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ABSTRACT. Sludge or waste activated sludge (WAS) generated from wastewater 

treatment plants may be considered a nuisance. It is a key source for secondary 

environmental contamination on account of the presence of diverse pollutants (polycyclic 

aromatic hydrocarbons, dioxins, furans, heavy metals, etc.). Innovative and cost-effective 

sludge treatment pathways are a prerequisite for the safe and environment-friendly 

disposal of WAS. This article delivers an assessment of the leading disposal (volume 

reduction) and energy recovery routes such as anaerobic digestion, incineration, pyrolysis, 

gasification and enhanced digestion using microbial fuel cell along with their 

comparative evaluation, to measure their suitability for different sludge compositions and 

resources availability. Furthermore, the authors shed light on the bio-refinery and 

resource recovery approaches to extract value added products and nutrients from WAS, 

and control options for metal elements and micro-pollutants in sewage sludge. Recovery 

of enzymes, bio-plastics, bio-pesticides, proteins and phosphorus are discussed as a 

means to visualize sludge as a potential opportunity instead of a nuisance.  

 

KEYWORDS: Waste activated sludge, Anaerobic digestion, Thermochemical treatment, 

Bio-energy, Resources recovery, Sustainable management 
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1. INTRODUCTION  
Waste activated sludge (WAS) can simply be defined as the residual semi-solid material 

which is inevitably left over from municipal or industrial wastewater or sewage treatment 

processes. The rapid rise in population coupled with increasing industrialization has 

enhanced the production of sludge manifolds [1], which is speculated to increase further, 

in the near future. Engineering and design relative to wastewater treatment plants 

(WWTPs) encounters challenging issues related to processing, reuse and disposal of 

sludge [2].  

Wastewater is usually treated via physical routes such as flotation, sedimentation, etc., 

chemical pathways such as flocculation, etc. and biological ways such as microbial 

treatment. In addition, wastewater treatment (WWT) processes are grouped into 

subsystems (for example, primary, secondary and tertiary treatments). The three-fold 

objectives are (i) to achieve the removal of contaminants, (ii) to ease the management of 

generated byproducts, and (iii) to meet the legislative standards about the quality of 

discharged water. As shown in Fig. 1, primary sludge is generated by post mechanical 

treatment after the primary stage whereas WAS is generated via biological treatment at 

secondary stage in WWTP. Usually WAS is used for resource recovery or energy 

generation. A typical WAS composition includes 59 – 88 % w/v biodegradable organic 

matters (OMs), composed of 50 – 55 % C, 25 – 30 % O, 10 – 15 % N, 6 – 10 % H with 

little amount of P and S [3].  
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Fig. 1 Sludge generation in a WWTP [4]. 

 

Post-treatment WAS can be categorized as aerobic or anaerobic stabilized sludge. The 

structural composition, chemical properties and thermal behavior of WAS are the 

functions of stabilization techniques, engineering features of WWTP and pollution load 

of effluents. Sludge is an intricate blend of numerous materials such as OMs, inorganic 

matters, other substances, and microbes in dissolved or suspended states. Moreover, it 

also contains valuable inorganic ingredients such as N, P, K, Ca, S and Mg, along with 

pollutants and potential carcinogens such as heavy metals (HMs), dioxins, furans, 

pathogenic microbes [5, 6]. Bacterial constituents such as proteins, lipids, their decay 

products coupled with inorganic matter and cellulose form the chemical structure of a 

typical WAS [7]. 

WAS is the most vital by-product generated from WWTPs, whilst it causes human 

health problems as a potential source of secondary environmental pollution. Therefore, its 

proper disposal and treatment carries utmost significance. A diverse treatment range and 

valorization technologies are available for the safe disposal, resource recovery and power 
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generation from WAS. Commonly used technologies for energy / resource recovery 

include anaerobic digestion (AD), incineration, pyrolysis and gasification [3]. In addition 

to nutrients (N and P), enzymes, bio-plastics, bio-pesticides and proteins can be 

recovered from WAS employing diverse techniques. Moreover, this perspective of bio-

refinery and resource recovery for WAS valorization will not only aid in holistic WAS 

management but will also lessen significant adverse environmental impact to a greater 

extent. 

Thus, we have reviewed the scientific literature published on WAS treatment 

facilities during the last 5 - 7 years. In spite of these facts, there is no single review on 

sewage sludge treatment with the emphasis on treatment technologies, energy recovery, 

bio-refinery approach for resource recovery as well as treatment scenarios in major 

countries such as EU, USA and China. We consider that, in all these respects, this is 

timely contribution. We expect that this review will encourage research and development 

work and may aid in the scale-up of conventional and advanced technologies. This 

review article is aimed at providing an overview and discusses the leading sludge 

treatment technologies (anaerobic digestion, incineration, pyrolysis, gasification and 

microbial fuel cell integrated process) and their comparative analysis. The coproduction 

of bio-refinery products from sewage sludge, resource recovery and pollution control for 

sewage sludge are also reviewed as an opportunity towards sustainable sludge 

management. An account of treatment scenarios for EU, USA and China is given, which 

is then followed by conclusions and future perspectives. 
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2. SEWAGE SLUDGE TREATMENT AND ENERGY RECOVERY  

 Herein, anaerobic digestion (AD), incineration, pyrolysis, gasification and MFC 

integrated process are discussed as commonly employed routes for the safe treatment and 

energy recovery from WAS. There are some other pathways also such as wet air 

oxidation and hydrothermal treatment but they have very limited application and hence 

are not discussed here. 

2.1 Anaerobic digestion 

AD transforms sludge organic solids to biogas via the following biochemical reaction in 

an anaerobic condition (Eqn. 1).  

CcHhOoNnSs + yH2O → xCH4 + nNH3 + xH2S + (c-x) CO2             (1) 

where, X = 1/8 (4c + h – 2o – 3n – 2s) and Y = 1/4 (4c + h – 2o + 3n + 3s) 

Biogas comprises of 60 – 70 % methane, and 30 – 40 % of carbon dioxide, trace amounts 

of other gases (e.g. hydrogen, hydrogen sulfide and nitrogen), with a relative density of 

around 0.85, and calorific value of about 13 – 21 MJ kg-3, which is lower than that of coal 

(15 - 27 MJ kg-3), but equivalent to lignite’s (12 – 16 MJ kg-3) [8].  

Apart from biogas, AD yields digestate as the final product containing high amounts 

of nutrients (e.g. phosphorus, potassium and nitrogen), which can be further utilized as 

fertilizer and/or compost.  

Methane produced from WAS can be utilized for various applications such as gas 

engines, electricity and/or heat. The energy acquired via biogas is likely to cover 50 % of 

the total operational cost of WWTP [9]. Currently, various parametric optimization 

studies were conducted to enhance the biogas yield and its quality (e.g. ratio of CH4 to 

CO2) [10-13]. Operating temperature is the most crucial parameter influencing the 
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quantity and quality of the biogas and digestion rate. Three dissimilar temperature ranges, 

recognized as psychrophilic (12 – 25 oC), mesophilic (35 – 38 oC) and thermophilic (50 – 

60 oC), are applied depending on situations where the anaerobic fermentations occur, 

such as landfills, sediments, anaerobic digester [14]. Some studies have reported various 

biogas yields from AD of WAS (270 – 385 mL CH4 gVS-1) [15-17]. It is however known 

that OMs in WAS are immobilized; therefore, the OM hydrolysis or disintegration is 

known as rate-limiting step for the subsequent AD process [18]. Alternatively, various 

pretreatments such as thermal, chemical and mechanical have been applied to accelerate 

the conversion of persistent biomaterials present in WAS into soluble fractions, for which 

the main results are summarized in Table 1 [10, 12, 19, 20].  

Compared to above pretreatments, post/inter-stage treatments are considered to be 

more advantageous for higher methane production [21, 22]. Nielsen et al. [21] compared 

different pretreatments such as moderate thermal, high thermal and thermochemical prior 

to AD with inter-stage treatments under the same experimental conditions as described in 

Table 1. They found thermal or thermochemical treatments of WAS more efficient when 

applied as inter-stage treatment rather than a pretreatment. The inter-stage treatment 

conditions (170 ℃, pH 10, KOH) led to improvement of methane yield by 28 %, whereas 

only 2 % methane yield was improved using conventional pretreatment. A full-scale 

simulation showed that methane production would be improved by 45 % using two 

anaerobic reactors with thermal inter-treatment, whilst only 20 % improvement in 

methane production could be achieved using conventional AD and pretreatments [22]. 

More recently, a comprehensive study conducted by Campo et al. [23] demonstrated the 

low-temperature (<100 ℃) thermal and hybrid (thermal + NaOH and Ca(OH)2) 
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intermediate and traditional pretreatments under the same experimental conditions. The 

intermediate treatments were found to be more efficient and produced 16 % higher 

methane compared to traditional pretreatment, mainly due to their capability of utilizing a 

7-day digestate for AD process. The economic assessment conducted in a commercial 

scale WWTP (2,000,000 population equivalent) revealed that thermal or hybrid 

pretreatments would probably augment the profits from the electricity sale between 13 to 

15 %, when compared with the existing setup. On the other hand, intermediate treatments 

on a 7-day digestate would offer a revenue of 26 % or 32 %, varying based on the 

operating temperature (70 or 90 ℃). Albeit above methods could efficiently disintegrate 

WAS and promote methane production, almost all of them demand various chemical 

reagents and energy, which might be cost-intensive in application. Recently, Zhao et al. 

[19] (Table 1), utilized aged refuse  (massively produced in landfills with high 

concentrations of enzymes and functional microorganisms) as a cost-effective alternative 

to accelerate the hydrolysis, solubilization and acidogensis mechanisms and has exhibited 

promising results. Considering the vast production of WAS, this approach should have 

considerable economic and ecological benefits if established at landfill sites. However, 

more studies to examine the potential role of AR in AD is urgently needed. Moreover, the 

applications of AD process at landfill sites will improve methane capture as fuel source 

for electricity generation and/or heat and also decrease CO2 emission from WWTPs 

operation. According to an analysis by United States Environmental Protection Agency 

(U.S.EPA), 2.3 million metric tons (Mt) of CO2 is released per annum (corresponding to 

the emissions by 430,000 automobiles) from WWTP. This amount could be 

counterbalanced, if existing WWTPs (with volume above 5 million gallons day-1) use AD 



9 

 

technology for electricity production [24]. More recently, Kretschmer et al. [25] reported 

that in WWTPs in Austria provided with AD could attain electric independence under 

optimum operation of WWT and cogeneration. Thus, energy from biosolids in the form 

of biogas ensures energy security, a reduced dependence on fossil fuels, and lowered 

greenhouse gas (GHG) emissions. However, further research is required for the 

enhancement of energy recovery, process optimization towards energy independence 

using novel technologies such as the integration of solar energy with AD and Fuel Cell 

systems.   
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Table 1. Summary of key information of WAS anaerobic digestion.  

Reactor configuration  
Pretreatment 

conditions 

Results Remarks Ref. 

 Equipment: CSTR*, Reactor 

volume: 2.5 L, AD T: 50 ℃, 

OLRa: 1.6 – 20.5, SRTb: 35 – 

3 days. 

 

 314 – 348 mL CH4-g 

VS-1 

Increasing content of volatile fatty 

acids (VFAs), decrease in 

concentration of partial alkalinity 

and pH were observed as a result of 

reactor instability.  

Short SRT and high VS 

destruction efficiency led to 

enhanced biogas production 

and a positive energy balance 

for the process. 

[10] 

 Equipment: CSTR*, Reactor 

volume: 0.9 L, AD T: 35 – 

38 ℃, SRTb: 20 – 4 days.  

 

 175 L CH4-g chemical 

oxygen demand (COD)-1 

The considerable sift in bacterial 

population from 20 – 4 days was 

noticed: Chloroflexi and 

Syntrophomonas decreased from 28 

to 4.5 % and 9 to 0 %, whilst 

Bacteroidetes augmented from 12.5 

to 20 %.  

The lower SRTs are proactive 

signs for defining rate 

limitation in AD process. 

[26] 
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Reactor configuration  
Pretreatment 

conditions 

Results Remarks Ref. 

 Equipment: Batch reactor, 

Reactor volume:1 L, AD T: 

35 ℃, pH: 4 – 13, carbon to 

nitrogen (C/N) ratios: 9/1 to 

20/1, SRTb: 30 days.  

 310 mL CH4-g VS-1 Higher amounts of protein (167 g-

COD/kg-TS) and carbohydrates 

(666 g-COD/kg-TS) were 

consumed.  

The optimum conditions for 

CH4 yield were pH 12 and 

C/N ratio 17/1. 

[17] 

 Equipment: Batch reactor, 

Reactor volume: 280 - 300 

mL, AD T: 37 ℃, 

Pretreatment: Moderate 

thermal (T: 80 ℃), high 

thermal (130 – 170℃), 

thermochemical (170, pH 10), 

Post-treatment: at same 

conditions, Pretreatment 

SRTb: 40 days, Post-treatment 

  No effect of pretreatment on CH4 

yield at 80 ℃, whilst post-treatment 

offered a 20 % upsurge. Further, 

inter-stage treatment led to 

enhancements of 9 % 130 ℃), 

29 % (170 ℃) and 28 % 170 ℃/pH 

10). 

The thermal treatment appears 

more efficient when employed 

as an inter-stage treatment 

instead of pretreatment. 

  

 

[21] 
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SRTb: 19 – 21 days. 

Reactor configuration  
Pretreatment 

conditions 

Results Remarks Ref. 

 Equipment: Batch scale 

CSTR*, Reactor volume: 22 L, 

AD T: 35 ℃, pH: 1 – 6, SRTb: 

12 days. 

