85-3-Sm2-120	687.5	719.7	0.49	0.23	0.47	4.78
T85-3-Sm3-120	493.5	516.4	0.36	0.16	0.44	5.63

T85-3-Pm2-120	1292.3	1452.4	0.56	0.47	0.84	7.70
T85-3-Pm3-120	1354.6	1579.3	0.63	0.54	0.86	7.87
T85-3-Pm4-120	1542.4	1647.9	0.65	0.57	0.88	8.17
T85-3-Pm5-120	1241.0	1358.2	0.53	0.46	0.87	8.20
T85-3-Sm1Pm1-120	1264.6	1437.8	0.57	0.49	0.86	6.22
T85-3-Sm1Pm2-120	541.6	731.2	0.45	0.24	0.53	6.88
T85-3-Sm1Pe1-120	1022.7	1184.5	0.48	0.40	0.83	6.18

- 246 Note:1. Specific surface area by BET. 2. Specific surface area by Langmuir. 3. Total pore volume
- by original Horvath-Kawazoe. 4. Micro pore volume by t-plot. 5. Micro pore volume percentage
- 248 in total volume. * pH values of solution were measured after activation.

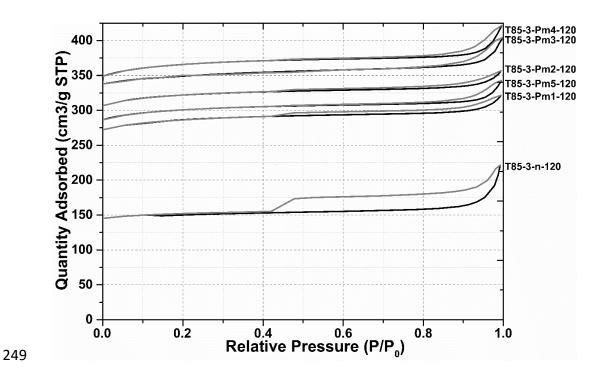


Fig. 4 Nitrogen adsorption and desorption isotherms of the synthesized HKUST-1. For eachsample, top line is the adsorption isotherm, bottom line is the desorption isotherm.

252 3.3. Nitrogen isotherm analyses

253 It is found that N₂ adsorption rate increases at a low relative pressure (0.0< P/P₀<0.1) (as shown 254 in Fig. 4), the shape of each line indicates that they are Type I isotherm according to the IUPAC 255 (International Centre for Theoretical and Applied Chemistry) classification ^{26, 30}. Samples with 256 Type I isotherm are of microporous (<2nm) structure ³¹. The hysteresis loop at a higher relative 257 pressure (P/P₀>0.4) indicates capillary condensation of mesopores for N₂, which contributes to the stacking combination of large particle of HKUST-1³² or the creation of defects under such 258 synthesis method ³³. That is, the hysteresis loop for T85-3-n-120 and T85-3-Pm1-120 would be 259 260 due to the defects, because this loop was the cavitation phenomenon³⁴ that occurs when the 261 pore size is less than 6 nm. Besides, the hysteresis loop for T85-3-PmX-120 (X=2,3,4,5) at P/P0 > 0.8 appeared due to larger pores over 10 nm ³⁵. This loop is caused by the interparticle pores of 262 nanoparticle agglomerate³⁶. 263

