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Abstract In this paper, the multi-product facility location problem in a two-stage supply chain 

is investigated.  In this problem, the locations of depots (distribution centres) need to be 

determined along with their corresponding capacities. Moreover, the product flows from the 

plants to depots and onto customers must also be optimised. Here, plants have a production 

limit whereas potential depots have several possible capacity levels to choose from, which are 

defined as multilevel capacities. Plants must serve customer demands via depots. Two integer 

linear programming (ILP) models are introduced to solve the problem in order to minimise the 

fixed costs of opening depots and transportation costs. In the first model, the depot capacity is 

based on the maximum number of each product that can be stored whereas in the second one, 

the capacity is determined by the size (volume) of the depot. For large problems, the models 

are very difficult to solve using an exact method. Therefore, a matheuristic approach based on 

an aggregation approach and an exact method (ILP) is proposed in order to solve such 

problems. The methods are assessed using randomly generated data sets and existing data sets 

taken from the literature. The solutions obtained from the computational study confirm the 

effectiveness of the proposed matheuristic approach which outperforms the exact method. In 

addition, a case study arising from the wind energy sector in the UK is presented.  

Key words:  Facility location, matheuristic, ILP. 

 

1. Introduction 

The two-stage facility location problem (TSFLP) with two types of facilities can be 

classified as a type of hierarchical facility location problem. In the first stage, products 

produced/supplied by plants are transferred to capacitated depots. The location and the number 
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of plants and depots can be treated as fixed or as decision variables. Their capacity may be 

finite (capacitated) or unlimited (uncapacitated). In the second stage, the products are delivered 

to customers. The problem to be addressed includes finding an optimal distribution structure 

in order to minimise both the fixed (opening) cost of the plants and depots and the 

transportation costs associated with both stages.  

The two-stage location problem has been investigated in the literature. A dual-based 

optimization procedure for the two-echelon uncapacitated facility location problem was 

proposed by Gao and Robinson (1992). The two-stage facility location with a single sourcing 

constraint on depot-plant assignment and customer-depot assignment was investigated by 

Tragantalerngsak et al. (1997) where six Lagrangean relaxation heuristics are introduced.  

Marín & Pelegrín (1999) applied Lagrangian relaxation to the resolution of two-stage location 

problems. Klose (1999 and 2000) studied the two-stage facility location with a single product, 

depot location, plant-depot multiple source flow and single source customer-depot assignment. 

An effective linear programming approach and a Lagrangean relax-and-cut algorithm are 

proposed to achieve lower and upper bounds for the problem. Tragantalerngsak et al. (2000) 

also proposed a Lagrangean-based branch-and-bound method to solve the problem. Hinojosa 

et al. (2000) studied a heuristic algorithm based on Lagrangean relaxation to solve a multi-

period two-echelon multicommodity capacitated plant location problem.  

Keskin & Üster (2007a and 2007b) proposed a scatter search for a multi-type transhipment 

point location problem with multi-commodity flow and studied meta-heuristic approaches with 

memory and evolution for a multi-product production/distribution system design problem 

respectively. Li et al. (2011) proposed a Lagrangean-based heuristic for a two-stage facility 

location problem with handling costs with multiple products and three layers of nodes: plants 

with limited production capacities, capacitated depots to be located and customers with known 

demands per product. The aim of their model is to minimize a total cost comprising depot 

opening, transportation and handling costs. Li et al. (2014) investigated a multi-product facility 

location problem in a two-stage supply chain in which plants have a production limit, potential 

depots have limited storage capacity and customer demands must be satisfied by plants via 

depots. A hybrid method is developed where the initial lower and upper bounds are obtained 

by a Lagrangean based heuristic and a weighted Dantzig–Wolfe decomposition and path-

relinking combined method are applied to improve obtained bounds. Several variants of the 

two-stage location problem were also studied by Li et al. (2012), Rodríguez et al. (2014), 

Camacho-Vallejo et al. (2015), and Mišković and Stanimirović (2016).  
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The papers cited above deal with the two-stage facility location problem with fixed 

capacity for each potential depot. However, in practical situations, the capacity of the depot is 

also considered as a decision variable which needs to be determined (Correia and Captivo, 

2003). This means that the problem is not only to find the optimal location of the depot but also 

its capacity. In this study, we not only deal with one product but also with multiple products 

meaning that a depot may have a different capacity for each product. To the best of our 

knowledge, this type of problem has not yet been addressed in the literature. Therefore, this 

paper proposes new mathematical models and a solution method to deal with the two-stage 

capacitated facility location problem in the presence of multilevel capacities.  

The main contributions of this paper are as follows:  

 Propose for the first time mathematical models for the two-stage capacitated facility 

location problem in the presence of multi-product and multilevel capacities, 

 Propose an effective matheuristic approach based on an aggregation method to solve the 

problem,  

 Provide a new dataset for the new problem and produce good quality solutions for 

benchmarking purposes.  

The remainder of this paper is organised as follows. Mathematical models for the two-

stage capacitated facility location problem considering the presence of multilevel capacities are 

presented in Section 2. Section 3 discusses the proposed matheuristic approach to solve the 

problem. The computational results are presented in Section 4 followed by conclusions in the 

final section. 

 

2. Problem Formulation 

In this section, two mathematical models of the two-stage capacitated facility location 

problem considering the presence of multilevel capacities are presented. Here, a set of potential 

depots to choose from is given where the depots to be opened (opened depots) can be 

determined by solving the models. In the first model, which we refer to as Model A, each 

potential depot has an associated set of possible capacities for storing each product with 

different fixed costs. The capacity is related to the maximum amount of units that can be stored 

for each product in the depot. In this paper, we refer to this capacity as the ‘product capacity’. 

For example, suppose that there are 2 products (Product P1 and P2) where the possible 
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capacities of a depot for these products are 10, 15 and 30 for Product P1 and 80, 120 and 160 

for product P2. Here, the first decision is to determine whether we will open this depot or not. 

The second is to decide whether both products will be stored in this depot. The depot may store 

both products P1 and P2 or just one of them. Finally, the optimal capacity for each product for 

this depot needs to be found. 

In the second proposed model, termed Model B, the capacity of a depot is based on the 

size (volume) of the depot that is required to be built. In this model, a set of possible capacities 

(volume) for each potential depot is given. In this study, we refer to this capacity as the ‘volume 

capacity’. The first decision generated by this model is to determine whether the depot should 

be opened or not whilst the second is to decide how big a depot needs to be built.  Here, we 

assume that the volume needed to store one unit product is known. The total volume needed to 

store all products must not exceed the size of the opened depot.   

 

2.1 Model A 

In model A, there are two types of fixed (opening) cost where the first is the setup (fixed) 

cost for opening a depot. The second fixed cost is related to the capacity of each product used 

in the depot. The fixed cost is dependent on the product capacity and the location of the depot. 

Therefore, the fixed cost of a potential depot may be different from that of others. An opened 

depot is also not necessarily built to store all products. In other words, the opened depot may 

keep only selected products. In this model the first total fixed cost can be determined using 

decision variable jQ  and the second one by jpdŶ . The following notations are used to describe 

the sets, parameters, and decision variables of Model A.  

Sets 

I : set of plants with i as its index and Il   

J : set of potential depots with j as its index and Jm   

K : set of customers with k as its index and Kn   

P : set of products with p as its index and Po   

jpD  : set of product capacities at potential depot j for storing product p with d as its index 

and jpjp D .  
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Parameters 

ips  : the capacity of plant i ( Ii ) to produce product p )( Pp  

kpw  : the demand of customer k ( Kk ) for product p )( Pp   

jf
~

 : the fixed cost for opening depot j )( Jj  

jpdf̂  : the fixed cost to store product p )( Pp  using product capacity d )( jpDd  in depot 

j )( Jj  

jpdb̂  : the number of product p )( Pp  that can be stored in depot j )( Jj  when using 

product capacity d )( jpDd  

ijpc  : unit transportation cost of product p )( Pp  from plant i )( Ii  to depot j )( Jj  

jkpĉ  : unit transportation cost of product p )( Pp  from depot j )( Jj  to customer k 

)( Kk  

 

Decision Variables 

ijpX  : the amount of product p )( Pp  transported from plant i )( Ii  to depot j )( Jj  

jkpX̂  : the amount of product p )( Pp  transferred from depot j )( Jj  to customer k 

)( Kk  

jpdŶ  = 1, if depot j )( Jj  uses product capacity d )( jpDd  to store product p )( Pp  or  

 = 0 otherwise 

jQ  = 1, if depot j )( Jj  is open (selected) or  

 = 0 otherwise 

 

The problem can be modelled as an integer linear problem (ILP) as follows. 