Acid 

pretreatment: 

Hydrochloric 

acid (HCL, 

37 %), 1 day.  

124.5 mL CH4-g COD-1 Increase of CH4 yield (14.3 %) 

compared to untreated WAS. 

A cost analysis showed that 

current method of 

pretreatment is not 

economically favourable at 

present. 

[12] 

 Equipment: Batch reactor, 

Reactor volume: 1 L, AD T: 

35 ℃, pH: 7, C/N ratios: 9/1 

to 20/1, SRTb: 30 days. 

Aged refuse: 0 to 

1200 mg-g dry 

sludge-1  

 

Note: Inorganic 

substances (e.g., 

sticks, stones and 

glass were 

manually. 

173.6 to 213.4 (AR = 0 –  

400 mg-(g dry sludge)-1 

The increase of soluble COD from 

1150 to 5240 g L-1, when AR 

dosage was increased from 0 – 400 

mg-g dry sludge-1. 

 

AR as a low cost alternative 

significantly enhanced the 

WAS hydrolysis, 

solubilization and acidogensis.

The results offer a promising 

method for the development of 

WAS AD systems in landfills.

[19] 
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removed. 

Reactor configuration  
Pretreatment 

conditions 

Results Remarks Ref. 

 Equipment: Batch reactor, 

Reactor volume: 400 L, AD T: 

37 ℃. 

 

Chemical: 7 g 

NaOH/L, 1 day.  

Thermobaric: T: 

121 °C, 1 day. 

The CH4 was increased 

by 3.28% (chemical) and 

8.32% (thermobaric).  

Soluble COD was augmented from 

16.3 % in the control to 20.84 % 

(thermobaric), 40.82% (chemical). 

Early inhibition was reduced by 

100 % in the thermobaric group. 

The initial cost analysis 

recognized thermobaric as the 

most feasible pretreatment 

method for industrial 

application. 

[20] 

 Equipment: Air-tight 

bottle, Reactor volume: 

160 mL, AD T: 35 ℃, 

Shaking at 100 

revolution per minute 

(rpm), 30 days. 

Biological 

hydrolysis: T: 35 

-55 °C, 3 days.  

200 mL CH4-g COD-1 in 

15 days compared to 30 

days without treatment 

(150 mL CH4-g COD-1) 

Soluble COD increased from 175.2 

± 38.2 to 3314.5 ± 683.4 mg L-1 and 

the dominant VFA concentration 

was augmented from 41.5 ± 2.1 to 

786.0 ± 133.2 mg L-1  

The pretreatment of WAS for 

15-days at 42 °C attained 

comparable biodegradability 

as untreated WAS in 30-days, 

suggesting biological 

hydrolysis could decrease 

solid SRT by 5 to 15 days 

compared to conventional AD.

[27] 
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Reactor configuration  
Pretreatment 

conditions 

Results Remarks Ref. 

 Equipment: Batch reactor, 

Reactor volume: 125 mL, AD 

T: 33 ℃, SRTb: 18 days. 

Microwave: 50 

to 175  ℃. 

Increase of CH4 

production (>31 %).  

 

Soluble COD increased from 9 

(unpretreated) to 35 % as a result of 

pretreatment. 

Inoculum acclimation 

enhanced biogas yield as well 

as the extent of ultimate 

biodegradation of pretreated 

WAS. 

[28] 

 Equipment: Batch reactor, 

Reactor volume: 25 mL, AD 

T: 35 ℃, SRTb: 100 days. 

Mechanical 

(ultrasound): 20 

kHz, 0.33 W mL-

1, 20 min.  

CH4 was increased from 

143 (without treatment) 

to 292 g kg-1 TSin. 

 The existence of 

polyelectrolyte flocculants 

increased CH4 yield during 

first 6 days of digestion but 

inhibited thereafter.  

[29] 

*Continuous stirred-tank reactor; aOrganic loading rates (kg VS m-3 day-1); bSolid retention time  
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2.2 Incineration  

Incineration is an exothermic oxidation process of biosolids resulting in the flue gas 

comprising of CO2 and H2O, ash and a certain amount of heat (Eqn. 2). Incineration 

reduces 90 % sludge volume with the simultaneous destruction of pathogens. The 

residual ash (about 30 wt. %) can be disposed into the landfills or to be utilized for 

building material production [30]. Whereas, the recovered heat produces steam, which is 

subsequently converted into power via steam turbines [3]. 

Biosolids / organics + O2 (excess) → CO2 + H2O + energy + ash                   (2) 

Recently, incineration of WAS has gained great attention in several countries [7, 31] 

on the account of restricted application of WAS in arable land for food production [32, 

33]. However, the augmented HMs quantities and the low P plant-accessibility is often 

related with incineration [31, 34]. Therefore, several approaches are being developed to 

upgrade the incineration ashes or re-circulate WAS-P directly. Table 2 illustrates the 

operating conditions and results of several new methods such as thermal treatment with 

polyvinylchloride (PVC) and magnesium oxide (MgO) [35], acid leaching [36, 37], and 

electrodialysis [38, 39]. Thomsen et al. [40] (Table 2), reported that high content of total 

P retained in char and ash with the lower HMs per unit of P makes sludge as a potential 

source of P-fertilizer for agricultural systems. More discussion on P recovery from 

incineration is presented in Section 5. Recently, WAS incineration processes are 

increasingly established to recover the energy in the form of electric power or heat [41-

43].  

The fluidized bed (FD) incinerators have been considered well efficient for WAS 

combustion in the form of dry or wet phase (with around 35 – 59 wt. % moisture content) 
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with high combustion efficiency (e.g. lower organic fraction in the fly ashes <0.3 %) and 

very low pollutants generation (SOx and NOx < 200 mg Nm-3) [44]. Murakami et al. [41] 

successfully demonstrated WAS incineration in a unique FD incinerator (capacity 4.32 t 

day-1) provided with a turbocharger in Oshamanbe Cho in Hokkaido. Compared to 

conventional plants, less than half of emissions corresponding to CO, NOx, and N2O were 

observed in the flue gases. Nearly 50 % of energy savings was estimated at incineration 

plant with capacity of 100 t day-1. Additionally, CO2 emission and the costs related to 

supplementary fuel and electricity consumption can be lowered by more than 40 % and 

0.2 million dollars, respectively. As reported by the National Association of Clean Water 

Agencies (NACWA), metro WWTP in St. Paul, Minnesota, U.S. has successfully 

installed incineration technology of 4.7 megawatt (MWe) electricity generation capacity. 

This plant has achieved approximately 20 % of decrease in GHG emissions and about $1 

million savings each year [45]. Also, 0.2 and 0.8 MWe incineration facilities are being 

established in Cleveland Ohio (U.S.) and in Hartford, Connecticut, respectively, which 

will substantially help to meet the energy requirement of plants [3, 45]. In another 

example, in Cyprus, Vassiliko cement plant, the sludge co-incineration with pet coke has 

successfully been employed [46]. The major advantages of WAS co-incineration in 

existing coal-based power plants can be summarized as below [47, 48]: 

• To preclude the high cost of an incineration technology; 

• To reduce the GHG emissions;  

• To advance the energy retrieval efficacy as well as public acceptability.  

In addition, low-caloric surplus heat of exhaust gases released from power plant can 

be effectively employed to enhance the sludge drying process [5]. Therefore, to ensure 
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the simultaneous energy exploitation and efficient recovery of nutrients, further research 

is needed on the co-incineration of WAS with other feedstocks (such as coal, wood, etc.), 

the design of energy efficient incinerator, and the management of ashes with improved 

and optimized methods.  
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Table 2. Summary of key information of WAS incineration.  

Experimental conditions Results Remarks  Ref.

 Equipment: Fluid bed reactor, 

Plant scale: full scale, T: 850 ℃, 

Air Equivalence ratio (ER): > 1, 

Particle retention time: 5 sec 

Main elements in ash (wt. % dry): Al (4.3), Ca 

(14.4), Fe (9.2) K (1.5), Mg (1.6), Na (0.5), P 

(10.3), S (1). 

HMs in ash (mg kg-1): Cd (63), Cr (1200), Cu 

(7500), Ni (1000), Zn (25000). 

The P-concentration in ash and char was very high 

making them potential P-fertilizer material. 

 

 

[40]

 Equipment: - Plant scale: lab 

scale, T: 850 ℃, Incineration 

time: 4 h, P extraction: HCl and 

NaOH (0.01 – 0.8 mol L-1), HM 

removal: cation exchange resin 

(CER, 0 – 0.2 g mL-1).  

Main elements in ash (wt. % dry): Na2O (1.51), 

MgO (3.94), Al2O3 (9.89), SiO2 (43.1), P2O5 

(27.4), K2O (3.38), CaO (10.3). 

 

 

HMs in ash (mg kg-1): Cr (89), Cu (787.4), Ni 

(53.8), Zn (3318), Hg (0.23). 

More than 95 % of the total P recovery was achieved 

at 0.5 mol L-1 HCl at a liquid/solid ratio of 50 mL g-1. 

2. HMs were effectively removed at 0.04 g mL-1 

CER. 

0.43 kg-kg-1 of struvite production was obtained, 

indicating a profit of > $5 kg-1 WAS ash based on the 

struvite value. 

The proposed method provides a sustainable way for 

P recovery from WAS incineration ashes.  

[36]
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Experimental conditions Results Remarks Ref. 

 Equipment: Rotary furnace, Plant 

scale: lab scale, T: 800 – 950 ℃, 

Air: 5 L min-1, Thermal treatment 

for HMs removal: PVC and 

MgO, Post-treatment: Chemical 

(sulfuric and phosphoric acid). 

HMs were significantly removed in the 

temperature of range of 800 – 950 ℃ by PVC as 

Cl-donor.  

 

 

As a result of thermal treatment ash with PVC and 

MgO, the P solubility augmented from 14.6 – 36.3 %.

The post-treatment considerably improved the P-

solubility to 50.2 % and 54.3 %.  

  

[35]

  Equipment: FD Incinerator, Plant 

scale: Pilot scale, Ca-based bead 

sorbents (SL-1 to SL-4) for 

removal SO2 and particulate 

matter (PM), T: 850 ℃, Particle 

retention time: 6 sec 

 

 

HMs (mg kg-1) in the PM collected via the bead 

sorbents at different times (60/120 h).  

 

As (1.1/1.3), Cd (13.2/15.1), Cr (266/288), Cu 

(480/522), Hg (0.88/2.52), Pb (144/180), Zn 

(2420/3245). 

 

SL-4 showed 99 % removal efficiency for SO2, 

probably due to higher specific surface area for 

sorbent.  

The collection of fine PM simultaneously eliminates 

HMs WAS incineration.  

The sorbent was found to be an effective material for 

simultaneous removal of SO2 and PM from WAS 

incineration and therefore, it could be exploited for 

industrial settings. 

[49]

 Equipment: Circulating FD Gaseous products (%): H2 (13.87), CO (6.5), CO2 The combustible concentration in the fly ash [50]



20 

 

reactor and Down flow 

combustor (DFC)-A combined 

approach, Plant scale: Pilot scale, 

T: 1150 ℃, Air (N m3 h-1): 7.5 

(primary flow rate), 6.4 

(secondary flow rate) and 12 

(tertiary flow rate).   

The syngas together with solid 

residue were fed into the DFC 

(incineration).  

(15.84), CH4 (2.37), NH3 (271 mg N m3), HCN 

(592 mg N m3). 

Residue from gasification analysis (wt.%): 

moisture: 1.4, volatile matter (VM): 22.3, fixed 

carbon: 13.8, ash: 62.5 The concentration of NOx 

in the incineration was 220 ± 6 mg N m3.  

 

 

collected from the DFC was 2.8 %, corresponding to 

an overall combustion efficiency of 99.2 % in the 

system. 

The study demonstrates that a combined gasification 

and incineration seem to be viable option for WAS 

management in an environmentally friendly manner. 
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2.3 Pyrolysis 

Pyrolysis is the thermal conversion (350 – 900 oC) of WAS performed in an oxygen 

deficient environment generating vapors or pyrolytic gases. To separate the liquid or oil, 

the vapors need to be condensed through cooling, leaving behind a solid product namely 

char [51]. The quantity and quality of liquid, gas and char products depend on the process 

conditions including operating temperature, reaction time and pressure as well as the 

WAS characteristics.  

Pyrolysis is generally characterized based on heating rate (HR), temperature, and gas 

residence time (GRT). A pyrolysis carried out at lower HR (0.1 – 1 oC s-1), lower 

operating temperature (300 – 400 oC), and higher GRT (5 – 30 min) is called slow 

pyrolysis. In contrary, fast pyrolysis takes place at higher HR (10 – 200 oC s-1), higher 

temperature (450 - 600 oC), and a shorter GRT (0.1 – 0.3 s). Fast pyrolysis is a suitable 

approach for conversion of WAS to liquid or gaseous products. Carver-Greenfield 

technology (C-GT), Oil-from-Sludge technology (OFS) and the Siemens Schwell-Brenna 

technology (SSBT) are advanced applied pathways to generate renewable fuel (bio-oil) 

via pyrolysis of WAS [4]. C-GT uses the principle of multi-effect dehydration of water-

bearing WAS and centrifugation to produce valuable products such as oil, animal feed 

and fertilizer [52, 53]. OFS based pyrolysis enhances bio-oil production at ~450 oC for 

over 30 min under atmospheric pressure to produce straight chain hydrocarbons, which 

are then condensed into oil [4]. SSBT includes co-pyrolysis of WAS and crushed wastes 

at 450 oC in a rotary kiln [54].  