264 The influence of activation process on the surface properties of HKUST-1 was also investigated in this study. As shown in Table 2, BET surface area after activation is in the range of 503-1542 m²/g, 265 which is very close to the values reported by Diring ³⁷ and Ameloot³⁸, but much higher than those 266 267 obtained by Chui⁷. Regarding total pore volume, the reported values are in the range of 0.21 - $0.79 \text{ cm}^3/\text{g}^{39}$, whereas the effective pore volume was reported as $0.82 \text{ cm}^3/\text{g}^{40}$. In this study, the 268 as-synthesized samples exhibited a total pore volume of 0.31-0.65 cm³/g, which is comparable 269 270 with reported data. The relatively low N₂ adsorption capacity of the raw material (T85-3-N-120) 271 is attributed to some micropores being blocked by TEA and/or its derivatives. The high N₂ 272 adsorption capacity indicates that the modulator is absent from the pores after activation. The 273 percentage of micropore volume shown in Table 2 suggests that these samples are comprised of 274 plenty of micropores. It can be seen from Table 2 that activation process (powder, slurry and 275 combination activation) has significant influences on pore properties (BET, Langmuir, Total pore 276 volume, Micropore volume, and Microporosity). As for slurry activation, both methanol and 277 ethanol can be used as the agent to clean the interior of pore and therefore improve N₂ 278 adsorption capacity. However, more times (>2) of slurry state activation using methanol as the 279 activation agen would result in smaller BET surface area. This is associated with the decrease in 280 the percentage of micropores, which means excessive times of slurry state activation might 281 damage micropores and form more mesopores.

As showin in Table 2, the slurry state activation followed by power state activation once led to the formation of HKUST-1 with better pore properties. However, powder state activation is more effective in the removal of impurities trapped in pores and multiple powder state activation could result in high BET surface area (T85-3-PM4-120, 1542.4m²/g).

286 Meanwhile, the pH value of the solution after activation was monitored by using a pH meter, the 287 results of which are shown in Table 2. It is clear that pH value generally increased with BET specific 288 surface area, which is associated with the removal of impurities and TEA derivatives. It is 289 speculated that powder state activation retained the high BET surface area and did not damage 290 the pore structure of HKUST-1. Therefore, the powder state activation by methanol is considered 291 as an appropriate method for the treatment of the pristine HKUST-1.

292 3.4. XRD analysis

293 XRD analysis was conducted to show the crystalline phases of the porous HKUST-1. It can be seen 294 that all the diffraction peaks in Fig 5 (a) and (b) match well with the pattern of C300 and

simulation, indicating that these samples are pure phase of HKUST-1. From Fig 5, it is evident that
 the XRD peak positions and relative intensities of the synthesized MOFs also agree well with those
 of the simulated HKUST-1 (red spikes labelled by star at the bottom of Fig. 5)⁴¹. Due to the low
 temperature condition adopted for the synthesis of HKUST-1, the diffraction peaks of Cu₂O (36.7
 PDF#04-003-6433) do not show in the XRD spectrum, which means that (Cu₂O) was not formed.

300 It can be seen from Table 3 that the synthesis temperature has significant impacts on the 301 crystallinity of the samples. In the samples of TX-3-Se1-120 (X=25, 50, 75, 80, 85), the crystallinity 302 percentage of T85-3-Se1-120 is very close to that of the C300 (%Crystallinity=95.4%), which 303 demonstrates that the low synthesis temperature (85°C) can lead to the formation of HKUST-1 304 with appropriate crystal structure. After the samples were further processed via powder state 305 activation, the crystallinity percentage of each sample did not vary significantly compared with 306 the variation in temperature. The crystallinity percentage is improved until 5 times of powder 307 state activation. However, further powder state activation does not show much influence on 308 crystallinity percentage. Therefore, to obtain the highest crystallinity percentage of HKUST-1, the 309 sample shall be prepared under 85°C with the four times of powder activation process.

In addition, the hydration degree of the HKUST-1 could be determined by the I_{200}/I_{220} ratio⁴². where higher I_{200}/I_{220} ratio indicates a smaller hydration degree. Normally, a smaller hydration degree indicates that more copper coordination sites are accessible for other molecules, such as CO₂. The T85-3-Pm4-120 shows the highest value of I_{200}/I_{220} , which suggests that it can capture more CO₂ than any other samples. This result suggests that the proper condition (T85-3-Pm4-120) lead to the formation of HKUST-1 with desired properties in CO₂ adsorption.