Min              
      



Jj Kk Pp

jkpjkp

Ii Jj Pp

ijpijp

Jj Pp Dd

jpdjpd

Jj

jj cXcXYfQf

jp

ˆˆˆˆ~  (1) 

Subject to 

 PpIisX ip

Jj

ijp 


,,  (2) 

 PpJjYbX

jpDd

jpdjpd

Ii

ijp  


,,ˆ  (3) 

 PpJjQY j

d

jpd

jp




,,

1



 (4) 
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 PpKkwX kp

Jj

jkp 


,,ˆ  (5) 

 PpJjXX

Kk

jkp

Ii

ijp  


,,ˆ  (6) 

 PpJjIiX ijp  ,,integer ,0  (7) 

 PpKkJjX jkp  ,,integer,0ˆ  (8) 

 }1,0{jpdY ,     jpDdPpJj  ,,  (9) 

 }1,0{jQ ,     Jj  (10) 

In the objective function (1), the first term represents the fixed cost of opening the depots, the 

second term is the fixed cost of the depots to store the products, the third term is the total 

transportation cost from the plants to the depots and the fourth term is the total transportation 

cost from the depots to the customers. Constraints (2) ensure that the total number of products 

transferred from a supplier does not exceed its capacity. Constraints (3) guarantee that the 

capacity constraints at the depots are satisfied. Constraints (4) indicate that each opened depot 

only uses at most one capacity level for each product. Constraints (5) ensure that the demand 

of each customer for each product is met. Constraints (6) state flow conservation constraints 

for the depots. Constraints (7) and (8) impose non-negativity and integer conditions on the 

number of products delivered. Constraints (9) and (10) refer to the binary nature of the variables 

Y and Q (the decisions whether a depot is opened or not and which capacity is used by the 

opened depot). 

 

2.2 Model B 

In the second model, model B, the capacity considered is based on the required size 

(volume) of the depot. In contrast to Model A, the fixed cost in Model B only consists of one 

term as the fixed cost includes those of both its opening and the storing of products, based on 

its capacity. In this model the total fixed cost can hence be calculated based on variable decision 

jdY . Several possible volume capacities for each depot are considered in this model where the 

volume capacity of a potential depot has a fixed cost that is also dependent on its size and 

location. The dimension/volume of each product is required in this model in order to determine 

the capacity constraints of the depots. The notations used for sets and parameters in this model 

are similar to the ones provided in the previous model (model A) with some revisions described 
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as follows. Set jpD  is replaced by jD̂  whereas parameters jpdf̂  and jpdb̂  are substituted by 

jdf   and jdb  respectively. Parameter jf
~

 is not required in this model but parameter p  is 

added.  

Sets 

jD̂  : set of feasible volume capacities at potential depot j with d as its index and 

jj D̂ˆ  .  

 

Parameters 

jdf  : the fixed cost for opening depot j )( Jj  using volume capacity d )ˆ( jDd   

jdb  : the volume (size) of depot j )( Jj  using volume capacity d )ˆ( jDd   

p  : the volume required to store a unit of product p )( Pp  

Decision Variables 

ijpX  and jkpX̂  as defined in the previous model.  

jdY  = 1, if depot j )( Jj  uses volume capacity d )ˆ( jDd   or = 0 otherwise 

The problem can be modelled as an integer linear problem as follows. 

Min           
     



Jj Kk Pp

jkpjkp

Ii Jj Pp

ijpijp

Jj Dd

jdjd cXcXYf

j

ˆˆ

ˆ

 (11) 

Subject to 

 PpIisX ip

Jj

ijp 


,,  (12) 

 JjbYX

jDd

jdjd

Ii Pp

pijp   
 

,
ˆ

  (13) 

 JjY

jDd

jd 


,1
ˆ

 (14) 

 PpKkwX kp

Jj

jkp 


,,ˆ  (15) 

 PpJjXX

Kk

jkp

Ii

ijp  


,,ˆ  (16) 

 PpJjIiX ijp  ,,integer ,0  (17) 

 PpKkJjX jkp  ,,integer,0ˆ  (18) 
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 }1,0{jdY ,     jDdJj ˆ,   (19) 

The objective function (11) aims to minimise the sum of the fixed costs of opening depots and 

transportation costs. The first term of this objective function represents the fixed cost of 

opening the depots based on the capacity of the depots, the second term is the total 

transportation cost from the plants to the depots, and the third term is the total transportation 

cost from the depots to the customers.  Constraints (12) enforce the capacity constraints of the 

plants. Constraints (13) ensure that the size (volume) of depots is enough to store the products. 

Constraints (14) make sure that each opened depot only uses one volume capacity. Constraints 

(15) guarantee that the demand of each customer is satisfied. Constraints (16) state flow 

conservation constraints for the depots.  

 

3. The solution method  

The classical two-stage capacitated facility location problem (TSCFLP) is an NP-hard 

optimization problem as it represents a generalization of the simple plant location problem, 

which is proved to be NP-hard by Krarup and Pruzan (1983). The proposed model with 

multilevel capacities is even harder to solve than the classical TSCFLP using an exact method 

(via an optimizer software such as CPLEX, Lindo, and Xpress) especially when the size of the 

problem is relatively large. To overcome this weakness a matheuristic approach is developed 

by integrating an aggregation technique and an exact method. We refer to this method as a 

MAAT (Matheuristic Approach incorporating an Aggregation Technique).  

When the location problems involve a large number of demand points, it may be 

sometimes impossible and time consuming to solve to optimality (Francis et al., 2009). It is 

quite common to aggregate demand points/depots when solving large scale location problems. 

The main idea behind the aggregation is to simplify the problem by reducing the number of 

demand points/depots to be small enough that an optimiser can be used to solve the reduced 

problem within a reasonable amount of computing time. However, the approximation involved 

may lead to a level of sub-optimality when the aggregated solution is put into practice in the 

actual real-world situation. The aggregation technique has successfully addressed large facility 

location problems such as for large p-median (Irawan et al., 2014; Irawan and Salhi, 2015a) 

and p-centre problems (Irawan et al., 2016). A review on aggregation techniques for large 

facility location problems is provided by Irawan and Salhi (2015b). 
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The proposed matheuristic approach (MAAT) is developed to solve both Models A and B 

presented in Section 2. Matheuristics have been successfully used to solve tackle facility 

location problems (Stefanello et al., 2015; and Irawan et al., 2017). The proposed method 

consists of three stages where the main steps of this approach are depicted in Figure 1. The first 

stage is an iterative process that incorporates the aggregation of potential depot sites and the 

implementation of the proposed local search. Firstly, m potential depot sites are aggregated into 

μ potential sites, with μ << m. The value of m is determined based on the maximum number 

(upper bound) of the facilities that need to be opened )( . The value of ρ can be approximated 

by following expressions: 

 

 











































jpd
DdJj

Kk

kp

Pp
b

w

jp

ˆMinMin

Max  for Model A (20) 

 

 

 
















































jd
DdJj

Kk

pkp

Pp
b

w

j

ˆMinMin

Max

ˆ



  for Model B (21) 

Here,    where β is a parameter. When choosing the aggregated potential depot sites, 

the aggregation includes the depot sites obtained from the previous iteration (the best solution, 

S*). The remaining (μ-|S*|) potential depots are randomly chosen from the m potential depot 

sites. The main idea behind this is to make sure that the reduced problem has a feasible solution. 