Compared to the highly exothermic incineration, most of the pyrolytic reactions are 

endothermic consuming energy of around 100 kJ kg-1 [55]. Table 3 shows the varying 
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operating conditions and results of WAS pyrolysis carried out under various methods 

such as slow pyrolysis [56], fast pyrolysis [56-58], and microwave assisted [59] pyrolysis. 

As a result of using distinct technologies, operating conditions, and raw materials, WAS 

pyrolysis product characteristics and distribution differ noticeably. Atienza-Martínez et al. 

[58] (Table 3), reported a maximum liquid yield for anaerobically digested and thermally 

dried WAS fast pyrolysis (32 %) at 275 ℃ in FD reactor, when pretreatment 

(Torrefaction) and post-treatment (catalytic) were investigated. Gao et al. [60] 

investigated pyrolysis of dried WAS under the operating conditions described in Table 3, 

using a tubular reactor. They reported 46.14 % of maximum tar yield at 550 ℃. One of 

the benefits of WAS pyrolysis is the low operating temperatures, thereby avoiding 

melting and evaporation of the HMs [4, 61-63]. Unlike incineration, WAS pyrolysis 

mainly yields a high amounts of char (approximately 50 % of the mass of sludge), as 

shown in Table 3. These chars can be potentially used as solid fuel for heat or can be 

employed to adsorb HMs or organic contaminants [56]. Therefore, the emission of HMs 

into the environment triggering serious ecological and health effects could be 

significantly reduced [64]. Moreover, pyrolysis char has been explored as a cost-effective 

catalyst or catalyst support and an option for soil conditioning [65]. Nonetheless, the risk 

associated with the behavior of HMs contained in WAS pyrolysis char is still a serious 

concern, when considering its utilization or disposal. 

Currently, several studies have been conducted mainly focusing on the distribution of 

HMs from pyrolysis of WAS. For instance, Gao et al. [56] studied the distribution of 

HMs in char and bio-oil produced from dried WAS under the experimental conditions 

presented in Table 3; it was noticed that most of the HMs were retained in the char, 
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whilst very low concentration of HMs was observed in the bio-oil. HMs propensity in the 

char and the bio-oil were found to be comparable with the data reported by Trinh et al. 

[66], albeit the pyrolysis temperature was different. In addition, Jin et al. [67] (Table 3), 

suggested that majority of the HMs that accumulated in the char at 600 ℃ caused a major 

decline in bioavailability, indicating a tremendously low eco-toxicity/risk related to char 

subjected to the environment. Comparable results were also reported by Devi and Saroha 

[68] and Chen et al. [69], however different pyrolysis temperatures were used. The 

economic feasibility of pyrolysis is another challenging factor due to the relative 

complexity of processing equipment. However, it can be substantially supported by 

enhancing oil yields and production of high valued products from pyrolysis char [4]. The 

products produced from WAS such as oil, gas and char can be utilized for various 

application such as raw materials for producing chemicals and biofuel [4]. Moreover, 

pyrolysis flue gases also require lesser clean-up to satisfy emission limits than those from 

incineration. Samolada and Zabaniotou [70] compared WAS incineration, gasification 

and pyrolysis. Pyrolysis was identified as a zero waste technology, thus offering a 

potential solution to the pollution associated with WWT, compared to other technologies. 

On the whole, it could be inferred that the technology of pyrolysis for WAS holds 

potential to satisfy the environmental criteria of sustainable development and economic 

and social concerns [70, 71]. However, pyrolysis of WAS is still in infancy stages. 

Therefore, the introduction of more effective strategies (based on the type and content of 

HMs in the WAS) such as pre-/post-treatment, sorbents, and optimization of pyrolysis 

temperature towards high bio-oil production and the immobilization and/or minimization 

of HMs transfer to the products is needed. 
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Table 3. Summary of key information of WAS pyrolysis. 

Experimental conditions Results Remarks Ref. 

 Equipment: Horizontal tubular 

furnace reactor, Plant scale: Lab-

scale, Mode: slow pyrolysis (8 ℃ 

min-1) and fast pyrolysis (100 ℃ 

min-1), Sludge loading: 120 – 200 

g. 

Main elements in pyrolysis residue (wt. % dry): Al (1.22), 

Ca (1.79), Fe (1.62) K (1.5), Mg (0.35), Na (0.24), P 

(4.3), and S (1.3). HMs in pyrolysis residue (mg kg-1): Cr 

(661), Ni (311), Mn (514), Ba (469), La (231), Ce (208), 

and Sr (47). Tar yield (46.14 %), Non-condensable gas 

yield (28.64 %), Char yield (47.07 %). 

Fast pyrolysis gave higher yield of tar 

compared to that of slow pyrolysis. 

With increasing temperature, total gas yield 

increased and char decreased in both cases.   

[60] 

 Equipment: FD reactor, Plant 

scale: Lab-scale, Sludge 

pretreatment: Torrefaction (T: 

250 ℃, 13 min), Mode: Fast 

pyrolysis, T: 250 – 275 ℃, Sludge 

feeding rate: <1 kg h-1, Hot 

pyrolysis vapors post-treatment: γ-

Al2O3 catalyst (Auger reactor, T: 

480 ℃, SRT: 6.5 min)   

Liquid yield (32 %), Non-condensable gas yield (21 %), 

Char yield (47 %).  

 

 

The combination of the treatments 

(torrefaction and catalytic) did not enhanced 

the properties of liquid for use as fuel, 

concerning O/C molar ratio and nitrogen 

content. The treatment combination benefits 

were (i) the saving of catalyst ensuing from 

the lower quantity of vapors produced via the 

pyrolysis torrefied WAS and (ii) the minor 

decline in the coke yield.    

[58] 
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Experimental conditions Results Remarks Ref. 

 Equipment: Homemade pyrolysis 

and carbonization furnace, Plant 

scale: Lab-scale, T: 400 - 600 ℃, 

Sludge loading: 500 g.  

The proportion of char yield decreased gradually from 

60.6 to 53.1 %, whilst ash content increased by 15.6 % 

with respect to increase in pyrolysis temperature from 400 

to 600 ℃. 

The results show WAS pyrolysis as 

auspicious technology for HM immobilization 

in chars.  

Moreover, the results indicate the potential to 

enhance the quality and minimize the toxicity 

and associated effects of char via controlling 

the pyrolysis temperature. 

[67] 

 Equipment: FD reactor, Plant 

scale: Lab-scale, Sludge 

pretreatment: Torrefaction (T: 220 

- 320 ℃, 3.6 – 10.2 min), Mode: 

Fast pyrolysis, T: 530 ℃, Sludge 

feeding rate: <1 kg h-1, SRT: 5.7 

min 

Liquid yield (12 – 34 %), non-condensable gas yield 

(10 %), char yield (48 %). 

 

 

Torrefaction did not showed any clear 

advantages towards improving the pyrolysis 

liquid properties, but decreased the amount of 

oxygen-containing aliphatic compounds, thus 

it seems that this pretreatment could improve 

the stability of the liquid.  

[57] 
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Experimental conditions Results Remarks Ref. 

 Equipment: continuous screw-

feeding reactor, Plant scale: Lab-

scale, T: 500 - 800 ℃, Sludge 

feeding rate: 4.35 – 100 g min-1, 

RT: 6 – 46 min 

Main elements in char (wt. % dry): SiO2 (25.76), P2O5 

(16.64), Fe2O3 (10.82), Al2O3 (11.42), CaO (8.67), SO3 

(5.72), CuO (4.92), K2O (4.67), MgO (4.02), ZnO (1.3).  

 

HMs in char and bio-oil (mg kg-1, presented as Char/bio-

oil): Cu (1500/129), Zn (2996/38), Mn (2388/33), Cr 

(680/10), Ni (337/5), Pb (134/4), Cd (2/0). 

Bio-oil yield (16.69 %), gas yield (16.49 %) and char 

yield (65.2 %) 

The maximum bio-oil yield was obtained at 

700 ℃ and SRT of 23 min. 

The increase in temperature and SRT 

decreased the char yields. 

A great proportion of HMs retained in the 

chars.  

[56] 

 Equipment: microwave (MW) 

oven, Plant scale: Lab-scale, MW 

power: 900 Watt at 2450 MHz 

frequency, T: 400 - 800 ℃, Sludge 

loading: 200 g, Holding time: 30 

min 

Bio-oil yield (14–20 wt. %), gas yield (15–29 wt. %) and 

char yield (57–69 wt.%). The heating value of bio-oil 

varied from 8700 – 9200 kcal kg-1. Maximum energy 

recovery of 54 % at 600 °C.  

The elevated temperature decreases the yield 

of bio-oil and chars and increases the gaseous 

products.  

MW assisted pyrolysis of wet sludge is a 

promising approach for enabling pyrolysis oil 

as fuel for various applications.  

[59] 
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2.4 Sludge gasification 

Gasification converts dried WAS into combustable gases known as syngas (mainly 

composed of H2, CO, CO2 and CH4) under partical oxidation at elevated temperatures of 

700 – 1000 °C [72]. Gasification reduces the volume and fixes the HMs in the solid 

residues [73]. Calorific value of syngas varies from 4 to 6 MJ Nm-3 and is mainly 

appropriate as a fuel for heating, steam trubine and gas engines etc., [74, 75]. WAS 

gasification mechanism includes four stages: (i) drying, (ii) pyrolysis or devolatization, 

(iii) combustion, and (iv) char gasification or reduction. Major reactions occurring during 

gasification are shown (Eqns. 3 – 11) [76, 77].  

Oxidation zone reactions: 

C + O2 → CO2         -4.6 kJ mol-1  (3) 

2C + O2 → 2CO           -123 kJ mol-1             (4) 

Reduction zone reactions:  

C + CO2 → 2CO          162 kJ mol-1  (5) 

C + H2O → CO + H2  119 kJ mol-1                (6) 

C + 2H2 → CH4        -87 kJ mol-1                 (7) 

CO + H2O → CO2 + H2          -42 kJ mol-1                 (8) 

Reforming reaction occurs between hydrocarbons and steam (water vapor), which 

results in rich H2/CO mixture in gaseous products (Eqn. 9) whereas the hydrogen is 

further enhanced by water-gas shift (WGS) reaction (Eqn. 8) [78]. 

CHxOy + (1 – y) H2O → CO + (1 – y + x/2) H2                             (9) 
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The end-products of WAS gasification depend on its properties (such as moisture, 

VM, ash, and thermal conductivity) and experimental conditions (such as temperature, 

HR, and feeding ratio) [79].  

Table 4 shows experimental conditions and results corresponding to sludge air 

gasification [72, 80, 81], steam sludge gasification [72, 81, 82] and supercritical sludge 

gasification [83] reported in literature. These studies have shown considerable results for 

WAS gasification for producing hydrogen-rich syngas. However, implementation of 

WAS gasification confronts several challenges. For instance, higher moisture content of 

approximatley 80 wt. % and lower heating value (LHV) of WAS are the major challenges, 

which results in lower gasification efficiency (GE) [84]. Whereas the dewatering process 

is energy-intensive (i.e. kilogram of H2O requires about 2,260 kJ of unrecoverable energy 

[74]) and thus, overall cost of WAS disposal becomes considerably higher. Moreover, 

high tar production from WAS gasification is also another main obstacle which requires 

additional treatment because it can probably hinder the gasifier operation through 

blocking the tubing or fouling the downstream apparatus [85]. The tar removal can be 

accomplished through two attempts: i) the ‘primary method,’ where tar treatment is 

performed inside the gasifier by considering various parameters (i.e., gasifier design, 

temperature, gasifying agent and catalysts), and ii) the ‘secondary method,’ where tar is 

removed from gaseous products by means of installing equipment after the gasifier [85]. 

The primary method has been proven more economically appealing than the secondary 

one, because it avoids high costs of installing additional technology such as gas scrubbers 

[86]. Choi et al. [80] (Table 4), studied the effect of ER and activated carbon (AC) to 

sludge ratio on tar production. With increasing ER from 0.22 to 0.5, tar content, H2 yield, 
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and HHV of producer gas were significantly decreased from 296 to 76 mg Nm3, 28.1 to 

24.4 vol %, and 6.25 to 5.27 MJ Nm3, respectively. This trend has also been widely 

reported in literature [85, 87]. Similarly, Roche et al. [72] (Table 4), investigated the 

effect of throughput (TR), the gasifying agent, and the dolomite catalyst on tar production 

and gas composition. The results showed that the increasing throughput reduced the H2 

production and greatly increased the tar production. On the other hand, air plus steam, 

mainly in the presence of dolomite, improved the H2 production by 20 – 30 %, reaching 

tar removal efficiency of ~71 %. Typical design of gasifier is also an alternative approach 

at primary tar removal. A recent study conducted by Molino et al. [88] highlighted an 

effective operation of the FD gasifier in biomass gasification, emphasizing special 

characteristics of FD gasifier (i.e. high mixing potential and a high tar conversion), 

particularly in presence of catalysts. Currently, numerous trials using the novel type or 

modified gasifiers have been used for tar reduction inside the gasifiers. Choi et al. [80, 89] 

(Table 4), conducted the sludge gasification with a three-stage gasifier (i.e. auger reactor, 

FD reactor, and tar-cracking reactor connected in sequence) and reported the least tar 

quantities of 22 and 27 mg Nm3 in producer gas, respectively. Another exclusive gasifier 

is that in which the catalytic filter components were integrated into the freeboard of the 

FD steam gasifier to enable the efficient tar and removal of trace elements (TEs) [90]. 