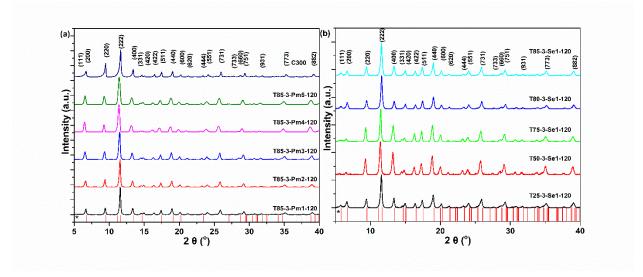


Fig. 5 XRD spectrum of each sample. (a) HKUST-1 activated by repeated powder state activation.
(b) HKUST-1 synthesized under different reaction temperatures. * indicates simulated PXRD data
from single crystal data.

320 Table 3 XRD patterns of relative peak intensity based on the HKUST-1 peak intensity of (222)

	I ₍₂₀₀₎	I ₍₂₂₀₎	I ₍₂₂₂₎	I ₍₄₀₀₎	I ₍₄₂₀₎	%Crystallinity	I ₍₂₀₀₎ /I ₍₂₂₀₎
	%	%	%	%	%		
T85-3-Pm5-120	30.2	30	100	24.0	7.4	98.3	1.01
T85-3-Pm4-120	38.5	28.7	100	18.8	6.7	98.9	1.34
T85-3-Pm3-120	27.5	28.1	100	23.2	6.1	94.9	0.98
T85-3-Pm2-120	22.8	27.3	100	19.2	6.1	90.0	0.84
T85-3-Pm1-120	20.2	24.2	100	20.4	6.5	87.9	0.83
T85-3-Se1-120	14.3	27.2	100	29.3	15.1	95.4	0.53
T80-3-Se1-120	17.3	25.4	100	21.7	13.9	91.5	0.68
T75-3-Se1-120	7.8	43.7	100	48.6	10.6	108.2	0.18
T50-3-Se1-120	5.2	47.7	100	63.0	13.3	117.7	0.11
T25-3-Se1-120	17.1	26.8	100	26.2	13.6	94.3	0.64
C300	16.0	47.6	100	27.4	3.8	100.0	0.34

³²¹ Note: %Crystallinity was based on Eq. 1.

322 3.5. TGA analyses

323 The HKUST-1 (Cu₃(BTC)₂(H₂O)₃ xH₂O, x \approx 3) was tested in TGA to show its thermal stability. As 324 shown in Fig. 6, these samples have similar TG curves from 35 to 900°C. At temperatures below 325 120°C, the weight loss is due to the desorption of physisorbed water or gases. This was followed 326 by the release of water trapped in the pores when the temperature was raised up to 180°C. The 327 HKUST-1 was then heated up to 350°C and exhibited modest loss of weight, as shown in DTG 328 curve of the Fig. 6. However, the weight loss increased significantly when temperature was raised 329 above 350°C. At higher temperatures, some metal were reduced and MOFs were decomposed 330 to form carbon. The weight loss levelled off at higher temperatures when MOFs were completely 331 transformed into CO₂, CO, Cu, Cu₂O, and CuO. This finding is consistent with what has been 332 reported by others, the MOFs retained its molecular formula but lost the microporous nature 333 after being heated to 350 to 427°C⁴³.

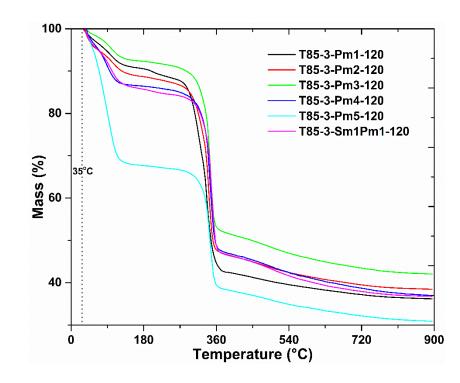
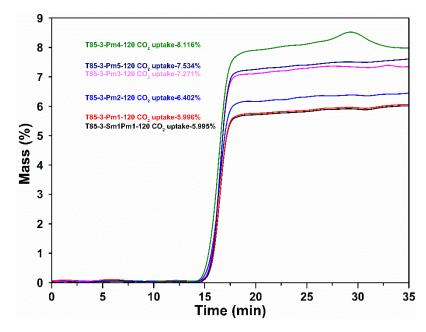
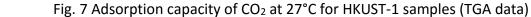
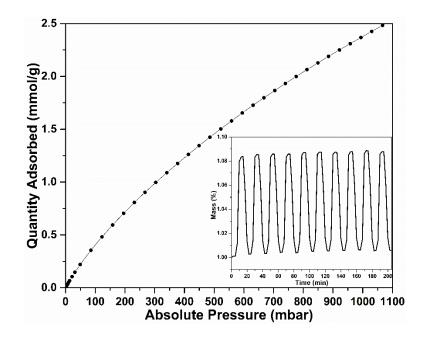