The resulting aggregated problem with l plants, μ depots and n customers is then solved by 

CPLEX within   seconds. A duality gap (%Gap) is also set as a termination criterion where 

CPLEX will stop when the %Gap reaches ε%. Let Z  be the terminating objective function 

value and S  be the corresponding vector of the obtained facility configuration. The description 

of the proposed local search is presented in the following subsection. The obtained depots 

location configuration, if it is better than the previous one, is then fed to the next iteration as 

part of the set of the aggregated potential depot sites. The process is repeated T times and the 

best solution (S*) from this step will be fed to the next step. The values of β and T influence 

the quality of the solution obtained. The chance of getting a better solution is higher when the 

values of β and T are set higher as this will increase diversification. However, the computational 

time also increases for higher values of β and T.  
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Figure 1. The proposed matheuristic approach (MAAT) 

In the second stage (Stage 2), the proposed local search is applied to solve the original 

problem (without aggregation) starting from the best depot configuration obtained from the 

previous stage. The obtained solution (S*) from the local search on the original problem is then 

fed into the final stage where the mathematical formulation of Model A or Model B is solved 

by an exact method (CPLEX). In the final stage, when solving Model A and Model B, the 

number of potential depots is reduced from m to |S*|. In other words, the set of potential depot 

sites (J) is replaced by S* (the incumbent solution). CPLEX will find the best location to open 

the depots (if necessary), determine the best capacity for each opened depot, the products flows 

Initialisation 

Define T, β, τ, ε and   . Set Z  and S* = Ø.  

Stage 1  

1. Find the maximum number (upper bound) of the facilities that need to be opened )( .  

2. Set     

3. Execute the following step T times: 

a. Aggregate m to μ potential facility sites using a random approach and by including 

the facility locations in the incumbent solution (S*).   

b. Solve the aggregated problem using the exact method (CPLEX) within   seconds. 

A duality gap (%Gap) is also set as a termination criterion where CPLEX will stop 

when the %Gap reached ε%. Let Z  be its objective function value with S  as vector 

of the obtained facility configuration.  

c. If  ZZ  then set ZZ   and SS 
. 

Stage 2 

Apply the proposed local search on the original problem using Z  and 
S  obtained from 

Stage 1 as the initial solution. In other words, we call LocalSearch ( Z  and 
S ).  

Stage 3 

Implement the exact method (CPLEX) to solve model 1-11 (for solving Model A) and 12-

20 (for solving Model B) within    seconds using the obtained |S*| depot locations from the 

previous stage. In other words, in the model the set of potential depot sites (J) is replaced 

by S*. The model will find the optimal capacity for each depot and the objective function 

value Z . 
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(integer) from plants to depots and from depots to customers, and calculate the objective 

function value (Z*). 

 

The proposed local search 

The proposed local search is a hybridisation of the fast interchange heuristic proposed by 

Whitaker (1983) and an exact method. We enhance the heuristic by incorporating the exact 

method to solve the multi-product capacitated transhipment problem (MPTP). The exact 

method is integrated within the local search to optimally solve the transhipment problem 

whenever the locations of opened depots along with their capacity are known/fixed. Moreover, 

we also enhance this heuristic by replacing a depot in the current solution with the potential 

depot (not in current solution) that is not too far from the removed depot. By restricting the 

search, the local search runs relatively fast at the expense of a small loss in quality. 

For Model A, in the case where the location of the opened depots along with their capacity 

for each product are known, the problem can be treated as the multi-product capacitated 

transhipment problem, which we refer to as the MPTP-A. The MPTP-A is also relatively easy 

to solve when we relax the amount of products transported from one node to others to a real 

value instead of an integer one. The MPTP will hence be a linear programming formulation. 

Let JS   be the set of opened depots and jpa  be the product capacity used by depot j to store 

product p. The mathematical model for the MPTP-A is as follows: 

Decision Variables 

ijpX  : the amount of product p )( Pp  transported from plant i )( Ii  to depot j )( Jj  

jkpX̂  : the amount of product p )( Pp  transferred from depot j )( Jj  to customer k 

)( Kk  

The MPTP-A can be modelled as a linear problem as follows. 

Min         
     



Sj Kk Pp

jkpjkp

Ii Sj Pp

ijpijp

Sj Pp

jpa

Sj

j cXcXff
jp

ˆˆˆ~  (22) 

Subject to 

 PpIisX ip

Sj

ijp 


,,  (23) 

 PpSjbX
jpjpa

Ii

ijp 


,,ˆ  (24) 
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 PpKkwX kp

Sj

jkp 


,,ˆ  (25) 

 PpSjXX

Kk

jkp

Ii

ijp  


,,ˆ  (26) 

 PpSjIiX ijp  ,,,0  (27) 

 PpKkSjX jkp  ,,,0ˆ  (28) 

For Model B, similarly to Model A, when the location of the opened depots along with 

their capacities are fixed, the problem can also be treated as the multi-product capacitated 

transhipment problem which we refer to as the MPTP-B. S is also denoted as the set of opened 

depots with jâ  be the volume capacity used by the depot j. The mathematical model for the 

MPTP-B is relatively similar to the one for the MPTP-A with minor revisions in objective 

function (22) and constraints (24). In the MPTP-B, the objective function (22) is replaced by 

objective function (29) as follows: 

Min        
    



Sj Kk Pp

jkpjkp

Ii Sj Pp

ijpijp

Sj

aj cXcXf
j

ˆˆ
ˆ  (29) 

and constraints (24) are replaced by constraints (30) as follows: 

   SjbX
jaj

Ii Pp

pijp  
 

,ˆ  (30) 

The main steps of the proposed local search are given in Figure 2 which is based on the 

fast interchange heuristic using a first improvement strategy (the exchange process is 

conducted once there is an improvement). The main objective of the algorithm is to seek a 

potential depot to be swapped with a one in the current solution where the swap process will 

be performed if there is an improvement. In this local search, when solving the transhipment 

problem, all potential depots (J) are imposed to use the largest capacity for storing each product 

(for Model A) or the volume (size) of the depot (for Model B). 
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Figure 2. The main steps of the proposed local search  

In this local search, we firstly set the maximum computational time )ˆ(  to execute the 

local search. The transhipment problem (MPTP-A and MPTP-B) using the initial solution (S) 

Procedure LocalSearch (Z and S) 

1. Define ̂  and γ. 

2. Solve the MPTP-A (for Model A) or the MPTP-B (for Model B) optimally using 

CPLEX using S as set of opened facilities, each utilising its largest capacity. Let Z  

denote the corresponding objective function value. 

3. While CPU time < ̂ do the following steps: 

i. Set 0  (θ is the saving occurred from swapping) 

ii. For each potential depot j that is not in the solution ),( SjJj  , find the 

nearest opened depot (in S). Let sN  be the set of potential depots where 

opened depot s )( Ss  is their nearest one. 

iii. For each opened depot s )( Ss  determine Ssdd j
Nj

s
s




),
~

(maxˆ  where jd
~

 

is the distance between potential depot j and the nearest opened depot. 

iv. For each potential depot j ),( SjJj  , do the following: 

For each opened depot s )( Ss , do the following: 

If sjs dd ˆ   then do the following procedure: 

a. Set SS   and remove facility s and insert facility j in set S   

))(( jsS    

b. Solve the MPTP-A (Model A) or MPTP-B (Model B) optimally 

using CPLEX with S   is the set of opened depots where each 

opened facility utilises the largest capacity. Let Z   denote its 

objective function value.  

c. Calculate ZZ   

d. If 0  do the followings: 

- Update ZZ   and  SS   

- Go to Step 3(i). 