Moreover, Lurgi-Ruhrgas and the ChemChar waste gasification processes are considered 

as advanced technologies for sludge gasification, because they manage to achieve 

significant retaining of metals in the char matrix and high conversion of carbonaceous 

char residues from WAS into combustible gas [4].  
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On the other hand, WAS co-gasification with other carbonaceous materials entitles 

various benefits which advocate its utilization as a feedstock for gasification. Currently, 

WAS and woody biomass co-gasification have been extensively studied [73, 91-95]. The 

high VM, low ash and moisture content (in particular), are some of the major attributes of 

woody biomass that makes it an appropriate to be blended with moist WAS for 

gasification.  

Peng et al. [73] investigated the co-gasification of wet WAS (76 % dry basis moisture 

content) and woody biomass (8.6 % dry basis moisture content) in a lab-scale fixed bed 

gasifier. The effects of different sludge mixing ratios (0 %, 30 %, 50 %, 70 % and 100 % 

in the test) and reactor temperatures (700 to 900 oC) were assessed on product 

distribution and gasification performance. The results indicated that the sludge moisture 

participated in the gasification with char. The addition of woody biomass to WAS 

compensated the moisture content and improved the VM content in the blends. An 

optimum H2 and CO yield of 35.8 % and 28 % were obtained at a WAS ratio of 50 % and 

temperature of 800 oC. The LHV and carbon conversion efficiency (CCE) varied from 

11.89 to 12.72 MJ Nm-3 and 57.86 to 72.21 %, respectively.  

Ong et al. [94] co-gasified woody biomass with WAS in a fixed-bed downdraft 

gasifier. The effects of different WAS ratios (0 – 33 wt. %) and operating temperature 

(700 – 1000 oC) on the product distribution were studied. The results indicated that 20 

wt. % of WAS ratio in the feedstock was successfully gasified to generate gaseous 

products comprising of >30 vol. % of syngas (H2 and CO) with an average LHV of 4.5 

MJ Nm-3. Further increase in the WAS ratio to 33 wt. % resulted in gasifier blockage due 

to the ash agglomeration. 
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Furthermore, Seggiani et al. [93] co-gasified dehydrated WAS (20 % w/w moisture 

content) blended with woody biomass in a pilot-scale updraft fixed-bed gasifier operating 

at the atmospheric pressure. Authors found it viable to co-gasify WAS with woody 

biomass. However, at high content of WAS (70 % w/w), slagging and extreme residue 

development in the oxidation zone could occur due to high ash content and low ash 

fusion temperatures of WAS, which makes the whole process unstable. It was found that 

increase in the ER leads to higher gas yields and cold gas efficiencies (CGE).   

Similarly, Lee et al. [95] determined the optimum process parameters and their 

influence on gas composition via co-gasification of WAS blended with woody biomass in 

a FD gasifier. The WAS and woody biomass were mixed at different ratios of 50 - 100 

wt.%, respectively. The temperature was varied from 600 to 900 oC. By adding the wood, 

H2 and CO increased from 4 to 7 % and 11.5 to 19 % at WAS mixing ratios from 100 to 

50 % and 100 to 60 %, respectively. Temperature also supported gaseous products at 

elevated temperatures.  
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Table 4. Summary of key information of WAS Gasification.  

Experimental conditions Results Conclusions and remarks Ref. 

 Equipment: FD reactor (continuous 

feeding and ash removal mode), Plant 

scale: Lab-scale, T: 770 – 850 ℃; 

Cyclone T: 450 ℃; Gasifying agent: 

steam and air, g gasifying agent/g 

sludge (daf, dry and ash-free): 0.8 – 1.1, 

ER: 0.12 – 0.32. 

Gas yield (0.89 – 1.32 m3 kg-1 sludge), solid 

yield (35 – 41 wt.%), H2 and CO (20 – 52 and 

137 – 414 g kg-1 sludge daf), GE (39 – 66 %), 

H2/CO molar ratio (1.46 - 3.25), gas LHV 

(4.12 – 6.2 MJ m3). 

Increasing reaction temperature enhanced 

the gas yield and the GE and reduced the 

tar quantities.  

The steam presence supported LHV of 

gas.  

 

[81] 

 Equipment: FD reactor, Plant scale: 

Lab-scale, T: 800 ℃, Gasifying agent: 

air + steam, TR: 110 – 322 kg h-1 m3, 

Steam-to-biomass ratio (S/B): 1, 

Catalyst: dolomite (10 %)  

 ER: 0.3 

Gas production (2.8 – 3.2 N m3 kg-1 sludge 

daf), gas products (%, dry): H2 (9.6 – 14), CO 

(5.3 – 9.7), CH4 (2.2 – 3.2), N2 (58.5 – 63.3), 

Gravimetric tar yield (3.7 – 17.4 mg g-1 sludge 

daf), Char (30 – 58.1 g kg-1 daf), GE (35 – 

48.8 %), LHV (2.9 – 3.9). 

Increasing TR reduced the H2 production 

and enhanced the tar yield.  

The catalyst increased H2 content from 12 

to 26 %.  

The obtained results offer enough insight 

on the potential development of current 

method to a large scale.  

 

[72] 
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Experimental conditions Results Conclusions and remarks Ref. 

 Equipment: The auger, FD and tar-

cracking reactors (Three stage 

gasification process), Plant scale: Lab-

scale, Auger reactor T: 650 ℃, FD 

reactor T: 810 – 830 ℃, Gasifying 

agent: air, Sludge loading: 800 g for 

each test, AC to sludge ratio: 0.5 – 2, 

ER: 0.22 to 0.5  

Gas production (65.2 – 77 wt.%), gas products 

(vol.%): H2 (14.1 – 29), CO (9.2 – 12.8), CH4 

(3.8 – 6.4), N2 (43.4 – 51.6), tar yield (0.2 – 

1.1 wt.%), Char (11.7 – 24.5 wt.%), CGE 

(66.79 – 107 %), CCE (60.30 – 108 %), LHV: 

5 – 6.8 MJ N m3. 

The increasing ER significantly decreased 

impurities in gaseous products.  

The H2 production increased by increasing 

AC to sludge ratio and the optimum ratio 

turned out to be 2/1.  

 

  

[80] 

 Equipment: FD reactor, T: 650 ℃, 

Pressure: 30 MPa, Alkali catalysts: 

KOH, NaOH, K2CO3 and Na2CO3 

Gas products (mol kg-1): H2 (15.49), CO2 

(9.45), CH4 (2.2), GE (50.1 %), CCE (45 %). 

The highest H2 yield was achieved with 

KOH at 540 ℃, whilst K2CO3 improved 

the GE. 

The increasing temperature and alkali 

catalyst promoted WGS reaction.  

[83] 

 Equipment: Fixed bed gasifier, Plant 

scale: Lab-scale, T: 700 - 1000 ℃, 

Gasifying agent: steam, steam flow rate: 

Maximum syngas yield (1.14 ggas g-1solid), Gas 

products (%): H2 , CO, CO2 and CH4 (46.9 % 

to 56.09, 10 to 18, 30 to 15 and 9 to 5 from 

The increasing reactor temperature 

increased H2 production.  

WAS produced more H2 compared to food 

[82] 
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0.3 g min-1, Sludge loading: 35 g for 

each test 

700 to 1000 ℃). [96] and paper [97] waste under same 

experimental conditions.  

Steam gasification of WAS yielded about 

three times higher H2 than that of air 

gasification [98].  
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2.5 Integration of microbial fuel cells with WAS treatment 

Bioelectrochemical systems (BES), such as microbial fuel cells (MFCs) are a fascinating 

technology that biologically converts OM into electricity [99, 100]. MFCs are 

advantageous on account of their ability to directly convert OMs into electricity and their 

efficient operation under ambient temperature, normal pressure and neutral pH. These 

characteristics distinguish them from all other existing bioenergy approaches. In a MFC, 

electrons produced through bacteria from the OM are switched to the anode and flow to 

the cathode connected via a conductive substance comprising a resistor [101]. In the 

cathode, terminal electron acceptors (e.g., oxygen) consume the electrons to complete the 

electrochemical reaction. Recently, various studies have reported the successful 

application of MFC technology for producing bioelectricity from organic wastes (e.g., 

WAS) [102-104]. MFCs significantly decrease the adverse environmental impacts 

associated with conventional WAS treatment (e.g., incineration and landfill) [105]. 

Dentel et al. [106] first demonstrated the direct generation of electricity from sludge via 

MFC. They used anaerobically digested sludge and achieved a maximum voltage of 517 

mV [106]. Thenceforth, the concern of addressing an enhanced power generation from 

WAS has become the key research direction [99, 102, 103, 107, 108], and the power 

output densities increased from 2004 to 2017 (0.1 to 227 W/m3) [108]. In addition to 

power generation, sludge digestion is also of utmost significance to make MFC 

technology competent. Ghadge et al. [109] have reported the simultaneous sludge 

degradation of 81 % and power generation (8.7 W m3) in MFC with sodium hypochlorite 

as catholyte within short RT of 8 days. Moreover, as compared to other fermentable 

materials (e.g., glucose, acetic acid and lactic acid) typically exploited in MFCs, WAS 
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composition is complex, slowly biodegradable, and the persistent biomaterials/organics 

are challenging to be consumed efficiently [110]. Thus, to make these refractory organics 

more susceptible to effective microbial degradation pretreatment of WAS is absolutely 

imperative [111]. Today, many pretreatment methods such as alkaline pretreatment [112-

114], ultrasonic pretreatment [103, 111, 113], aerobic digestion [107], thermal 

pretreatment [107], microwave digestion [115], ozonation [115] have been explored to 

enhance the electricity generation via WAS in MFCs. Jiang et al. [103, 111, 113] 

investigated the ultrasonic and alkaline pretreatments. Both methods accelerated the OM 

dissolution leading to remarkable total COD removal rate. Xiao et al. [107] and Yuan et 

al. [116] studied the base and heat pretreatments as an effective alternatives to accelerate 

the hydrolysis, and thereby increasing electricity production. However, recent findings 

have shown the possibility of destruction of the original microbial consortia via base and 

heat pretreatments, indicating that inoculation would be essential in BES [107]. More 

recently, Oh et al. [117] evaluated the influence of ultrasonic and heat/alkaline 

pretreatments with varied sources of sludge (such as primary sludge, WAS and AD 

sludge) for electricity production in MFCs. Although the aforementioned pretreatments 

are efficient in liquefying WAS and promoting overall system performance, they also 

increase the operational cost of MFCs. Thus, more cost-effective approaches as recently 

adopted by Suor et al. [99] and Cia et al. [118] should be further researched to increase 

electricity generation from WAS via MFCs. 
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3. COMPARATIVE STUDY OF THE LEADING TECHNOLOGIES FOR 

SLUDGE DISPOSAL 

The comparison among well-known technologies for WAS is depicted in Table 5. On the 

account of stringent flue gas emission requirements, WAS incinerators require advanced 

emission control systems [70]. Additionally, WAS co-firing with coal and/or biomass 

appears a favourable and encouraging option. The pyrolysis of WAS is a more complex 

technology when compared with incineration. However, compared to incineration, 

pyrolysis entitles potential benefits such as zero waste method, the lower costs, less 

environmental impact and much lower dependency on ever diminishing fossil fuel 

reserves [70].  

Moreover, these versatile benefits endow WAS pyrolysis with adequate capacities to 

be stepped up for commercial applications in the near future. Nonetheless, enhancement 

of energy conversion efficiency is the major consideration and an area of concern for 

WAS pyrolysis. Conversion technologies like WAS pyrolysis and gasification are still in 

embryonic stages. Several of the claims such as pollution-free and economic viability for 

these technologies are based on laboratory and pilot scale demonstration projects. The 

real problem with these approaches is that the plants fail to meet the increasingly 

stringent air quality and emissions standards when scale up to real world applications or 

outside of the laboratory [70, 119, 120]. In addition, some other limitations on WAS 

technological advancement are as follows:  

- Improper matches among the risk bearing capabilities of suppliers, clients, and 

investors. Generally, they are not able or reluctant to realize/accept any levels of 
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the probable risks associated with a project if the technology applied is 

unguaranteed or unproven.  

- The obstacles to secure safe investment for technologies with restrict operating 

experience and/or without any proved track record.  

- For WAS treatment and disposal, low gate fees are enumerated as one of the 

major inhibitors for all types of waste management projects and the inhibition is 

mostly linked to the utilization of capital intensive plant and equipment, indeed.  

- Considering unreal expenses of scarce resources and other benefits as the priority 

rather than actual effort and focus on developments that might result in real 

advantages. 
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Table 5. Comparative analysis of leading sludge treatment technologies [4, 14, 23, 70, 104, 121-125].  

Technology Factors Recognized benefits Limitations 

Incineration 

Technological  1) Well-established and reliable 

2) About 90 % WAS volume reduction  

3) Almost complete destruction of toxic organic components 

and pathogens 

4) Heat recovery to power the steam turbine and WAS 

drying) 

1) Dewatering of the sludge is required (41–65 wt. % 

content of dry material) 

2) Incineration can be energy deficient 

3) Far from Zero Waste method 

Social-

Environmental  

1) Low GHG emissions compared to open burning 

2) Co-combustion with other conventional fuels such as coal 

can reduce GHG emissions and public acceptability 

thereof 

1) Strong Public’s opposition  

2) Mono-incineration: 232.2 kg CO2 eq./t sludge 

3) Co-incineration with municipal solid waste 

(MSW): (–15.4 kg CO2 eq./t sludge) 

4) NOx and SO2 emissions, slag, TEs, fly ash  and 

ash disposal 

Economic  1) Energy savings 

2) Existing infrastructure of energy kilns  

3) Co-firing with other conventional fuels 

1) Strict and expensive emission control 

2) High cost of the flue gas cleaning and ash disposal 

problems (HMs etc.) 
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Technology Factors Recognized benefits Limitations 

Pyrolysis 

Technological  1) It converts both raw and digested WAS into useful 

bioenergy. 