Fig. 6 TGA analysis of T85-3A-Pm1, Pm2, Pm3, Pm4, Pm5 and Sm1Pm1-120 from 35°C to 900°C
within N₂ atmosphere.


337 **3.6.** CO₂ adsorption analyses

338 It was found that the presence of divalent metals significantly increased CO₂ binding strength and 339 resulted in higher selectivity in CO₂ adsorption ⁴⁴. Due to its crystalline structure and the existence of Cu²⁺ metal ions, HKUST-1 is expected to have high affinity toward CO₂. Normally, CO₂ 340 341 adsorption can be evaluated by two methods, i.e., static and dynamic adsorption. In this study, 342 the static adsorption test was carried out at 27°C with pressure from 0-1bar. In the dynamic test, 343 a thermogravimetric study using pure CO₂ was carried out at 27°C. 344 The CO₂ uptake of T85-3-PmX-120 (X=1,2,3,4,5) and T85-3-Sm1Pm1-120 is shown in Fig. 7. The CO₂ 345 uptake capacity of T85-3-Pm4-120 sample exhibits a steep rise in a short time, and reach a maximum 346 of 8.12% wt. (1.84 mmol/g), at 27°C and 1 bar. It is generally believed that CO₂ adsorption capacity is dependent on pore volume of the adsorbent⁴⁵. The larger the microporosity, the higher the CO₂ 347 348 adsorption capacity. Besides, the I_{200}/I_{220} ratio of each sample can be used as an indicator for CO2


349 adsorption capacity.

To reveal the CO₂ adsorption property of T85-3-Pm4-120, CO₂ adsorption isotherm was obtained 352 353 and is shown in Fig. 8. The CO₂ recycle of T85-3-Pm4-120 was measured at 27°C under 1 bar. The 354 results showed that the CO₂ desorption process finished rapidly during N₂ purging under the 355 same conditions and the CO₂ adsorption capacity remains almost unchanged after ten 356 adsorption/desorption cycles, which demonstrated the good adsorption stability of T85-3-Pm4-357 120. It is clear that T85-3-Pm4-120 has a CO₂ uptake of 11 wt% (2.5mmol/g) under static 358 adsorption, which is higher than reported data under similar experimental conditions as shown 359 in Table 4.

362	Fig. 8 CO ₂ isotherm of T85-3-Pm4-120 at 27	C, inset graph is CO ₂ recycle of T85-3-Pm4-120
-----	--	--

363	Table 4 Comparison of CO ₂ adsorption capacity for others" HKUST-1

Literature	Adsorption manner	Adsorption capacity mmol/g	Adsorption temperature ° C
Sheng et al. ⁴⁶	Dynamic adsorption	1.82	30
Chugh et al. 47	Dynamic adsorption	1.45	30
Shen et al. 48	Static adsorption	0.15	20 (0.75 bar)
Yunxia et al. ⁴⁹	Dynamic adsorption	1.8	32 (5 bar)
This research	Dynamic adsorption	1.84	27 (1 bar)
This research	Static adsorption	1.95	27 (0.75 bar)
This research	Static adsorption	2.5	27 (1 bar)

364 4. Conclusions

365 In conclusion, the optimized hydro/solvo-thermal approach developed in this research is a cheap 366 and efficient method for the synthesis of nanoscale HKUST-1 MOFs under low temperature and 367 atmospheric pressure using methanol as the activation agent. Both the slurry and powder state activation methods were found to have significant influence on the specific surface area, micropore volume and mesopore size, while powder state activation is more effective in the removal of impurities trapped in HKUST-1. The **T85-3-Pm4-120** showed a high BET surface area of 1542.4m²/g and an average size of 87 nm. It was also found that the HKUST-1 prepared in this study showed a high CO₂ adsorption capacity with an uptake around 11wt% (2.5mmol/g) at 27°C and 1 bar.