End If 

End for s 

End for j 

v. If 0  then go to Step 4 

4. Return Z and S . 
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obtained from the previous step is then optimally solved to evaluate the quality of the solution 

(Z). In Steps 3(ii) – 3(iii) of Figure 2, the algorithm aims to allocate the potential depots (not 

in the current solution) to their nearest opened depot (incumbent solution). The 

longest/maximum distance )ˆ( sd  between the opened depots and their associated potential 

depots is then determined. The main idea behind this is to restrict the search (the swapping 

process) by imposing the condition that the substituted depot location must lie within a certain 

covering radius )ˆ( sd  from the opened depot that will be removed. This will make the local 

search runs more efficient (in terms of computing time) as the swap process will be skipped 

when the substituted depot is relatively far from the opened depot that will be removed.  In 

Step 3(iv)a, potential depot j ),( SjJj   is inserted into the solution whereas opened depot 

s in the current solution is removed. Then, the transhipment problem (MPTP-A and MPTP-B) 

using S   is solved to optimality. In Step 3(iv)d, the swap will be conducted if there is an 

improvement. The local search will terminate if there is no improvement after all possible 

swaps based on the incumbent solution have been completed or if the computing time reaches 

̂  seconds.  

 

4. Computational study 

A set of computational experiments have been carried out to evaluate the performance of 

the proposed solution method. The proposed method was implemented/coded in C++ .Net 2012 

where the IBM ILOG CPLEX version 12.6 Concert Library is used to solve the problems with 

exact method. The tests were run on a PC with an Intel Core i5 CPU @ 3.20GHz processor and 

8.00 GB of RAM. In the computational experiments, two types of dataset are used. The first 

dataset (Dataset 1) is randomly generated to evaluate our solution method’s ability to solve the 

two-stage capacitated facility location problem considering the presence of multilevel 

capacities for both models A and B. The second dataset is constructed based on the datasets 

from the literature and the wind energy industry in the UK.  For the case study on the wind 

industry, the proposed model will be implemented to find the optimal locations for depots 

required for storing spare parts to support the operation and maintenance of offshore/onshore 

wind farms. 

To evaluate the performance of the proposed matheuristic approach (MAAT), we compare 

the solutions obtained by the proposed method with those of the exact method (using IBM 



15 

 

ILOG CPLEX version 12.63). As the problem is very hard to solve to optimality, the 

computational time (CPU) for solving the problem using the exact method (CPLEX) is limited 

to 3 hours so the lower bound (LB) and upper bound (UB) can be attained. The performance 

of the proposed matheuristic method will be measured by %Gap between the Z value attained 

by the matheuristic approach and the lower bound (LB) obtained from the exact method. 

Moreover, the %Gap is also set as a termination criterion where CPLEX will stop when the 

%Gap reached 0.01%. %Gap is calculated as follows: 

100% 



m

m

Z

LBZ
Gap  (31) 

where Zm refers to the feasible solution cost obtained by either the exact method (UB) or the 

proposed matheuristic approach. In the matheuristic approach, the parameters are set to the 

following values: T = 10, β = 1.5, τ = 150 seconds, ε = 0.5%,    = 108 seconds, Pn  25.0̂  

seconds and γ = 2.5. For solving Model B, we set the value of β to 2 for 10P  and to 3 for 

5P . Those parameters were selected based on a small preliminary study. This selection 

yields an acceptable performance with respect to the quality of the solution and the 

computational effort.  

  

4.1. Experiments on the randomly generated data (Dataset 1) 

In order to conduct extensive computational experiments, we generate a new dataset which 

we refer to as Dataset 1. This dataset consists of two instances, namely Instance 1A and 

Instance 1B. Instance 1A is used to evaluate the performance of our method when solving 

Model A whereas Instance 1B is for Model B. For Instance 1A, there are 20 problems to solve 

whereas Instance 1B consists of 15 problems. We set the number of products |P| to 5 or 10. The 

number of plants (l) is varied between 5 to 25 with an increment of 5 whereas the value of m 

from 50 to 500 with an increment of 50. The number of customers (n) is set to 2m with the 

demand of each customer randomly generated between 1 and 5 for each product. The location 

of plants, warehouses and customers are generated randomly using a uniform distribution 

where )(2 nn  and the coordinates values are integer. The capacity of a plant for each 

product )( ips  is generated based on the customer demand. It is assumed that there are three 

possible capacities for each product for each potential depot
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);,...,1;3ˆ( PpmjDD jjp  . We also generate the capacities (capacity/size) of each 

potential depot for each product ( pdb̂  and
 jdb ) and its fixed (opening) cost along with the 

transportation cost per km per product. Here, we construct the dataset in such way that in a 

good solution, the total opening cost is close to the total transportation cost. 

Computational Results on Instance 1A 

The computational results on Instance 1A are presented in Tables 1 and 2, which show the 

computational results using the exact method (CPLEX) and the proposed matheuristic 

approach respectively. According to the tables, the complexity of the problem increases when 

the size of the problem increases as shown by the %Gap value. It is worth noting that when the 

number of products )( P  is higher, the problem is more difficult to solve. According to the 

results shown in Table 1, the problems with 5P  and 200n were relatively easily solved 

by the exact method. In these problems, the %Gap between UB and LB obtained is the 

requested %Gap termination criterion for CPLEX to solve the problem (i.e. a %Gap of 0.01%). 

In other words, CPLEX terminated before time based termination criterion of 3 hours.  

Using the exact method, the %Gap value produced is relatively very high when 700n . 

On average, the exact method yielded a %Gap of 20.64% which is considered as a large value.  

The exact method also produced the average portion of fixed (opening) costs of 61.98%. The 

proposed matheuristic method (MAAT) made a significant improvement in producing 

solutions on Instance 1A as it provides a better %Gap than the exact method. MAAT produced 

%Gap of 5.71%, an improvement of almost 15% compared to that of the exact method. The 

use of MAAT also reduced the average portion of the fixed costs to 41.86%, 20.12% lower 

than that obtained by the exact method. Moreover, MAAT required less than a quarter of the 

computational time required by CPLEX.  

Figure 3 shows the location of the opened facilities for problem P1-I3 (n = 200 and |P| = 5) 

where from 100 potential depots, only 9 need to be opened in order to serve 200 customers. 

These opened depots will receive 5 types of products from 5 plants and will transfer them to 

the 200 customers. Here, the demand of a customer for each product is randomly generated 

between 1 and 5 following a uniform distribution. 
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Table 1. Computational Results on Instance 1A using the exact method (CPLEX) 

Instance l m n |P| 

 Exact Method (CPLEX) 

 UB LB Opening Cost Trans Cost 
#Opened 

Warehouse 

Gap 

(%) 
CPU (s) 