2) Non-burning and zero waste process 

3) Bio-oil: used to produce various chemicals and even as a 

fuel 

4) Biochar (HHV of WAS is ~5 MJ kg-1) as a byproduct 

(holds potential for carbon sequestration and soil 

conditioning) 

1) Complex when compared with incineration  

2) Dewatering requirements limits the WAS 

pyrolysis applications  

3) Products have not very well established markets 

4) Pyrolysis gas needs less treatment to meet 

emission limits than incineration 

5) Limited technological acceptance by the low 

economic value of the produced oil 

Socio-

Environmental  

1) Lowest GHG emissions than incineration due to the 

lower temperatures and oxygen absence 

2) Lower temperatures are also responsible for the HMs 

absence in the pyrolysis gas   

3) Turns a waste into a valuable raw material 

1) Air pollution 

2) HMs remain trapped in the resulting char, those 

require costly treatments, without which their 

landfilling is not possible due to legal constrains  

Economic  1) Viability is proven only in large scale plants (>20,000 

tons year-1) 

2) Sustainable development and green entrepreneurship 

1) High investment cost 

2) Unstable economic environment 
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Technology Factors Recognized benefits Limitations 

Gasification 

Technological  1) Turn various types of waste into useful energy 

2) Potential of co-feeding with biomass  

3) High energy efficiency 

4) Marketable products: WAS conversion to a combustible 

gas (i.e. syngas), which significantly contributes to 

produce methanol. 

5) Char or slag, oils and water as byproduct 

6) Avoids problems such as supplementary fuel, SOx and 

NOx emissions, fly ash and HMs etc. 

7) Energy self-sustaining  

1) WAS water content required (<10 % dry solids 

(DS) content)  

2) WAS dewatering and drying is essential   

3) Gas cleaning for syngas applications 

4) HHV of WAS syngas reaches ~4 MJ m-3, which is 

suitable for electricity/heat 

 

Socio-

Environmental  

1) Lower environmental impacts 

2) Turn a waste into energy 

1) Heavy organic pollutant compounds in the 

exhaust stream 

Economic  1) Economies of scale and automation favor large scale 

operations  

2) Green Entrepreneurship  

3) Sustainable development 

1) High investment and operation cost 



42 

 

Technology Factors Recognized benefits Limitations 

Anaerobic 

digestion 

(AD) 

Technological  1) Accepts organic feedstocks with high moisture content 

(80 – 90 %), thus suitable for WAS. 

2) Methane-rich and high calorific value biogas 

3) Combined heat and power plants. 

1) Lengthy reaction steps  

2) Low conversion efficiency by microbe and/or 

enzyme  

3) The HMs and Persistent organic pollutants (POPs) 

contained in WAS cannot be alleviated via AD 

Socio-

Environmental 

1) Significant reduction in carbon emissions  

2) Creates jobs and increases skilled labor force 

3) Replaces chemical fertilizer with organic fertilizer for 

arable land 

4) Decreases use of firewood, helping to combat 

deforestation 

1) Digestate resulted from AD would have impacts 

on the public health and environment if not treated 

properly. 

 

Economic  1) Digestate is energy profitable due to its organic matter  

2) Reduces transport and disposal costs 

3) Cost-effective fertilizer  

4) Green Entrepreneurship  

5) Sustainable development 

1) High capital and maintenance costs 
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Technology Factors Recognized benefits Limitations 

WAS-

microbial 

fuel cell 

Technological 1) It is a clean technology (no combustion) 

2) Direct conversion of a great variety of organics into 

electricity 

3) Efficient operation under ambient temperature, normal 

pressure and neutral pH. 

4) Sludge stabilization and volume reduction 

5) Noise free operation 

 

1) Low power output.  

2) Pretreatment requirement due to complex 

structure of WAS  

3) The scale-up is still a big challenge 

4) Biological fouling  

5) In some cases, (i.e. phototrophic MFCs) artificial 

illumination is required 

6) The lack of electrolytes buffer capacity drastically 

impediment scaling up of MFCs for WWT  

Socio-

Environmental 

1) Considerable reduction of environmental impacts 

associated with WAS treatment. 

2) Bioenergy in the form of electricity. 

3) It diminishes the competition with food production as is 

the concern with conventional biofuels.  

 

Economic 1) Energy saving. 

2) Reduced maintenance cost since not moving parts.  

1) High operational (i.e. pretreatment) and material 

costs (i.e. membrane materials, Pt catalyst and 
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3) Sustainable development.  bipolar plates etc.). 

2) Additional costs for artificial illumination. 
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AD is the most prevalent sludge disposal route as it is not affected by high water 

content of the sludge. However, it suffers from long processing time, improper removal 

of the OM and low efficiency. Incineration has high efficiency and can be employed to 

generate power. However, flue gases require expensive treatment unlike AD before they 

are vented out to the atmosphere. Other thermal treatments such as gasification and 

pyrolysis have important benefits as they generate syngas and bio-oil, respectively, which 

can be used for diverse applications, but they suffer from low efficiency and high costs of 

WAS pretreatment to reduce moisture content. Developments in the technologies such as 

AD coupled with pyrolysis, co-combustion and co-incineration are needed to diminish 

the energy penalty and improve the progress economics. This will in turn aid in the scale 

up of pilot plant studies to commercial level applications.    

 

4. CO-PRODUCTION OF BIOREFINERY PRODUCTS FROM SEWAGE 

SLUDGE 

4.1 Enzymes 

Three major biochemical families (carbohydrates, proteins and lipids) of WAS represent 

approximately 80 % of the OM [3]. Thus, the recovery of various enzymes (e.g. lipases, 

dehydrogenase, glycosidase, peroxidase, and aminopeptidases) from WAS is essential on 

account of their high value. Nabarlatz et al. [126] studied various enzyme extraction 

methods. The obtained results proved ultrasonication alone or supported with additives as 

an effective approach for enzyme recovery methods at the operating conditions listed in 

Table 6. They also suggested that enzymes help to enhance the bio-digestibility of OMs 

towards higher biogas production during AD and so forth [126]. Likewise, according to 
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Guanghui et al. [127] (Table 6), using ultrasonication supported by 

ethylenediaminetetraacetic acid recovered various enzymes from WAS. The method 

demonstrated an effective recovery of the hydrolytic enzymes (e.g. lipase and protease).  

More recently, Ni et al. [53] (Table 6), utilized WAS to extract the hydrolytic 

enzymes. According to observations, the produced enzymes appear to be an appropriate 

compound enzyme for feed. 

Generally, enzymes are biological catalysts that upsurge the rate of chemical 

reactions and are employed commercially for various industrial applications such as 

pharmaceutical, food, diagnostics, cosmetics, detergent and fine chemical industries. 

With regard to their wide commercial significance, reliable and economical supply of 

these enzymes is a key endeavor on account of the fact that 30 – 40 % of the production 

costs in aforementioned industries attribute to the cost of preparing culture medium [128]. 

Therefore, WAS-derived enzymes could potentially lessen the industrial processing time 

and cost. Therefore, holistic research is required to optimize the enzyme recovery along 

with techno-economical assessment of the processes. The enzymes produced are 

appropriate for certain industrial applications (e.g., as additives for detergents or bio-

catalysts in esterification reactions); however, such applications demand high purity and 

specific enzymatic activity, and therefore further purification and concentration 

procedures are usually required. 

4.2 Bio-plastics 

The plastics are commonly derived from petrochemicals. However, the environmental 

and human health problems related to the application of conventional plastics 
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(petrochemical derived plastics) have motivated researchers to develop the biodegradable 

alternative.  

Besides, other polymers such as polyhydroxyalkanoates (PHAs), which exhibit 

properties comparable to petroleum based plastics, are a group of biodegradable polymers 

(linear polyesters) produced via microorganisms using carbon as a substrate [129]. Poly-

beta-hydroxybutyric acid and its co-polymer poly (3-hydroxybutyrate-co-hydroxyvalerate 

[P(3HB-co-HV)]) are very common PHAs [130].  

Several microorganisms in WAS have the ability to accumulate PHAs (0.30 to 22.7 

mg polymer g-sludge [131]); however, high production cost (i.e. ~ USD 4 – 6 kg-1 

compared to USD 0.6 – 0.9 kg-1 for conventional plastics) [129, 132] has limited their 

widespread uses. The current advances in bacterial fermentation and WAS use are likely 

to improve the yield and diminish the process costs of PHAs production [129, 132-135]. 

The excess carbon and limitation approach under ‘feast and famine’ conditions has 

been observed promising for the effective cultivation of PHA yielding organisms. In 

addition, Longo et al. successfully exploited nitorgen removal strategy to obtain higher 

yield of PHA during the PHA production step [136]. However, being aerobic, these 

processes are energy intensive (1 kg PHA production requires ~39 MJ),  when the 

aerobic accumulation step is used [137]. Table 6 presents the experimental approaches 

applied for the extraction of PHAs. Jiang et al. [138], Morgan-Sagastume et al. [139], and 

Pittamnn et al. [135] (Table 6) examined the potential for the enhancement of PHA 

producing communities and the PHA accumulation capacity of fermented sludge under 

varying experimental conditions. The obtained results demostrated the successful 

enrichment of  PHA-storing communities by means of the fermented sludge as feedstock, 
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albeit excessive nutrient loads did control the maximum level of PHA accumulation [139]. 

Morgan-Sagastume et al. [139] also scrutinized a novel concept for the operation of 

WWTP, where the variety of PHA accumulating organisms were successfully 

supplemented based on the conversion of the readily biodegradable COD from municipal 

wastewater without its pre-conversion to VFAs [140]. On the other hand, post-treatment 

was necessitated, especially for higher nurtient removal of the treated effluent [141].  

Recently, a pilot-scale study conducted by Bengtsson et al. [140] demonstrated PHA 

accumulation potential integrated with biological nitrogen removal through pre-

denitrification, nitrification and post-denitrification. The obtained PHA accumulation 

potential was comparable to what has been formerly reported by employing a completely 

aerobic ‘feast and famine’ process [141]. Therefore, based on above results, nitrogen 

removal could be assimilated into the enrichment process without diminishing the PHA 

accumulation potential. But, this is directly contrary to what has been reported in 

literature [142]. Moreover, Bengtsson et al. [140] also confirmed previously reported 

findings of high PHA accumulation using conventional domestic wastewater regardless 

of low to negligible concentrations of influent VFAs [141]. Alternatively, municipal 

WWT has been using streams with high VFAs resulting from fermentation of solids to 

produce enhanced biomass along with high PHA accumulation [135, 143, 144], which 

has been reported as unnecessary [140]. Therefore, the conversion of highly concentrated 

VFA-media into only polymers seems to be a good choice rather than biomass and 

polymers. This will in turn lead to a higher overall PHA potential. Despite the clear 

technical potential of PHAs in sludge, it is not yet economically appealing [129, 145]. 
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Therefore, to make sludge-derived PHAs more attractive in future, holistic research 

approach aiming to improve the yields through process integration, parametric 

optimization, and PHAs storage capacity, etc., are necessary. Such aspects will boost the 

confidence and effectiveness in the industrial fraternity about the economic and 

commercial viability of the technology. 

4. 3 Bio-pesticides 

Currently, Bacillus thuringiensis (Bt) is by far the most effective bio-pesticide, which 

owns the ability to produce delta endotoxins (δ-endotoxin, known as cry and cyt toxins), 

being utilized widely in agronomy, forestry and public sector [3, 146]. Moreover, bio-

pesticides are highly target specific compounds with zero toxic residues, and therefore 

have a much lesser impact on the environment compared to chemical pesticides. 

However, high cost associated with raw materials has impeded the commercial 

application of Bt to a great extent [147]. The conventional fermentation medium for Bt 

based bio-pesticides production carries a significant portion of ~40 – 60 % of the total 

production cost [148, 149]. Therefore, it has become important to explore a new raw 

material considering some criteria which should include i) renewable in nature, ii) high 

yielding potential, iii) cost-effectiveness, and iv) year round availability for Bt production. 

With these, WAS appears to be highly nutritional and cost-effective medium for Bt 

production [150, 151], which will substantially reduce the Bt production cost and will 

contribute to sustainable WAS utilization and management. WAS based bio-pesticide 

production undergoes three steps namely, i) WAS fermentation, ii) harvesting and/or 

product recovery, and iii) product formulation. The use of sludge for Bt production has 

been widely studied as shown in Table 6 [147, 152, 153]. These studies have 
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demonstrated that Bt based bio-pesticides production highly depends on fermentation 

conditions such as pH, C/N ratio, dissolved oxygen concentration, solids concentration 

and inoculum sludge type. Montiel et al. indicated that more than 50 % of net savings can 

be achieved by substituting commercial medium for producing Bt with WAS ($0.25-0.34 

L-1 sludge medium vs $0.75 L-1 commercial medium) [152, 154]. Attending a higher 

entomotoxicity (Tx) level could led to further decrease the Bt production cost [152]. 

Zhuang et al. [147] (Table 6), showed higher yields of Tx corresponding to different 

substrates (i.e. sludge  + wheat and commercial medium) compared to sludge, indicating 

the reliance of Tx production efficiency on the type of medium. The lower Tx 

productivity in sludge sample could be attributed to the complex nature of sludge and 

thus less biodegradability. Vidyarthi et al. [155] indicated the availability of 

biodegradable OMs in the substrate was very crucial limiting factor for obtaining a high 

yield of Tx and δ-endotoxin. Therefore, the suitable pretreatment to alter less 

biodegradable materials into more easily degradable ones is highly recommended [156, 

157]. Ultrasonication as sludge pretreatment has been introduced as a potential approach 

to improve the sludge biodegradability [158]. However, recently, Fenton oxidation 

pretreatment was proven to be more effective for growth of sludge based Bt production 

compared to ultrasonication pretreatment, proposing that further research on Bt 

production using above pretreatment in large scale reactor are needed [153]. Zhuang et al. 