374 Acknowledgement

Following funding bodies are acknowledged for partially sponsoring this research: National Key
R&D Program of China (2017YFB0602602 and 2017YFC0210400). The University of Nottingham
Ningbo China is also acknowledged for the provision of full scholarship to the first two authors.
Authors 1 and 2 contributed equally to this work.

380 Reference

Farrusseng, D., *Metal-organic frameworks: applications from catalysis to gas storage*. John Wiley
 & Sons: 2011.

Wee, L. H.; Bajpe, S. R.; Janssens, N.; Hermans, I.; Houthoofd, K.; Kirschhock, C. E.; Martens, J. A.,
 Convenient synthesis of Cu3(BTC)2 encapsulated Keggin heteropolyacid nanomaterial for application in
 catalysis. *Chem Commun (Camb)* 2010, *46* (43), 8186-8.

- 386 3. Jiang, D.; Mallat, T.; Krumeich, F.; Baiker, A., Polymer-assisted synthesis of nanocrystalline copper-387 based metal–organic framework for amine oxidation. *Catalysis Communications* **2011**, *12* (7), 602-605.
- Tanaka, D.; Henke, A.; Albrecht, K.; Moeller, M.; Nakagawa, K.; Kitagawa, S.; Groll, J., Rapid
 preparation of flexible porous coordination polymer nanocrystals with accelerated guest adsorption
 kinetics. *Nat Chem* 2010, *2* (5), 410-416.
- Beg, S.; Rahman, M.; Jain, A.; Saini, S.; Midoux, P.; Pichon, C.; Ahmad, F. J.; Akhter, S., Nanoporous
 metal organic frameworks as hybrid polymer-metal composites for drug delivery and biomedical
 applications. *Drug Discov Today* 2017, *22* (4), 625-637.
- Vishnyakov, A.; Ravikovitch, P. I.; Neimark, A. V.; Bülow, M.; Wang, Q. M., Nanopore structure and
 sorption properties of Cu– BTC metal– organic framework. *Nano Letters* 2003, *3* (6), 713-718.
- Chui, S. S.-Y.; Lo, S. M.-F.; Charmant, J. P.; Orpen, A. G.; Williams, I. D., A chemically
 functionalizable nanoporous material [Cu3 (TMA) 2 (H2O) 3] n. *Science* 1999, *283* (5405), 1148-1150.
- Biemmi, E.; Christian, S.; Stock, N.; Bein, T., High-throughput screening of synthesis parameters in
 the formation of the metal-organic frameworks MOF-5 and HKUST-1. *Microporous and Mesoporous Materials* 2009, *117* (1-2), 111-117.
- Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J., Reticular synthesis
 and the design of new materials. *Nature* 2003, *423* (6941), 705-714.
- 403 10. Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F., Crystallized Frameworks with Giant Pores:
 404 Are There Limits to the Possible? *Accounts of Chemical Research* 2005, *38* (4), 217-225.
- 405 11. Kitagawa, S.; Kitaura, R.; Noro, S., Functional porous coordination polymers. *Angew Chem Int Ed* 406 *Engl* **2004**, *43* (18), 2334-75.
- 407 12. Ferey, G., Hybrid porous solids: past, present, future. *Chem Soc Rev* **2008**, *37* (1), 191-214.
- 408 13. Stock, N.; Biswas, S., Synthesis of metal-organic frameworks (MOFs): routes to various MOF
 409 topologies, morphologies, and composites. *Chem Rev* 2012, *112* (2), 933-69.
- 410 14. Chaturvedi, S.; Dave, P. N.; Shah, N. K., Applications of nano-catalyst in new era. *Journal of Saudi*411 *Chemical Society* 2012, *16* (3), 307-325.
- 412 15. Yang, Q.; Li, C., Catalysis in Porous Material Based Nanoreactors: a Bridge between
 413 Homogeneous and Heterogeneous Catalysis. Bridging Heterogeneous And Homogeneous Catalysis:
 414 Concepts, Strategies, And Applications, 351-396.
- 415 16. Lestari, W. W.; Arvinawati, M.; Martien, R.; Kusumaningsih, T., Green and facile synthesis of MOF
- 416 and nano MOF containing zinc(II) and benzen 1,3,5-tri carboxylate and its study in ibuprofen slow-release.
- 417 *Materials Chemistry and Physics* **2018**, *204*, 141-146.