P1-I1 5 50 100 5  859,476.96 859,391.60 522,757.00 336,719.96 5 0.01 482 

P1-I2 5 50 100 10  1,712,188.94 1,701,654.15 987,330.00 724,858.94 5 0.62 10,943 

P1-I3 5 100 200 5  2,144,357.91 2,144,190.15 1,243,286.00 901,071.91 9 0.01 791 

P1-I4 5 100 200 10  4,073,169.87 4,028,864.08 2,170,745.00 1,902,424.87 10 1.09 10,860 

P1-I5 10 150 300 5  4,126,418.68 3,998,710.75 2,469,046.00 1,657,372.68 11 3.09 10,801 

P1-I6 10 150 300 10  7,321,442.84 7,116,346.01 3,825,913.00 3,495,529.84 11 2.80 10,801 

P1-I7 10 200 400 5  5,666,516.04 5,592,849.34 2,974,646.00 2,691,870.04 14 1.30 10,801 

P1-I8 10 200 400 10  10,903,602.94 10,378,356.86 5,497,694.00 5,405,908.94 18 4.82 10,806 

P1-I9 15 250 500 5  7,829,092.39 7,653,136.80 4,318,985.00 3,510,107.39 15 2.25 10,802 

P1-I10 15 250 500 10  14,977,757.65 13,817,883.90 7,338,672.00 7,639,085.65 19 7.74 10,824 

P1-I11 15 300 600 5  9,999,728.25 9,902,291.61 5,310,636.00 4,689,092.25 18 0.97 10,818 

P1-I12 15 300 600 10  20,279,353.91 18,207,948.75 9,690,427.00 10,588,926.91 27 10.21 10,830 

P1-I13 20 350 700 5  13,715,668.37 13,009,705.95 7,012,801.00 6,702,867.37 20 5.15 10,822 

P1-I14 20 350 700 10  70,181,688.23 22,909,924.38 56,227,713.00 13,953,975.23 126 67.36 10,823 

P1-I15 20 400 800 5  24,877,115.19 16,217,960.91 8,680,901.00 16,196,214.19 26 34.81 10,829 

P1-I16 20 400 800 10  73,306,428.25 29,114,849.83 54,305,006.00 19,001,422.25 122 60.28 10,899 

P1-I17 25 450 900 5  21,937,922.52 20,166,331.34 9,615,279.00 12,322,643.52 23 8.08 11,128 

P1-I18 25 450 900 10  182,048,139.23 37,321,943.86 122,778,690.00 59,269,449.23 290 79.50 10,853 

P1-I19 25 500 1000 5  36,434,926.44 20,162,054.28 22,961,457.00 13,473,469.44 63 44.66 10,839 

P1-I20 25 500 1000 10  162,989,855.27 35,638,668.27 90,669,680.00 72,320,175.27 204 78.13 10,836 

Average        61.98% 38.02%  20.64 9,829 
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Table 2. Computational Results on Instance 1A using the proposed matheuristic (MAAT) 

Instance l m n |P| 

 Proposed Method (MAAT) 

 Z Opening Cost Trans Cost 
#Opened 

Warehouse 
Gap (%) CPU (s) 

P1-I1 5 50 100 5  859,476.96 522,757.00 336,719.96 5 0.01 280 

P1-I2 5 50 100 10  1,712,188.94 987,330.00 724,858.94 5 0.62 1,513 

P1-I3 5 100 200 5  2,145,765.68 1,238,109.00 907,656.68 9 0.07 158 

P1-I4 5 100 200 10  4,037,304.59 2,114,043.00 1,923,261.59 9 0.21 1,426 

P1-I5 10 150 300 5  4,109,961.31 2,389,520.00 1,720,441.31 11 2.71 1,566 

P1-I6 10 150 300 10  7,382,210.77 3,943,396.00 3,438,814.77 12 3.60 2,274 

P1-I7 10 200 400 5  5,643,344.35 2,976,763.00 2,666,581.35 14 0.89 1,842 

P1-I8 10 200 400 10  10,641,952.47 4,823,194.00 5,818,758.47 14 2.48 2,551 

P1-I9 15 250 500 5  7,825,737.00 4,327,034.00 3,498,703.00 15 2.21 2,148 

P1-I10 15 250 500 10  14,140,941.51 6,769,712.00 7,371,229.51 16 2.28 2,863 

P1-I11 15 300 600 5  10,001,371.47 5,014,685.00 4,986,686.47 17 0.99 1,181 

P1-I12 15 300 600 10  18,629,034.83 7,955,486.00 10,673,548.83 18 2.26 2,773 

P1-I13 20 350 700 5  13,560,042.21 6,230,160.00 7,329,882.21 17 4.06 2,387 

P1-I14 20 350 700 10  26,480,196.77 11,433,330.00 15,046,866.77 23 13.48 3,365 

P1-I15 20 400 800 5  17,366,924.80 7,453,322.00 9,913,602.80 20 6.62 2,524 

P1-I16 20 400 800 10  33,701,979.71 12,915,094.00 20,786,885.71 26 13.61 3,617 

P1-I17 25 450 900 5  21,680,084.47 8,682,694.00 12,997,390.47 20 6.98 2,678 

P1-I18 25 450 900 10  45,050,134.09 15,457,377.00 29,592,757.09 26 17.15 3,776 

P1-I19 25 500 1000 5  23,184,691.70 9,987,495.00 13,197,196.70 23 13.04 2,858 

P1-I20 25 500 1000 10  45,061,614.02 15,884,255.00 29,177,359.02 26 20.91 4,120 

Average       41.86% 58.14%  5.71 2,295 
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Figure 3. The location of opened depots for problem P1-I3 (n = 200 and |P| = 5) 

Table 3 presents the capacity of each plant for each product (p1 – p5) used in problem P1-

I3 (n = 200 and |P| = 5) where the location of the plants (x and y co-ordinates) is also given. 

This problem consists of 100 potential depots, each of which has 3 possible capacities to choose 

from (30, 50, and 70) for each product. In the solution, only 9 depots are selected to be opened 

in order to minimise the total cost. Their locations and capacity for each product are given in 

Table 4.   

Table 3. The capacity of plants used in problem P1-I3 (n = 200 and |P| = 5) 

Plant 
Location  Capacity 

x y  p1 p2 p3 p4 p5 

1 170 38  132 134 125 136 129 

2 139 177  126 132 136 134 129 

3 28 129  128 125 124 125 130 

4 76 33  126 126 129 131 132 

5 133 197  132 121 128 134 132 
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Table 4. The capacity of depots in the solution for problem P1-I3 (n = 200 and |P| = 5) 

Depot 
Location  Capacity 

x y  p1 p2 p3 p4 p5 

1 165 88  70 70 50 70 70 

2 141 199  70 70 70 70 70 

3 44 139  70 70 70 70 70 

4 69 27  70 70 70 70 70 

5 163 46  70 70 70 70 70 

6 132 142  70 70 70 70 70 

7 5 113  50 70 50 50 50 

8 111 185  70 70 70 70 70 

9 66 63  50 70 70 70 70 

 

 

Computational Results on Instance 1B 

Tables 5 and 6 reveal the computational results on Instance 1B using the exact method and 

the proposed method (MAAT) respectively. In this instance, CPLEX was not able to solve the 

problem with n ≥ 600 and |P| = 10 due to memory issues. Therefore, this instance only consists 

of 15 problems instead of 20. Using the exact method, without the problems with n ≥ 600 and 

|P| = 10, the %Gap value obtained is relatively low as on average, the exact method provided 

%Gap of 2.82%. The average proportion of fixed costs from the total cost is 38.29% with the 

total transportation cost contributing the remainder. Similarly to the previous experiments, the 

proposed matheuristic method (MAAT) performed very well in solving the problems in this 

instance. The MAAT produced a %Gap of 2.47%, which is better than that obtained by the 

exact method. Compared to the exact method, the use of the MAAT decreased the average 

proportion of the fixed cost by 1.6% to 36.69%. Similarly to previous experiments, the MAAT 

also required less than a quarter of the computational time required by the exact method. In 

general, based on the computational experiments on Dataset 1, the proposed matheuristic 

technique (MAAT) runs much faster than the exact method while yielding smaller %Gaps. 
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Table 5. Computational Results on Instance 1B using the exact method (CPLEX) 

Instance l m n |P| 

 Exact Method (CPLEX) 

 UB LB Opening Cost Trans Cost 
#Opened 

Warehouse 

Gap 

(%) 
CPU (s) 

P2-I1 5 50 100 5  8,705,619.63 8,704,911.45 5,209,800.00 3,495,819.63 3 0.01 157 

P2-I2 5 50 100 10  17,002,283.03 17,000,961.88 9,978,990.00 7,023,293.03 5 0.01 118 

P2-I3 5 100 200 5  17,621,670.75 17,619,909.10 8,918,790.00 8,702,880.75 5 0.01 815 

P2-I4 5 100 200 10  37,125,285.84 37,076,857.88 19,391,400.00 17,733,885.84 10 0.13 10,801 

P2-I5 10 150 300 5  29,401,199.80 29,396,265.25 14,113,200.00 15,287,999.80 8 0.02 10,862 

P2-I6 10 150 300 10  61,805,645.90 59,680,626.30 28,637,940.00 33,167,705.90 15 3.44 10,801 

P2-I7 10 200 400 5  43,257,673.12 42,823,901.32 17,943,030.00 25,314,643.12 10 1.00 10,802 

P2-I8 10 200 400 10  92,815,595.76 91,612,669.66 39,252,480.00 53,563,115.76 20 1.30 10,811 

P2-I9 15 250 500 5  59,322,626.11 58,633,420.67 24,227,850.00 35,094,776.11 14 1.16 10,802 

P2-I10 15 250 500 10  92,610,158.16 91,612,669.66 39,280,980.00 53,329,178.16 20 1.08 10,824 

P2-I11 15 300 600 5  85,853,076.49 79,009,642.12 33,168,870.00 52,684,206.49 19 7.97 10,848 

P2-I12 20 350 700 5  99,449,406.72 94,600,290.81 35,824,500.00 63,624,906.72 21 4.88 10,810 

P2-I13 20 400 800 5  133,408,734.87 121,513,227.81 47,600,130.00 85,808,604.87 27 8.92 10,807 

P2-I14 25 450 900 5  150,229,927.89 141,311,588.41 44,080,950.00 106,148,977.89 25 5.94 10,926 

P2-I15 25 500 1000 5  161,221,522.14 150,710,307.76 49,644,150.00 111,577,372.14 27 6.52 11,059 

Average        38.29% 61.71%  2.82 8,750 

 