[147] also demonstrated the feasibility of producing Bt based bio-pesticides using WAS 

as raw materials under solid-state fermentation technology. The effect of HMs [Pb (0 – 

300 mg L-1), Cu (0 – 150 mg L-1, Cd (0 – 30 mg L-1, Cr (0 – 300 mg L-1)] on Bt 

production was examined. The highest Bt production corresponding to Pb, Cu, Cd and Cr 
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was found to be 227, 82, 15, and 263 mg L-1, respectively. The high contents of HMs had 

considerable negative influence on the growth, crystal formation and toxicity of Bt. The 

extent of metal toxicity to Bt production caused 50 % inhabitation in total cell (TC) 

biomass of Bt. Among the examined metals, Bt exhibited the utmost tolerance against Cr 

(III), followed by Pb(II), Cu(II) and Cd(II). 

Thus, sludge based Bt production followed by its use to forests and in particular, 

agro-crops for pest control appears to be entirely compatible with up-to-date sludge 

disposal practices (e.g. zero or minimal transportation cost). However, the 

aforementioned methods mostly suffer from low Bt productivity and complex nature of 

sludge. Therefore, further studies focusing on downstream processing (i.e., parametric 

optimization, process control, and product separation/purification) are required to 

enhance Bt production into the global pesticide market. This will also contribute to 

sustainable sludge utilization and management by developing the final Bt formulation, 

and consequently expand the repertoire of commercial Bt product types.  

4.4 Proteins 

The major organic constituents of WAS are polysaccharides, proteins and lipids [159, 

160]. Noticeably, due to the higher portion of proteins (~50 % dry weight of bacterial 

cells), WAS has high potential to be used as a protein source [3, 161]. On another side, 

protein is an essential component used in animal feed for supplying energy and nitrogen 

[160]. Thus, protein recovery from WAS offers various benefits over traditional protein 

recovery sources. For instance, destruction of microbes can result in increased 

dewaterability, and the protein removed WAS would take less volume and inhibit limited 

OMs.  
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Many significant studies on protein extraction and analysis from WAS have been 

published [160-164], as listed in Table 6.  Hwang et al. [163] disintegrated WAS (5,330 

mg L-1) for the intracellular protein recovery assisted by an alkali treatment coupled with 

ultra-sonication under the parametric conditions elucidated in Table 6. They reported 

protein extraction rate as high as 80 % at an optimum pH of 3.3, with comparable 

nutrimental composition as of commercial protein feeds and thus suitable as an animal 

feed supplement. Similarly, Jimenez et al. [161] (Table 6) investigated the efficiency of 

different colorimetric methods such as Lowry, modified Lowry, and the Bicinchonic 

Acid (BCA) to characterize the OM (e.g. protein, carbohydrates and lipids) contents of 

the WAS. The protein was found as a main component representing 50 % of biochemical 

portion.  
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Table 6. Summary of key information of WAS bio-refinery.  

Bio-refinery Experimental conditions Results Remarks Ref. 

Enzymes  Methods: (1) Stirring: 200 mL sample in 

reactor, T: 5 ℃, stirrer rpm: 500 – 1500; (2) 

Ultrasonication: 200 mL sample in vessels, 

T: 5 ℃, power intensity: 8 W cm2, 

frequency: 20 kHz and extraction time: (1 – 

10 min), enzymes: protease and lipase, 

additives: non-ionic detergent (NID), resin 

and buffer. 

Ultrasonication produced 52.9 units g-1 

VSS of protease (NID: 2% v/v, 10 min) 

compared to 57.4 units g-1 VSS (NID: 2% 

v/v, 1 h stirring) with stirring method.  In 

case of lipase, ultrasonication produced 

21.4 units g-1 VSS of lipase (NID: 2% v/v, 

20 min) compared to 15.5 units g-1 VSS 

(10 mM buffer, pH 7.5 + 0.48 g mL-1 CER 

+ 0. 5 % NID) with stirring method.   

Ultrasonication method was found 

to be appropriate for extraction of 

enzymes from WAS. Moreover, this 

method could be scaled up for 

industrial application.  

 

[126] 

  Method: Ultrasonication: T: 4 ℃, power 

intensity: 138 – 690 W g-1 TSS, frequency: 

20 and 40 kHz, extraction time: 2 - 20 min, 

enzymes: protease, α-amylase, α-

glucosidase, alkaline phosphatase and acid 

phosphatase  

An optimum extraction corresponding to 

all enzymes was obtained at an intensity of 

552 W g-1 TSS, a frequency of 20 kHz, and 

a time of 10 min. 

The optimized extraction 

parameters can disintegrate cells 

and extricate both the extracellular 

and intercellular enzymes from 

WAS.  

[127] 
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Bio-refinery Experimental conditions Results Remarks Ref. 

  Method: Ultrasonic combined with stirring: 

25 g sample suspended in phosphate-

buffered saline (25 mL, pH 6.8) or distilled 

water, T: 4 ℃, 10 – 60 min, enzymes: 

protease, lipase, amylase and cellulases, 

Triton X-100: 0.5 – 0.2 %. 

An enzyme product of 2534, 1, 

1150 and 2340 units g-1 corresponding to 

protease, lipase, amylase, and cellulases 

activities was obtained.   

The obtained enzyme product has 

high market potential as an animal 

feed. 

 

[53] 

 Bio-plastics  Method: Aerobic: T: 21 ℃, plant scale: lab, 

mode: batch, working volume: 4 L, oxygen 

source: air, WAS alkaline fermentation 

liquid to tap ratio: 1:4, Influent pH: 7, 

sludge retention time: 2 h  

The maximum PHA concentration was 

reached 73 %.  

The presence of N and P did affect 

the PHA production, indicating that 

the removal of N and P is an 

unnecessary, while producing PHA 

from fermented WAS. 

[138] 

  Method: Aerobic or feast-famine: T: 35 ℃, 

plant scale: lab, mode: batch, operating 

time: 90 days, working volume: 3 g TSS L-

1, oxygen source: air (10 – 20 L min-1), 

organic loading rate: 6 – 12 g COD L-1 d-1 

A maximum PHA: ~25 g-g TSS-1 The fermented WAS based PHA 

production seems viable. However, 

more studies on parametric 

optimization are required to enrich 

the accumulation of PHA. 

[139] 
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Bio-refinery Experimental conditions Results Remarks Ref. 

  Method: Aerobic: T: 15 - 30 ℃, plant scale: 

lab, mode: batch, rector operating time: 90 

days, substrate concentration (SC): 1200 - 

2000 mgVFA L-1, pH: 6 – 9, cycle time 

(CT): 24 – 72 h. 

A highest PHA production of 25.9 % 

(20 ℃, 1200 mgVFA L-1, pH 7) and 28.4 % 

cell dry weight (24 h, pH 8) was achieved. 

The PHA production was highly 

affected by temperature, pH, SC and 

CT. Lower SC, 20 ℃, neutral pH-

value and 24 h CT were found best 

for high production of PHA.  

[135] 

Bio-

pesticides 

 Method: Fermentation: STR bioreactor, Bt 

fermentation profile: volume: 15 L, time: 3 

– 48 h, air flow: 5 – 20 L min-1, agitation 

rate: 150 – 1350 rpm, DO: 95 – 35 % 

A maximum Tx: 16,552 SBU µL-1 The Tx was directly associated with 

the protease activity.  

[151] 

  Method: solid state fermentation: 

Fermentation: substrate (4 types): (i) sludge 

(SL), (ii) sludge + wheat roughage (SW); 

(iii) sludge + straw powder (SS); (iv) 

commercial culture (CM), pH: 7.2, CT: 80 

h. 

The mixture of SW (ii) gave the maximum 

production of viable cells, spore counts, 

toxin and Tx of 5.98 1010 CFU g-1, 5.26 

1010 CFU g-1, 7.14 mg g-1 and 4758 IU 

mg-1, respectively. 

The solid culture media (SL, SW SS 

and CM) supported Bt production 

under solid state fermentation.  

The highest Tx during the 

fermentation of SW and CM 

indicated that Tx potency highly 

dependence on the type of substrate.

[147] 
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Bio-refinery Experimental conditions Results Remarks Ref. 

  Methods: (1) Fenton oxidation (FO): 

sludge: 300 mL, acidification pH: 3 with 10 

N H2SO4, H2O2: 30 % v/v and FeSO4 0.01 g 

L-1, rpm: 150; (2) Ultrasonication: sludge: 

400 mL, autotune homogenizer: 750 W, 

frequency: 20 kHz.  

The highest biodegradability of 74 % was 

achieved. Whilst, a maximum TC count 

and sporulation of Bt growth in FO was 

achieved to be 1.63 × 109 and 96 %, 

respectively.  

 

FO method using sludge was shown 

to be rather more efficient for Bt 

production using sludge when 

compared with ultrasonication. 

 

[153] 

 Proteins  Methods: (1) Enzymatic: sludge + distilled 

water ratio (1:6) + alkaline protease (2 %, 

w/w), pH: 8; (2) Acid: pH sludge 0.5 with 

HCl (2.0 M), sludge agitation at 121 °C for 

5 h; (3) Alkaline: sludge pH 13 (NaOH, 1.0 

M) and sludge agitated at 140 °C for 3 h.  

A maximum of 58.7 % protein was 

recovered. The alkaline was found to have 

highest contents (860.1 ng g-1) of 

polycyclic aromatic hydrocarbons (PAHs), 

in proteins compared to acid (451.9 ng g-1) 

and enzymatic (213.7 ng g-1) methods. 

Within all methods applied, 

enzymatic method was an efficient 

and eco-friendly to remove the 

PHAs contained in protein for the 

production of animal feed.  

[160] 

  Method: (1) Alkali combined with 

ultrasonication: sludge pH: 12, NaOH h (1.0 

M), stirred: 2 h, frequency: 20 kHz, input 

energy: 0 – 3.84 × 1010 kJ kg-1 VSS.  

A maximum protein extraction rate of 

80.5 % was reached. 

The recovered protein contained 

comparable nutritional composition 

to those of Brewer’s yeast and bone 

meal, indicating that it can 

[163] 
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technically be used as animal feed.  

  Methods: colorimetric methods (Lowry, 

modified Lowry, and the BCA): sludge: 0.5 

and 0.1 mL, linearity for Lowry and the 

modified Lowry: 0 to 100 mgBSA L-1, 

linearity for BCA: 0 – 2000 mgBSA L-1.   

The protein was found as a main 

component representing 50 % of 

biochemical portion. 

The selected methods for 

characterization of OM exhibited to 

be appropriate for WAS analysis 

with a good recovery of the VMs.  

[161] 
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5. RESOURCE RECOVERY AND POLLUTION CONTROL FOR SEWAGE 

SLUDGE 

5.1 Nutrients 

WAS contains considerable amounts of nutrients, particularly P total solids  (TS, 0.5 – 

0.7 %) and N (2.4 – 5.0 % TS) [3], these nutrients exist primarily in the form of 

proteinaceous material. The disintegration and solubilization of WAS and its later 

transition to ammonia and phosphates could possibly lead the way to produce magnesium 

ammonium phosphate (struvite), which is an excellent plant fertilizer and can be 

employed directly for land application [165-167].  

About 1 kg N and 1 kg P in commercial fertilizer costs approximately US $ 1.3 and 

US $ 2.6, respectively. The DS of WAS possesses ~ 1 kg P and 1.2 kg N inhabitant-1 

year-1 corresponding to a cost of nearly US $ 4.2. Regarding P recovery from WAS, the 

cost has been reported around 1.6 to 3.0 times higher than the commercial P in different 

studies [168, 169].  

On the other hand, P is a limited non-renewable resource as there will be no P left in 

apatite mines within 150 years [3]. Therefore, it must be considered as a highly valued 

asset/product and recovered efficiently from WAS.  

 

Recently, significant efforts have been made toward P recovery from WAS based on 

the precipitation of phosphoric minerals in the form of struvites, hydroxyapatites or 

calcium phosphates [170, 171]. These P-recovery technologies have been developed and 

put into operation largely in the Japan and Netherlands [170, 172]. However, their high 

operational cost US $ 52,100 year-1 (Table 7) for struvite recovery with low 
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reimbursement level of US $ 16,100 – 21,200 year-1 has declared them outdated and 

economically unjustifiable [173, 174]. Some researchers claim that struvite could be 

extracted via biological nutrient removal process before WWT, resulting in 80 – 85 % of 

P recovery [174]. While others claim that struvite extraction will never be reasonably 

efficient because of the high ammonia demand [175]. However, recently, Wang et al. 

[176] studied MW and NaOH techniques for WAS treatment to release and recover the P, 

for application as a fertilizer. The MW and NaOH released 34.2 – 43.73 % of total P. At 

pH 9.5 and an Mg:P ratio of 1.5:1, 23.48 – 32.07 % of the total P was recovered as a 

result of crystallizing struvite. The total process cost to treat WAS was found to be $85 – 

103 DT-1 WAS. Therefore, more research on struvite extraction is required to counter 

aforementioned uncertainties. 