- 418 17. Wahiduzzaman; Allmond, K.; Stone, J.; Harp, S.; Mujibur, K., Synthesis and Electrospraying of
 419 Nanoscale MOF (Metal Organic Framework) for High-Performance CO2 Adsorption Membrane. *Nanoscale*420 *Research Letters* 2017, *12* (1), 6.
- Li, P.; Klet, R. C.; Moon, S. Y.; Wang, T. C.; Deria, P.; Peters, A. W.; Klahr, B. M.; Park, H. J.; Al-Juaid,
 S. S.; Hupp, J. T.; Farha, O. K., Synthesis of nanocrystals of Zr-based metal-organic frameworks with csqnet: significant enhancement in the degradation of a nerve agent simulant. *Chem Commun (Camb)* 2015,
 51 (54), 10925-8.
- 425 19. Khan, N. A.; Jhung, S.-H., Facile Syntheses of Metal-organic Framework Cu3(BTC)2(H2O)3under
 426 Ultrasound. *Bulletin of the Korean Chemical Society* 2009, *30* (12), 2921-2926.
- Schlesinger, M.; Schulze, S.; Hietschold, M.; Mehring, M., Evaluation of synthetic methods for
 microporous metal–organic frameworks exemplified by the competitive formation of [Cu2(btc)3(H2O)3]
 and [Cu2(btc)(OH)(H2O)]. *Microporous and Mesoporous Materials* **2010**, *132* (1-2), 121-127.
- 430 21. Kim, J.; Kim, S.-H.; Yang, S.-T.; Ahn, W.-S., Bench-scale preparation of Cu 3 (BTC) 2 by ethanol reflux:
 431 Synthesis optimization and adsorption/catalytic applications. *Microporous and Mesoporous Materials*432 2012, 161, 48-55.
- 433 22. Lee, Y.-R.; Kim, J.; Ahn, W.-S., Synthesis of metal-organic frameworks: A mini review. *Korean*434 *Journal of Chemical Engineering* **2013**, *30* (9), 1667-1680.
- Zhao, H.; Yang, G.; Gao, X.; Pang, C. H.; Kingman, S. W.; Wu, T., Hg(0) Capture over CoMoS/gammaAl2O3 with MoS2 Nanosheets at Low Temperatures. *Environ Sci Technol* **2016**, *50* (2), 1056-64.
- 437 24. Yao, Q.; Su, J.; Zou, X., SUMOF-5: a mesoporous metal-organic framework with the tbo topology
 438 built from the dicopper paddle-wheel cluster and a new tritopic linker. *Zeitschrift für Kristallographie* 439 *Crystalline Materials* 2013, *228* (7), 323-329.
- 440 25. Blanco-Brieva, G.; Campos-Martin, J. M.; Al-Zahrani, S. M.; Fierro, J. L. G., Efficient solvent 441 regeneration of Basolite C300 used in the liquid-phase adsorption of dibenzothiophene. *Fuel* **2013**, *113*, 442 216-220.
- 443 26. Majchrzak-Kucęba, I.; Bukalak-Gaik, D., Regeneration performance of metal–organic frameworks.
 444 Journal of Thermal Analysis and Calorimetry **2016**, *125* (3), 1461-1466.
- Kim, H. R.; Yoon, T.-U.; Kim, S.-I.; An, J.; Bae, Y.-S.; Lee, C. Y., Beyond pristine MOFs: carbon dioxide
 capture by metal–organic frameworks (MOFs)-derived porous carbon materials. *RSC Advances* 2017, 7 (3),
 1266-1270.
- Xin, C.; Zhan, H.; Huang, X.; Li, H.; Zhao, N.; Xiao, F.; Wei, W.; Sun, Y., Effect of various alkaline
 agents on the size and morphology of nano-sized HKUST-1 for CO2adsorption. *RSC Adv.* 2015, *5* (35),
 27901-27911.
- 451 29. Bae, J.; Choi, J. S.; Hwang, S.; Yun, W. S.; Song, D.; Lee, J.; Jeong, N. C., Multiple Coordination
 452 Exchanges for Room-Temperature Activation of Open-Metal Sites in Metal-Organic Frameworks. *ACS Appl*453 *Mater Interfaces* 2017, 9 (29), 24743-24752.
- 454 30. Ye, S.; Jiang, X.; Ruan, L.-W.; Liu, B.; Wang, Y.-M.; Zhu, J.-F.; Qiu, L.-G., Post-combustion CO 2 455 capture with the HKUST-1 and MIL-101 (Cr) metal–organic frameworks: adsorption, separation and 456 regeneration investigations. *Microporous and Mesoporous Materials* **2013**, *179*, 191-197.
- 457 31. Klimakow, M.; Klobes, P.; Thünemann, A. F.; Rademann, K.; Emmerling, F., Mechanochemical 458 Synthesis of Metal–Organic Frameworks: A Fast and Facile Approach toward Quantitative Yields and High 459 Specific Surface Areas. *Chemistry of Materials* **2010**, *22* (18), 5216-5221.