 

 

 

 

 

 



22 

 

 

Table 6. Computational Results on Instance 1B using the proposed matheuristic (MAAT) 

Instance l m n |P| 

 Proposed Method (MAAT) 

 Z Opening Cost Trans Cost 
#Opened 

Warehouse 
Gap (%) CPU (s) 

P2-I1 5 50 100 5  8,705,619.63 5,209,800.00 3,495,819.63 3 0.01 11 

P2-I2 5 50 100 10  17,002,886.93 9,978,990.00 7,023,896.93 5 0.01 95 

P2-I3 5 100 200 5  17,621,670.75 8,918,790.00 8,702,880.75 5 0.01 112 

P2-I4 5 100 200 10  37,150,129.40 19,392,540.00 17,757,589.40 10 0.20 1,331 

P2-I5 10 150 300 5  29,401,746.54 14,113,200.00 15,288,546.54 8 0.02 558 

P2-I6 10 150 300 10  60,796,006.69 29,039,220.00 31,756,786.69 17 1.87 3,266 

P2-I7 10 200 400 5  43,060,704.37 17,897,430.00 25,163,274.37 10 0.55 2,221 

P2-I8 10 200 400 10  95,356,426.66 41,173,950.00 54,182,476.66 22 4.09 3,545 

P2-I9 15 250 500 5  60,038,502.75 24,243,810.00 35,794,692.75 14 2.40 2,248 

P2-I10 15 250 500 10  95,356,426.66 41,173,950.00 54,182,476.66 22 4.09 3,544 

P2-I11 15 300 600 5  81,690,709.57 27,342,900.00 54,347,809.57 15 3.39 3,259 

P2-I12 20 350 700 5  96,110,675.18 32,248,890.00 63,861,785.18 19 1.60 3,384 

P2-I13 20 400 800 5  129,100,367.37 39,013,080.00 90,087,287.37 22 6.24 3,554 

P2-I14 25 450 900 5  151,004,365.49 41,628,810.00 109,375,555.49 24 6.86 3,644 

P2-I15 25 500 1000 5  159,230,859.30 45,434,130.00 113,796,729.30 25 5.65 3,824 

Average       36.69% 63.31%  2.47 2,306 
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4.2. Experiments on datasets from the literature and wind energy industry 

The performance of our proposed approach is also assessed on an existing dataset taken 

from literature and those used in the wind energy industry.  

Experiments on the existing dataset 

We test our proposed method on data sets from Eskandarpour et al. (2017) originally used 

for solving a supply chain network design problem. This existing dataset provides the location 

of plants, depots and customers where the customer demand for 5 products )5( P  is also 

given. Here, we use Model A to solve this existing dataset as there is no information related to 

the dimension of each product. The missing information required to solve Model A is generated 

based on the total demand for each product. We estimate the capacity of plants and depots 

along with the fixed cost of opening depot based on its capacity in such way that in a good 

solution, the total transportation cost is close to the total fixed cost. The existing dataset consists 

of 15 problems where the number of customer (n) is varied between 60 and 300. Therefore, it 

can be argued that this existing dataset is relatively small and easier to solve by the exact 

method than the datasets presented in Section 4.1. 

Tables 7 and 8 show the computational results on the existing dataset using the exact 

method and the proposed method (MAAT) respectively. According to Table 7, CPLEX 

terminated before the time based termination criterion of 3 hours for 11 of 15 problems where 

CPLEX stopped because the %Gap between UB and LB has reached the termination level of 

0.01%. For the other four problems, the %Gap obtained by CPLEX for these problems is very 

low after the time based termination criterion of 3 hours, indicating near-optimality. On 

average, the exact method produced a relatively small %Gap of 0.08% with the total 

transportation cost contributing approximately 40% of the total cost. The proposed matheuristic 

method (MAAT) also performs well in this instance. The MAAT yielded a %Gap of 0.1% 

within a relatively short computational time.  
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Table 7. Computational Results on dataset from literature using the exact method (CPLEX) 

Instance l m n |P| 

 Exact Method (CPLEX) 

 UB LB Opening Cost Trans Cost 
#Opened 

Warehouse 

Gap 

(%) 
CPU (s) 

P3-I1 6 12 60 5  55,572,897.41 55,567,375.30 31,694,532.00 23,878,365.41 5 0.01 8 

P3-I2 7 14 70 5  69,069,021.29 69,062,114.65 37,191,446.00 31,877,575.29 6 0.01 1,704 

P3-I3 8 16 80 5  74,571,746.05 74,564,294.64 40,420,666.00 34,151,080.05 6 0.01 94 

P3-I4 9 18 90 5  79,786,050.94 79,778,073.22 44,820,870.00 34,965,180.94 7 0.01 44 

P3-I5 10 20 100 5  90,176,144.57 90,167,134.89 51,333,757.00 38,842,387.57 8 0.01 78 

P3-I6 12 24 120 5  101,419,657.45 101,409,807.72 60,491,320.00 40,928,337.45 9 0.01 49 

P3-I7 14 28 140 5  113,780,685.86 113,769,538.12 68,022,247.00 45,758,438.86 10 0.01 57 

P3-I8 16 32 160 5  118,342,803.59 118,330,984.06 66,928,149.00 51,414,654.59 12 0.01 133 

P3-I9 18 36 180 5  124,577,109.01 123,981,600.48 77,525,132.00 47,051,977.01 14 0.48 10,809 

P3-I10 20 40 200 5  132,750,121.65 132,736,847.40 83,315,233.00 49,434,888.65 15 0.01 6,960 

P3-I11 22 44 220 5  144,228,937.54 144,214,536.07 90,863,183.00 53,365,754.54 16 0.01 1,362 

P3-I12 24 48 240 5  135,764,873.31 135,664,313.75 82,409,927.00 53,354,946.31 18 0.07 10,863 

P3-I13 26 52 260 5  150,178,953.14 150,163,938.36 90,012,918.00 60,166,035.14 19 0.01 2,733 

P3-I14 28 56 280 5  151,777,649.65 151,658,391.53 95,612,554.00 56,165,095.65 21 0.08 10,908 

P3-I15 30 60 300 5  161,772,569.23 160,907,532.51 101,155,572.00 60,616,997.23 22 0.53 10,864 

Average        59.97% 40.03%  0.08 3,778 
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Table 8. Computational Results on dataset from literature using the proposed matheuristic (MAAT) 

Instance l m n |P| 

 Proposed Method (MAAT) 

 Z Opening Cost Trans Cost 
#Opened 

Warehouse 
Gap (%) CPU (s) 