The P-recovery from WAS incineration ashes is also under investigation nowadays 

[177-180]. These ashes contain high amounts of P, mainly due to the considerable 

volume reduction of up to 90 % [181]. Generally, the P content in WAS varies from 1 – 

5 % (may reach up to ~15 % if any suitable technology is employed), whereas its content 

in ashes varies from 5 – 11 % (more than 20 % in specific case) [34, 169]. In addition, 

Cieślik et al. [174] stated that P-recovery could be 5 – 10 times higher from ashes 

compared to that from WAS directly, but unfortunately viability of such technologies is 

proved only in large scale treatment plants, primarily because of the need to incur large 

capital costs associated with building a facility which meets all the environmental 

standards for WAS incineration. Le et al. [180] demonstrated the reuse of P resources 

from WAS ash in a pilot scale circulating FD kiln . The sample was mixed with 2 – 10 

wt. % of calcium oxide (CaO). The temperature was varied from 750 – 950 oC. The P 
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released from WAS was deposited in bottom ash (89.29 %) and fly ash (5.61 %), 

respectively. Moreover, results suggested that higher temperature and more dose of CaO 

were advantageous for the conversion of non-apatite inorganic phosphorus to apatite P.  

On the other hand, Shih et al. [171] treated synthetic wastewaters containing high 

concentrations of P via crystallization of struvite in a FD crystallizer. The higher 

phosphate removal and crystallization ratio of 96 % and 93.5 %, respectively, were 

obtained at optimum conditions, namely pH of 9.5, molar ratio Mg/N/P of 1.3/4/1, 

struvite seed dose of 30 g L-1, total flow rate of 12 mL min-1, and reflux of 120 mL min-1.  

Similarly, other investigations have also reported a remarkable P content of >95 % 

and ammonia >50 % solubilization via various combined thermochemical treatments 

[182-184]. Guedes al. [181] and Couto et al. [185] presented a viable method for P-

recovery by an electro dialysis approach from WAS. The process gave a total yield of 30 

– 85 % including some amounts of gypsum, thus necessitating further research to 

evaluate the opportunity of utilizing residues as dopants for construction materials.  

The technological advancement refereeing to commercial scale P-recovery includes 

Aqua Reci (AR), OSTARA, SUSAN and KREPO, which are based on physicochemical 

and thermal treatment to dissolve P and then recover it by precipitation. The AR process, 

a commercial technology, has been established in Sweden to recover both P and energy 

using combined Supercritical Water Oxidation technology. The process can efficiently 

recover ~100 % of P by means of HCl and H2SO4 with 2 h of reaction time and at 90 oC 

[186]. Another process called OSTARA has been employed to recover P from WAS 

stream using magnesium chloride (MgCl2) at the city of Edmonton, Canada. The process 

was established in 2007, and is expected to produce 200 – 250 Mt year-1 of struvite [3, 
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187, 188]. A commercial scale plant (45,000 m-3 day-1 treatment capacity) with the 

technology for P-recovery (> 90 %) as struvite (about 550 kg day-1; equivalent to 0.01 kg 

struvite m-3) has been in operation at the Lake Shinji East Clean Center in Japan [189]. 

Moreover, the Crystalactor® technology, was commercialized in Netherlands. However, 

this technology was challenged by high cost of P-recovery and thus considered as 

uneconomical [190]. The high cost of P-recovery from WAS is considered the major 

obstacle in the scaling up of the explored technologies. As a result, it is likely that a new 

technology should be proposed that may allow not only the recovery of valued 

phosphoric material, but also all-inclusive management of all wastes produced during 

WAS thermal treatment. The limitations and benefits of presented P recovery approaches 

from sludge are presented in Table 7. 
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Table 7. Recognized benefits and limitations of selected methods for P recovery from sludge [174, 191-195]. 

P recovery methods Process sub-classification Recognized benefits Limitations 

Direct use of WAS in 

agricultural land 

 

1) Stabilization via 

earthworms 

2) Composting 

3) Stabilization in pools 

4) Drying and pellet 

production 

 

1) Low cost technologies, even if 

the small quantities of WAS is 

used.  

2) The management of all sludge 

with lower HMs concentration 

is possible if earthworm 

stabilization is employed. 

 

1) Long stabilization periods at lower temperature. 

2) Risk of environmental pollution through high organic 

carbon loads, pathogens and parasites, aromatic 

hydrocarbons and HMs. 

3) Limited applications (i.e. soil conditioning and 

fertilizers). 

4) Based on soil remediation strategy, these 

technologies are opposed by the EU. 

WAS incinerated 

ashes  

1) Incineration 

2) Acidic extraction  

3) Thermochemical 

treatment 

4) Cementing 

1) Partial reimbursement of 

expenditures. 

2) Highly efficient WAS 

management with inspiring P 

recovery. 

3) Substantial savings related 

with sludge disposal, with 

1) High operational cost 

2) Risk of environmental pollution through HMs, 

organic pollutants and chlorinated species.  

3) Complex procedures. 

4) Obstacles with achieving high strength building 

materials.  

5) The technology is economical only if large amounts 
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wide variety of applications. 

4) Facility of simultaneous HMs 

treatment.  

5) Energy recovery. 

6) Processing is less odours.   

of WAS are used.  

Sewage sludge and 

leachates 

1) Precipitation of P in 

form of struvite and 

hydroxyapatite  

1) Partial reimbursement of 

expenditures. 

2) Low possibility of emitting 

HMs. 

3) High probability of resolving 

the issues of blocking 

tubes/pipes. 

4) High efficiency of N 

removal. 

1) High operational cost 

2) Risk of environmental pollution through high organic 

pollutants, pathogens and parasites. 

3) Limited use as fertilizers only  

4) Not enough efficient to fully recover the P (high 

demand of magnesium and ammonia). 

5) Inefficient approach for sludge management. 
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5.2 Reduction and immobilization of heavy metals in sewage sludge products  

WAS has been under vigilance due to the high concentration of HMs such as chromium 

(Cr), copper (Cu), zinc (Zn), lead (Pb), cadmium (Cd), nickel (Ni), arsenic (As) mercury 

(Hg) and selenium (Se). Table 8 shows the comparison of HMs content from different 

sources and a group of hazardous inorganic compounds examined in WAS. The presence 

of such metallic species in high concentrations can be a problematic case for value-added 

chemicals and extraction of biochemical materials as well as for energy recovery from 

WAS [196].  

Referring to WAS thermal conversion via gasification and pyrolysis technologies, 

TEs typically exist in the gaseous stream, liquid pyrolysis products, and residual biochar. 

It is reported that the volatilization of TEs is clearly associated to their boiling point [197]. 

Consequently, higher gasification temperatures opposed to pyrolysis result in an 

enhanced gaseous product contamination risk and henceforth the significance of 

monitoring the HMs distribution in the gasification is more. Various gasification studies 

have demonstrated the potential routes of HMs to various process products [197]. He et al. 

[198] conducted the pyrolysis  with a sequential extraction procedure in electric furnace, 

mainly focusing on fractionation of HMs (e.g. Zn, Pb, Cu and Cd) in WAS and its 

residues which were generated after pyrolysis at temperatures ranging from 250 to 700 oC. 

The Cd was volatilized in the off-gas at 700 oC and decreased in the residues. In addition, 

Cu, Pb and Cd in the WAS and pyrolysis residues, were primarily bounded to OM and 

sulphides, whereas Zn was bounded to Fe and Mn oxides 
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Table 8. Heavy metal contents in different biomass materials [199, 200]. 

Feedstock  Heavy metals (mg kg-1 dry basis)  

  Cd Cr Cu Hg Ni Pb Zn As 

WAS  
< 1 - 

3410 

10–

990,000 

80–

2300 
2.7 

2–

179

13–

465 

101–

49,000 

3 – 

230 

Paper sludge  <0.4 110 310 1000 - 160 470 8 

Paper sludge  350 100 450 - 480 480 170 - 

Wheat straw  1.0 25 0.06 6 - - - 0.18 

Beech wood  1.0 2.5 43 0.12 - 33 15 3.5 

Recovered 

fuel 
 24 1020 2800 - 209 1100 - 37 

 

Hwang et al. [201] investigated the distribution of HMs such as Cr, Cd, Zn, Pb, Cu, K, 

Na and Mg present in pyrolysis residue of WAS (obtained at 500 oC) in column 

experiments under simulated landfill conditions and the bottom ash of WAS incineration 

(achieved at 900 to 1000 oC) to compare the environmental loads of the leachates 

depending on thermal treatment. Most of the HMs in the WAS remained immobile in the 

residues without being volatilized except Cd, Pb, and Zn. Although the residues 

comprised more of surplus OM than that of ash, their carbon emission into the leachate 

under aerobic conditions were comparable to that of ash under anaerobic conditions. 

Therefore, it was concluded that pyrolysis of contaminated WAS limited to 500 oC 

temperatures reduces the emissions of HMs from produced char in landfill, unlike other 
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pyrolysis studies [201-203] conducted at higher temperatures, making it a promising 

method of treating WAS before landfilling. 

Contemplating the consequences of potentially harmful HMs during gasification, it 

should be noticed that ash dust is a chief carrier of (specially Cd and Pb) in turbulent 

waste gasification routes; therefore, if the gasification occurs under non-turbulent 

conditions, particulate ash emissions are almost eliminated [197]. Currently, Saveyn et al. 

[197] have studied the fate of metallic species during WAS gasification, indicating that 

HMs such as Cu, Pb, and Zn were nearly retained in the char, whilst Hg and Cd were 

depleted from the WAS and ended up in the different downstream sections like char 

residues, condensate liquids, and particles in filters. Similar trend for Cd was observed 

during co-gasification of solid recovered fuel and coal [204]. The transformation of HMs 

(Zn, Pb, Ni, Cu, Cr and Cd) from gasification of WAS to by-products and their major 

accumulation in solid and liquid residues, i.e. ash, char and tar, have been reported by 

several studies [75, 200, 205]. On the other hand, Hg and As due to high volatility at high 

temperatures can be entirely mobilized with aerosol particles [4].   

Generally, the type, speciation and concentration of HMs depend on the sources of 

raw sludge, which majorly pass into products at high operating temperatures used for 

thermochemical conversion processes. The scheme of linking WAS and biofuel 

production can be introduced as a promising approach. However, implementation of 

appropriate thermochemical processes and its optimum operating conditions are highly 

desirable based on the type and content of HMs in the WAS, as well as, reactor design 

and the presence of probable pre-/post-treatment techniques [206]. For example, 

pyrolysis process at lower temperatures around 400 to 600 °C has been found safer and 
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efficient compared to gasification, liquefaction and incineration with higher 

temperatures/pressure, thereby increasing the emission of HMs into gaseous phase. 

Moreover, low temperature pyrolysis could contribute a considerable reduction on 

contamination level, bioavailability and environmental risk of HMs [67, 206, 207]. 

Even though, thermochemical processes can be suggested as a promising pathway for 

clean bioenergy recovery from WAS contaminated with HMs, still they are in infancy 

stages in terms of implication of pre-/post-treatment towards the immobilization and/or 

minimization of HMs transfer to the products [71]. For example, in some research studies, 

the implication of hydrothermal treatment prior to pyrolysis has been introduced as an 

effective method to accumulate the major amount of HMs in the biochar [71]. Besides, 

other studies have shown the considerable effect of operating reactors equipped with 

post-treatment technologies, such as hot-gas filter, [208, 209] cyclone, [210, 211] etc., to 

minimize the HMs emission from the thermochemical conversion of other contaminated 

biomass. Moreover, the blends of sewage sludge with other clean biomass, such as algae, 

sawdust, etc., has been also introduced to enhance the processes efficiency, to improve 

the characteristics of biofuel, and to reduce contamination resulted from diluting 

inorganic and toxic compounds [4]. In addition, the toxicity/risk of HMs, particularly Cu 

and Zn, could be reduced through dewatering the sludge prior to utilization by pyrolysis 

or liquefaction technologies [212]. Therefore, it is anticipated that the implementation of 

aforementioned policies, i.e. operating reactor at optimum conditions and equipped with 

post-treatment technologies, could be practical to prevent or minimize the emission of 

HMs during thermochemical conversion of WAS. As outlook, the implication of proper 

pretreatment techniques using potential sorbents, hydrothermal and leaching pretreatment 
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could be a good policy to hinder the transfer of HMs to the products, which to our best 

knowledge has not been sufficiently addressed. 

5.3 Removal of micro-pollutants  

Apart from HMs, sludge is also comprised of a wide range of micropollutants (MPs). 

MPs are mainly classified into three categories: (i) pharmaceutical products (PHPs) such 

as anti-inflammatory drugs, antibiotics, X-ray contract media and β-blockers; (ii) 

personal care products (PCPs) such as steroids, analgesics, synthetic hormones, 

fragrances, cosmetics, sun screens, lipid regulators and shampoos; and (iii) endocrine 

disrupting chemicals (EDCs) such as  estrone (E1), 17β-estradiol (E2) and 17α-

ethinylestradiol (EE2) [213, 214]. The serious environmental and human risks associated 

with the contamination of WWTP sludge (through biosoild amended soils, and 

groundwater) have been widely reported in literature [33, 215-217]. This results mainly 

due to the hydrophobicity or propensity of pollutants to be adsorbed on particles (sludge) 

during primary and biological treatments in WWTPs.  