Li, L.; Liu, X. L.; Gao, M.; Hong, W.; Liu, G. Z.; Fan, L.; Hu, B.; Xia, Q. H.; Liu, L.; Song, G. W.; Xu, Z.
S., The adsorption on magnetic hybrid Fe3O4/HKUST-1/GO of methylene blue from water solution. *J. Mater. Chem. A* 2014, *2* (6), 1795-1801.

463 33. Fang, Z.; Dürholt, J. P.; Kauer, M.; Zhang, W.; Lochenie, C.; Jee, B.; Albada, B.; Metzler-Nolte, N.;
464 Pöppl, A.; Weber, B.; Muhler, M.; Wang, Y.; Schmid, R.; Fischer, R. A., Structural Complexity in Metal–
465 Organic Frameworks: Simultaneous Modification of Open Metal Sites and Hierarchical Porosity by
466 Systematic Doping with Defective Linkers. *Journal of the American Chemical Society* 2014, *136* (27), 9627467 9636.

468 34. Thommes, M., Physical Adsorption Characterization of Nanoporous Materials. *Chemie Ingenieur*469 *Technik* 2010, *82* (7), 1059-1073.

Jang, H. R.; Oh, H.-J.; Kim, J.-H.; Jung, K. Y., Synthesis of mesoporous spherical silica via spray
pyrolysis: Pore size control and evaluation of performance in paclitaxel pre-purification. *Microporous and Mesoporous Materials* 2013, 165, 219-227.

473 36. Park, J. T.; Roh, D. K.; Patel, R.; Kim, E.; Ryu, D. Y.; Kim, J. H., Preparation of TiO2 spheres with
474 hierarchical pores via grafting polymerization and sol–gel process for dye-sensitized solar cells. *Journal of*475 *Materials Chemistry* 2010, *20* (39), 8521.

476 37. Diring, S.; Furukawa, S.; Takashima, Y.; Tsuruoka, T.; Kitagawa, S., Controlled multiscale synthesis
477 of porous coordination polymer in nano/micro regimes. *Chemistry of Materials* 2010, *22* (16), 4531-4538.