P3-I1 6 12 60 5  55,572,897.41 31,694,532.00 23,878,365.41 5 0.01 10 

P3-I2 7 14 70 5  69,069,021.29 37,191,446.00 31,877,575.29 6 0.01 120 

P3-I3 8 16 80 5  74,571,746.05 40,420,666.00 34,151,080.05 6 0.01 92 

P3-I4 9 18 90 5  79,786,050.94 44,820,870.00 34,965,180.94 7 0.01 50 

P3-I5 10 20 100 5  90,176,144.57 51,333,757.00 38,842,387.57 8 0.01 183 

P3-I6 12 24 120 5  101,419,657.45 60,491,320.00 40,928,337.45 9 0.01 42 

P3-I7 14 28 140 5  113,780,685.86 68,022,247.00 45,758,438.86 10 0.01 100 

P3-I8 16 32 160 5  118,347,599.15 66,830,463.00 51,517,136.15 12 0.01 83 

P3-I9 18 36 180 5  124,647,837.60 78,115,821.00 46,532,016.60 14 0.54 1,513 

P3-I10 20 40 200 5  132,750,705.22 83,320,873.00 49,429,832.22 15 0.01 1,041 

P3-I11 22 44 220 5  144,228,937.54 90,863,183.00 53,365,754.54 16 0.01 1,075 

P3-I12 24 48 240 5  135,788,271.73 82,440,405.00 53,347,866.73 18 0.09 1,449 

P3-I13 26 52 260 5  150,178,953.14 90,012,918.00 60,166,035.14 19 0.01 426 

P3-I14 28 56 280 5  151,905,199.85 94,648,871.00 57,256,328.85 21 0.16 1,503 

P3-I15 30 60 300 5  161,848,997.48 101,441,406.00 60,407,591.48 22 0.59 1,542 

Average       59.95% 40.05%  0.10 615 
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A. Experiments on dataset from the wind energy industry 

Renewable energy sources have attracted a lot of attention in recent years due to several 

factors including a surge in the world energy demand, limitation of fossil fuel reserves, fossil 

fuel price instability and global climate change (Abdmouleh et al., 2015). The UK Government 

has set a national target for 15% of its total energy consumption to come from renewable 

sources by 2020, of which it is expected that wind energy will make the largest single 

contribution to this target (Jones and Wall, 2016). A wind farm can be located either onshore 

or offshore. The development of the offshore wind industry has significantly increased over 

the past 20 years. One of the reasons for this growth is that a wind turbine at sea generally 

produces more electricity than that of its onshore equivalent as the average wind speed at sea 

is higher (Irawan et al., 2017).  

The operations and maintenance (O&M) cost is one of the largest components of the cost 

of a wind farm. One way to reduce the costs is to make the maintenance activities more efficient 

by optimising the logistic system in order to reduce turbine downtime. The logistic system 

should hence be designed to ensure that the spare parts are available and easy to be access when 

they are needed. In the wind energy sector, spare parts are complex and expensive, 

characterized by high procurement costs and low inventory levels (Tracht et al., 2013). 

However, it is critical to manage and maintain an adequate level of spare parts as inadequate 

stocks when a part fails may stop electricity generation and lead to substantial losses.  

Spare parts supplied by plants are delivered to capacitated depots, and then distributed to 

Operation & Maintenance bases (O&M bases). Depots are usually located near to or at the 

O&M base locations. However, as the inventory levels of the spare parts are relatively low, 

depots may not be opened at all O&M bases. This means that a depot may serve more than one 

O&M base. Moreover, a depot may not store the same parts as other depots. For an example, 

depot A may store only blades and bearing generators whereas depot B may manage 

transformers and yaw motors. 

Optimization of the location and capacity of maintenance accommodations for offshore 

wind farms has been investigated by a few researchers. De Regt (2012) studied the optimal 

location of offshore maintenance accommodations by solving a ‘Weber’ problem to minimise 

the weighted sum of distances to given points. Besnard et al. (2013) introduced an optimisation 

model to find the optimal location of maintenance accommodations, number of technicians, 
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choice of transfer vessels and the possibility of using a helicopter to service offshore wind 

farms.  

This section presents computational results of the facility location model for finding the 

optimal number of depots that need to be opened along with their optimal locations in order to 

support operation and maintenance of offshore/onshore wind farms in the UK. The capacity to 

store spare parts for each opened depot is also optimised. Here, Model A is most suitable to be 

implemented for this case study as the dimension of spare parts and the volume of potential 

depots are difficult to estimate. In this case, warehouses are treated as depots whereas O&M 

bases act as customers. The model aims to minimise the total cost which comprises shipment 

costs (with downtime cost) and capital costs incurred by opening depots. A set of possible 

product capacities is given where each capacity has a different annual fixed cost which may 

consist of opening depot and inventory costs. The transfer cost of each component from plants 

to depots comprises shipping and product costs whereas the one from depots to O&M bases 

considers downtime and shipping costs. The model will also find the optimal number of depots 

that need to be opened.  

It is common in the wind energy industry that a depot is built to store spare parts of one 

type of wind turbine. In this case study, the type of wind turbines that we study is Vestas V80/90 

as the data for this type of turbine is available in the literature. Therefore, we take into account 

all wind farm sites (offshore and onshore) in the UK that use the Vestas V80/90 wind turbine. 

Table 9 shows the detailed wind farm data of sites in the UK that use the Vestas V80/90 

(www.renewableuk.com) including the West Gabbard offshore site which is currently still 

under construction. The table presents the location of wind farms along with number of turbines 

and installed capacity. Moreover, the table also reveals the location of the associated O&M 

base for each wind farm. These O&M base locations are also treated as potential depot 

locations. Table 10 shows the detailed information on parts considered in the case study where 

the cost and failure rate of each part are given. The part information is based on Lindqvist and 

Lundin (2010). We also assume that all spare parts are supplied by the manufacturer Vestas 

located in Randers, Denmark whose coordinates are (Lat 56.433127, Lon 10.047057). In other 

words, the number of plants is set to one (l = 1).  
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Table 9. Wind farms in the UK that use Vestas V80/90 

 

Initial Name Region Latitude Longitude 

Installed 

Capacity 

(MW) 

Number 

of 

Turbines 

Turbine Model 
O&M base 

Name Latitude Longitude 

Offshore wind farm          

Off1 North Hoyle North Wales 53.4178 -3.4478 60 30 Vestas V80-2.0 MW Mostyn 53.321279 -3.262994 

Off2 Scroby Sands Norfolk 52.6458 1.7876 60 30 Vestas V80-2.0 MW Great Yarmouth 52.592932 1.727134 

Off3 Barrow Cumbria 53.9875 -3.2702 90 30 Vestas V90-3.0 MW Barrow 54.098699 -3.223713 

Off4 Kentish Flats 1 Kent 51.4616 1.0933 90 30 Vestas V90-3.0 MW Whitstable 51.362906 1.027905 

Off5 Robin Rigg Cumbria 54.7465 -3.6925 180 60 Vestas V90-3.0 MW Workington 54.649001 -3.565064 

Off6 Thanet Kent 51.4306 1.6331 300 100 Vestas V90-3.0 MW Ramsgate 51.3333 1.41667 

Off7 West Gabbard Suffolk 51.98 2.08 375 125 Vestas V90-3.0 MW Lowestoft 52.4833 1.75 

Onshore wind farm (O&M base is located in wind farm site) 

On1 Stags Holt Cambridgeshire 52.57472 -0.14583 18 9 Vestas V80-2.0 MW    

On2 Goonhilly Repowering Cornwall 50.04611 -5.19889 12 6 Vestas V80-2.0 MW    

On3 Wolf Bog Co Antrim 54.80306 -6.09417 10 5 Vestas V80-2.0 MW    

On4 North Rhins Dumfries & Galloway 54.88194 -5.08333 22 11 Vestas V80-2.0 MW    

On5 Ardrossan (with Extension) North Ayrshire 55.68583 -4.80722 30 15 Vestas V80-2.0 MW    