478 38. Ameloot, R.; Gobechiya, E.; Uji-i, H.; Martens, J. A.; Hofkens, J.; Alaerts, L.; Sels, B. F.; De Vos, D.
479 E., Direct patterning of oriented metal–organic framework crystals via control over crystallization kinetics
480 in clear precursor solutions. *Advanced materials* 2010, *22* (24), 2685-2688.

39. Schlesinger, M.; Schulze, S.; Hietschold, M.; Mehring, M., Evaluation of synthetic methods for
microporous metal–organic frameworks exemplified by the competitive formation of [Cu 2 (btc) 3 (H 2 O)
3] and [Cu 2 (btc)(OH)(H 2 O)]. *Microporous and Mesoporous Materials* 2010, *132* (1), 121-127.

484 40. Liu, J.; Culp, J. T.; Natesakhawat, S.; Bockrath, B. C.; Zande, B.; Sankar, S.; Garberoglio, G.; Johnson,
485 J. K., Experimental and theoretical studies of gas adsorption in Cu3 (BTC) 2: an effective activation
486 procedure. *The Journal of Physical Chemistry C* 2007, *111* (26), 9305-9313.

487 41. Yakovenko, A. A.; Reibenspies, J. H.; Bhuvanesh, N.; Zhou, H.-C., Generation and applications of
488 structure envelopes for porous metal–organic frameworks. *Journal of Applied Crystallography* 2013, 46
489 (2), 346-353.

490 42. He, X.; Gan, Z.; Fisenko, S.; Wang, D.; El-Kaderi, H. M.; Wang, W. N., Rapid Formation of Metal491 Organic Frameworks (MOFs) Based Nanocomposites in Microdroplets and Their Applications for CO2
492 Photoreduction. ACS Appl Mater Interfaces 2017, 9 (11), 9688-9698.

493 43. Huang, L.; Joshi, K. L.; van Duin, A. C.; Bandosz, T. J.; Gubbins, K. E., ReaxFF molecular dynamics
494 simulation of thermal stability of a Cu 3 (BTC) 2 metal–organic framework. *Physical Chemistry Chemical*495 *Physics* 2012, *14* (32), 11327-11332.

496 44. Dauth, A.; Love, J. A., Synthesis and reactivity of 2-azametallacyclobutanes. *Dalton Trans* 2012, 41
497 (26), 7782-91.

498 45. Liu, S.-H.; Lin, Y.-C.; Chien, Y.-C.; Hyu, H.-R., Adsorption of CO2 from Flue Gas Streams by a Highly
499 Efficient and Stable Aminosilica Adsorbent. *Journal of the Air & Waste Management Association* 2011, 61
500 (2), 226-233.

- 46. Ye, S.; Jiang, X.; Ruan, L.-W.; Liu, B.; Wang, Y.-M.; Zhu, J.-F.; Qiu, L.-G., Post-combustion CO2 capture with the HKUST-1 and MIL-101(Cr) metal–organic frameworks: Adsorption, separation and regeneration investigations. *Microporous and Mesoporous Materials* **2013**, *179*, 191-197.
- 504 47. Chugh, R.; Bajpai, P.; Bhunia, H. Carbon dioxide adsorption on metal organic framework Basolite 505 C300. 2015.
- 48. Aprea, P.; Caputo, D.; Gargiulo, N.; Iucolano, F.; Pepe, F., Modeling carbon dioxide adsorption on
 microporous substrates: comparison between Cu-BTC metal– organic framework and 13X zeolitic
 molecular sieve. *Journal of Chemical & Engineering Data* 2010, *55* (9), 3655-3661.
- 509 49. Zhao, Y.; Cao, Y.; Zhong, Q., CO2 Capture on Metal-Organic Framework and Graphene Oxide
 510 Composite Using a High-Pressure Static Adsorption Apparatus. *Journal of Clean Energy Technologies* 2014,
 511 34-37.