On6 Braes of Doune Stirling 56.27611 -4.0625 72 36 Vestas V80-2.0 MW    

On7 Pates Hill West Lothian 55.80889 -3.59917 14 7 Vestas V80-2.0 MW    

On8 Milton Keynes Buckinghamshire 52.13611 -0.66444 14 7 Vestas V90-2.0 MW    

On9 McCain Foods Cambridgeshire 52.56111 -0.17222 9 3 Vestas V90-3.0 MW    

On10 North Pickenham  Norfolk 52.62611 0.74972 14.4 8 Vestas V90-1.8 MW    

On11 Lindhurst Nottinghamshire 53.11611 -1.14667 9 5 Vestas V90-1.8 MW    

On12 Garves Mountain/Dunloy Antrim 55.26611 -6.443222 15 5 Vestas V90-3.0 MW    

On13 Slieve Rushen Repowering Co Fermanagh 54.16 -7.62 54 18 Vestas V90-3.0 MW    

On14 Aikengall East Lothian 55.92667 -2.45778 48 16 Vestas V90-3.0 MW    

On15 Wardlaw Wood North Ayrshire 55.71056 -4.72333 18 6 Vestas V90-3.0 MW    
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Table 10. Parts specification 

 

Initial Spare part 
Price 

(euro) 

Failure 

rate 

Depot possible 

capacities 

  

Initial Spare part 
Price 

(euro) 

Failure 

rate 

Depot possible 

capacities 

1 2 3 1 2 3 

S1 Blade 75000 0.55 1 2 3  S19 SKIIP 2 1800 1.73 3 6 9 

S2 Proportional valve 1800 5.48 9 18 27  S20 EMC filter 1800 5.48 9 18 27 

S3 Piston accumulator 1800 5.48 9 18 27  S21 Capacitators 200 17.32 29 58 86 

S4 Encoder 600 1.73 3 6 9  S22 CT 3220 FFFF 600 1.73 3 6 9 

S5 Bearing generator 1800 0.55 1 2 3  S23 CT 316 VCMS 1800 0.55 1 2 3 

S6 Generator fan 1 600 0.55 1 2 3  S24 CT 3601 1800 0.55 1 2 3 

S7 Generator fan 2 600 1.73 3 6 9  S25 CT 3133 600 17.32 29 58 86 

S8 Encoder rotor 200 17.32 29 58 86  S26 CT 3220 FFFC 1800 1.73 3 6 9 

S9 Slip ring fan 1800 5.48 9 18 27  S27 CT 3218 200 1.73 3 6 9 

S10 Fan 600 0.55 1 2 3  S28 CT 3614 600 1.73 3 6 9 

S11 Motor for cooling system 600 5.48 9 18 27  S29 CT 3363 600 1.73 3 6 9 

S12 Yaw gear (right) 1800 1.73 3 6 9  S30 CT 3153 600 5.48 9 18 27 

S13 Yaw gear (left) 1800 1.73 3 6 9  S31 CT 279 VOG 200 5.48 9 18 27 

S14 Yaw motor 1800 0.55 1 2 3  S32 Transformer 42000 1.73 3 6 9 

S15 Mechanic gear for oil pump 1800 1.73 3 6 9  S33 Phase compensator generator 600 17.32 29 58 86 

S16 Chopper module 1800 1.73 3 6 9  S34 Q8 main switch 3600 17.32 29 58 86 

S17 TRU card 600 1.73 3 6 9  S35 Q8 electric gear 1800 5.48 9 18 27 

S18 SKIIP 1 1800 17.32 29 58 86  S36 Q8 EMC filter 200 17.32 29 58 86 

 
Failure rate: per 106 hours of operation 
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A wind farm, consisting of several wind turbines with the same specification, is treated as 

a customer. A wind turbine is formed of several parts which are considered as products. The 

average frequency of failure of the part per year is defined as failure rate. Therefore, the demand 

of each part per year for a windfarm is then based on the number of turbines in the windfarm 

and its failure rate. In other words, the demand of each spare part per year for each wind farm 

is calculated as the product of the failure rate value and the number of turbines installed in a 

wind farm. This is acceptable as the number of spare parts needed is determined by how often 

the part breaks down. Table 10 also presents the possible depot capacities for each spare part, 

generated based on the demand of each product. The model will select the best capacity for 

each opened depot.  

In the experiments, we also assume that the holding cost per year of each spare part is 20% 

of its cost. This information is used to calculate the fixed cost. The transportation cost for each 

component is based on the distance and we set the maximum transportation cost to 20% of the 

component cost. To implement Model A on this wind energy case study, minor revisions of the 

mathematical model are needed. First, variable jkpX  is treated as a real value instead of an 

integer as the demand of products for each O&M base is calculated based on failure rates. 

Second, the equalities on Constraints (6) are replaced by inequalities ( ).  This dataset can be 

solved optimally using the exact method (CPLEX) within a relatively short computational time 

as the problem is relatively small (l = 1, m = 22, n = 22, and |P| = 36). Therefore, the 

matheuristic approach (MAAT) is not required to solve this instance.  

The optimal solution for this problem reveals that only 4 depots are required to open in 

order to store the spare parts. Three depots are located on the coast, namely Great Yarmouth, 

Workington and Ramsgate whereas another depot is located at the Braes of Doune inland 

windfarm site. This solution is acceptable as there are more offshore than onshore wind 

turbines. The other main advantage of locating a depot at port is its accessibility from the 

supplier and customer (O&M base). Moreover, the inland depot is located at the onshore 

windfarm site that has the largest number of wind turbines. It can also be noted that the 

locations of the depots are scattered across the UK. The objective function value (the total cost) 

obtained is 11,451,764.05 where the fixed (opening) cost contributes approximately 35% of 

the total cost. Table 11 shows the depot configuration located in Port Great Yarmouth, which 

stores all types of spare parts in the optimal solution. 
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Table 11. The depot configuration for Port Great Yarmouth 

Spare part Capacity  Spare part Capacity 

S1 Blade 3  S19 SKIIP 2 3 

S2 Proportional valve 9  S20 EMC filter 9 

S3 Piston accumulator 9  S21 Capacitators 29 

S4 Encoder 3  S22 CT 3220 FFFF 3 

S5 Bearing generator 1  S23 CT 316 VCMS 1 

S6 Generator fan 1 1  S24 CT 3601 1 

S7 Generator fan 2 3  S25 CT 3133 29 

S8 Encoder rotor 29  S26 CT 3220 FFFC 3 

S9 Slip ring fan 9  S27 CT 3218 3 

S10 Fan 1  S28 CT 3614 3 

S11 Motor for cooling system 9  S29 CT 3363 3 

S12 Yaw gear (right) 3  S30 CT 3153 9 

S13 Yaw gear (left) 3  S31 CT 279 VOG 9 

S14 Yaw motor 1  S32 Transformer 9 

S15 Mechanic gear for oil pump 3  S33 Phase compensator generator 29 

S16 Chopper module 3  S34 Q8 main switch 29 

S17 TRU card 3  S35 Q8 electric gear 9 

S18 SKIIP 1 29  S36 Q8 EMC filter 29 

 

5.   Conclusion and suggestions 

This paper studies the two-stage capacitated facility location problem with multilevel 

capacities where the problem is to find the optimal number of depots that need to be opened 

along with their optimal location and corresponding capacity. We proposed two integer linear 

programming (ILP) models to address the problem in order to minimise the fixed cost of 

opening depots and transportation costs. The first model considers the capacity based on the 

maximum number of products that can be stored whereas in the second one, the capacity is 

based on the size (volume) of the depot. As large problems are very hard to solve using an 

exact method, a matheuristic approach, MAAT (Matheuristic Approach incorporating an 

Aggregation Technique), is introduced to overcome this weakness. The proposed method is 

evaluated using a randomly generated dataset and datasets taken from literature and the wind 

energy sector in the UK. According to the computational experiments, the proposed methods 

ran efficiently, producing a small %Gap within a short computational time.  
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The models developed in Section 2 can be implemented not only for the wind power sector 

but also for other industries that need depots to support their business. The models can be 

enhanced to become bi-objective as there is an underlying trade-off between minimising the 

number of opened depots and minimising the total costs. The compromise programming 

method (see Irawan et al. (2015) for more detailed information) can be applied to address the 

trade-off that occurs. The models can also be extended by considering uncertain customer 

demand. In this case, a technique such as the stochastic programming could be implemented in 

order to model the problem. 
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