Therefore, effective removal strategies for OMPs are urgent and arduous task to 

limit the contamination of environment. Today, various efforts have been made for 

removal/transformation of OMPs during sludge treatment via AD. Example include 

Nonylphenol ethoxylates and steroid estrogens via a lab scale reactor running under 

mesophilic (35 ℃) and thermophilic (55 ℃) trials [218], pharmaceutical products via 

two semi-continuous lab reactors under mesophilic (38 ℃) and thermophilic (55 ℃) 

conditions [219]. The results obtained from above studies concluded that the temperature 

(mesophilic or thermophilic) is not an important parameter, except for carbamazepine and 

nonylphenol, whilst naproxen, trimethoprim and sulfamethoxazle are substantially 
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removed. On the contrary, the removal efficiencies of several studies for OMPs removal 

are rather contentious; they have shown low (<25 %) or no removal of E1, E2, EE2 

(hormones) [219, 220], musk fragrances [221, 222], diclofenac [219, 223], ibuprofen 

[219, 221] and triclosan [223]; whereas other researchers disagree. For example, a study 

conducted by Carballa et al. [224] showed that hormones and musk fragrances were 

effectively removed up to ~70 % and ~95 %, respectively; also, Samaras et al. [214] 

reported removals more than 90 % for diclofenac and ibuprofen, and within the range of 

60 – 80 % for triclosan. The reasons of these inconsistencies remain vague. Further 

research in this area is highly valuable to deeply assess the impact of WAS treatmetns on 

the fate of MPs. 

6. PREFERENCE OF WAS VS. LIGNOCELLULOSIC BIOMASS 

Herein, the preference and/or comparison of WAS over other lignocellulosic biomasses 

(LBs) is discussed concisely. The pros and cons of WAS compared to LBs (i.e. 

agricultural residues and forestry waste) are mainly attributed to their basic structural and 

compositional differences. As previously described, WAS possesses a semi-solid 

structure with 59 – 88 % w/v biodegradable OMs [1, 3]. Whereas, generally most of the 

lignocellulosic biomass comprises of cellulose (30  − 50 %), hemicellulose ( 20 – 35 %) 

and lignin (10 - 27 %) [149]. Firstly, lignocellulosic biomass is known to be the none-

biodegradable due to its complex chemical composition [225], making it difficult to 

produce high yield and quality biofuels, value-added products and chemicals [226]. In 

order to cope with these challenges, these biomasses require various pretreatments, such 

as crushing, cracking, drying, preheating [227, 228] and more costly and sophisticated 

(thermo-)chemical operations to enhance the accessibility of biomass for conversion 
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reactions [229-231]. For instance, various thermochemical processes have been 

investigated to produce bio-oils or other form of biofuels from LBs, but the quality of 

biofuels still remains a big challenge, which needs further catalytic, separation or 

purification reactions to be upgraded [232-235]. Likewise, challenging fractionation 

procedure to separate cellulose from lignin and hemicellulose can be remarked to 

emphasize the controversial practicability of an expensive and/or hazardous pretreatment 

approaches, like ionic liquids, eutectic/organic solvents, steam explosion, acid and 

alkaline methods, etc., to facilitate the conversion and saccharification processes or 

materials recovery from agricultural wastes [230, 236, 237]. Secondly, regardless of the 

high potential of LB for thermochemical biofuel production [238], relatively a low 

biological methane yield [239], limited value-added products [239, 240] and chemicals 

recovery [241]. 

On the contrary, as comprehensively discussed in this paper, the soft structure and 

rich OMs content endow WAS with adequate potential for the recovery of energy [3, 21, 

72], nutrients [36, 165, 174], and value-added materials [126, 136, 147] using various 

thermochemical and biological etc., processes with/without implementing costly 

pretreatment or post-treatment stages. The WAS ashes can also be reused in cement 

mixtures to produce diverse construction materials, including brick, mortar, etc. [242, 

243]. However, regardless of aforementioned advantages of using WAS over LB, there 

are some limitations associated with each one, which can be compensated using their co-

processing, particularly for energy recovery. For example, LB on account of the high C/N 

ratio and bio-recalcitrant compounds cannot reach to higher biogas yield [239, 244]. 

Whereas, WAS can be anaerobically biodegraded with high biogas yield of 270 – 385 
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mL CH4 gVS-1 [3, 15-17]. Therefore, the anaerobic co-digestion of WAS (holding low 

C/N ratio) and lignocellulosic biomass (with medium or high C/N ratio) under mesophilic 

and thermophilic condition seems to be a rational option to increase biogas yield[244]. 

Similarly, Chiang et al. [245] have elucidated that a mixed feedstock with higher ratio of 

WAS causes an enhancement of thermal reaction activity. The reason is also attributed to 

the less fixed carbon content of WAS, so that it could decrease the activation energy and 

consequently the significant increase of thermal reaction. On the other hand, WAS has a 

lower bio-oil yield of 32 wt. %  and heating value of about 13 – 21 MJ kg-1 [8, 57, 58], 

compared to the lignocellulosic biomass with higher bio-oil yields of 40 − 50 wt. % and 

heating value of 16.79 − 19 MJ kg-1 [238, 246, 247]. In addition, another major problem 

linked to the WAS are higher moisture content and lower syngas calorific value of 4 − 6 

MJ Nm-3 [58, 74], which can be compensated through co-pyrolysis, [248] -gasification, 

[73] –incineration [249, 250] and –liquefaction [251] of WAS with lignocellulosic 

biomass to high yield and quality usable energy in an environment friendly manner. 

7. SLUDGE TREATMENT SCENARIOS IN EU, USA AND CHINA 

Global WAS production is on a relentless growth curve and environmental quality 

requirements for WAS are becoming increasingly stringent, therefore disposal outlets are 

decreasing and economic pressures require low-cost solutions [252]. EU, USA and China 

represent a vast fraction of present world in terms of population, growth, technological 

advancements and, rules and strategies for environmental protection. The other countries 

in the world follow them as benchmarks especially in the arena of waste disposal and 

reuse. 
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7.1 European Union-15 countries 

Among EU-15 countries, over 76 % of total WAS production belongs to Germany, UK, 

Italy, France and Spain as depicted in Fig. S1 (see Electronic Supporting Information, 

ESI). Figs. S1 and S2, WAS quantity in the EU-15 countries was around 10 million of 

DT in 2010 and it is estimated to reach to 10.5 million DT by 2020 [7, 70, 253].  

According to EU landfill Directive, [254] landfill practice of wastes are forbidden. As 

a result, landfilling in EU-15 countries presenting a continuing decline between 2010 and 

2020, from 11 % to 4 % (Fig. S3). Furthermore, WAS recycling has been a prevailing 

technology in EU-15 countries for soil conditioning and fertilization [7]. On the other 

side, HMs, pathogens and POPs often outweigh the soil’s nutrients leading to the risk of 

eutrophication, acidification and GHG emissions [70, 255]. Therefore, WAS application 

for arable land will remain almost steady among EU-15 countries (43 % in 2010) 

expecting to attain 45 % in 2020, owing to imposed legislative restrictions (Fig. S3) [70]. 

The highest proportion of WAS recycling in 2010 was observed in Luxemburg (90 %), 

followed by UK (75 %), Ireland (75 %), France (65 %), Spain (65 %), Portugal (50 %), 

Denmark (50 %) and Italy (25 %), indicating that the recycling was most preferred 

disposal practice in EU-15 countries except Netherlands (Fig. S2). The change in WAS 

recycling has been estimated for 2020 as follows: for Italy and France (10 %), Spain 

(5 %), Austria and Luxemburg (-10 %), and for UK and Germany (-5 %). 

Although incineration is considered as a cost intensive process with potential 

environmental problems [256], most of EU-15 countries seem to invest in incineration 

facilities (Fig. S2 (A) and Fig. S3). The Netherlands demonstrates 100 % incineration of 

the WAS produced, followed by Belgium (90 %), Germany (50 %), Denmark (45 %), 
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Portugal (30 %) UK (20 %), Italy (20 %), France (15 %) and Spain (10 %) (Fig. 2S (A)). 

The incineration shares based on 2020 estimation are predicted to increase as follows: 

Austria (45 %), Greece (40 %), Spain (15 %), Luxemburg (15 %), Italy, Ireland and 

Portugal (10 %) (Fig. S2 (B)).  The significant variations in incinerated WAS among EU-

15 countries are closely related to the incineration methods. WAS co-incineration with 

MSW, coal-fired power plants or cement kilns are preferred.[257, 258] Mono-

incineration practice is widely expanding in Germany, UK, and Denmark with 23, 11 and 

5 dedicated WAS incinerators, respectively [7]. Mono-incinerators have proved to be a 

reliable approach to recover phosphorus from incineration ashes [258]. Moreover, 

modern incinerators should be capable of using resultant heat to generate their own 

electricity so that WAS treatment becomes energy-neutral.  

7.2 United States of America (USA)  

The USA employs WAS (biosolids) typically for arable land application as shown in Fig. 

S4. It adds the nutrients into soils, thereby providing more OMs and improving its 

holding capacity [32, 259]. Referring to Fig. S4, over 8 million DT of WAS is annually 

produced (~23 kg of WAS person-1 year-1) in USA, 55 % applied to arable land, 30 % 

landfilled, and 15 % incinerated [32]. The cost of arable land application, landfilling, and 

incineration are estimated to be 300 – 800, 100 – 650 and 300 – 500 $ DT-1, respectively. 

Moreover, local ordinances have forbidden WAS land use to curb the associated odors, 

pathogens and pollutants [32]. 

In terms of nutrients (N and P) recovery, the reported data [260] of 8 million DT of 

WAS recycled in arable land (55 %) (Fig. S4), with N and P contents of 3.4 and 2.3 %, 

respectively [32]. Consequently, the potential annual net flux is respectively 134,640 t N 
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year-1 and 91,080 t P year-1. Based on the data presented in the literature [261] regarding 

the annual nutrients consumption, aforementioned values could provide only 1.1 % and 

5.3 % of the net annual N and P fertilizer consumption. Thus, recovered N and P do not 

seem significant enough to rely upon them as imperative nutrients source for land 

application. However, their removal from wastewater and prevention of eutrophication 

phenomenon in water bodies are still in the first priority. In terms of energy, around 16, 

000 WWTPs are operating in U.S.A. However, only 544 of WWTPs have adopted AD 

technology for biogas production, and merely 106 of these are able to use the biogas 

produced for various applications such as electricity and/or thermal energy [262].  

7.3 China 

Over the last 20 years, China has been investing considerably in WWTPs. Currently, 

China has become the world’s second largest WAS producer with around 5,797 WWTPs 

in 2014, generating 6.25 million DT equivalent to ~4.5 kg person-1 year-1, with an 

average annual growth of 13 % [52]. On the other hand, more than 80 % of the WAS has 

not been treated or disposed properly, and subsequently poses a great threat to both the 

public health and the environment [263]. As a result, China government has set a goal to 

start treating 5.18 MM of DT year-1 [52]. Fig. 2 illustrates the detailed WAS 

treatment/disposal options indicating that arable land application, sanitary landfill, AD, 

and incineration are the four most commonly employed routes in China. Hitherto, the 

mainstream routes applied in China are thickening, conditioning, and dewatering [52]. 

The thickening route reduces over 5 % WAS moisture and the major pathways include 

flotation, mechanical and gravity thickening [52, 264]. Moreover, the organic polymer 
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electrolytes and inorganic coagulants (chemical conditioning) have been frequently 

applied routes for enhancement of WAS dewatering [52].  

The accurate official data on WAS disposal is scarce, rather conflicting sources with 

dissimilar estimations [52, 265]. According to Yang et al. [52] over 84 % of WAS is 

disposed by improper dumping. Concerning the proper disposal, sanitary landfill has 

been most widely used method, which accounts for 13 %, followed by land application 

(2 %), incineration (0.4 %) and building material production (0.2 %). Data reported by 

Wang et al. [265] showed that the most commonly employed disposal method is 

landfilling (63 %), followed by agricultural applications (14 %), and incineration (2 %). 

Moreover, the disposal method for approximately 21 % of WAS is unknown. 

Arable land 
applications Sanitary Landfill Anaerobic 

Digestion

Sanitary 
Landfill

Sintering => 
Building materials Incineration 

Arable land 
applications 

Waste activated 
sludge

Thickening

Conditioning

Dewatering 

 

Fig. 2 Technical routes of WAS treatment and disposal in China [52]. 

The significant variations of data are attributed to WWTPs in China, because they do 

not send proper reports on the treatment and final disposal of their WAS [266]. Moreover, 
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the cost of sanitary landfill, arable land application, incineration, building materials are 

estimated to be 72 – 96, 240 – 280, 240 – 260 and 240 – 260 $ DT-1, respectively, 

whereas improper disposal only costs around 16 – 24 $ DT-1 [52]. Therefore, WWTPs 

and associated organizations typically opt for cheap disposal routes. In China only 50 % 

of WWTPs adopted AD to stabilize WAS. However, only 30 % of those 50 % plants are 

operating the AD apparatus properly due to insufficient operational expertise and 

insufficient funding [52, 267]. Furthermore, the treatment efficiency of WAS by AD 

process is not sufficient due to high sand content and low volatile organic compounds 

[267]. According to Yang et al. [52] thickening-dewatering-AD and subsequent arable 

land application can be employed as the major technological route in the future. This 

route appears to be promising for large and moderate WWTPs due to the limited land 

availability in the cities and scarcity of energy supply in economically poor countries.  

8. FUTURE PERSPECTIVE 

Rapid increase in population and societal living standards will undoubtedly enhance the 

sludge generation to a vital extent. In the wake of lesser land-fill sites and stringent 

disposal regulations, a shift is required from conventional disposal to advanced 

valorization strategies. Numerous pathways are employed nowadays to explore the 

possibilities of energy extraction from sludge. However, complex composition of sludge 

such as the presence of very high amount of moisture, bacterial constituents (proteins, 

lipids, etc.), HMs and other contaminants (e.g. polycyclic aromatic hydrocarbons (PAHs), 

dioxins, furans) reduces the efficiency and safety of these processes and enhances their 
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overall costs. In addition, it also demands special equipment / plant design to cater such a 

need. 

Biological route such as AD is considered as the most appropriate sludge valorization 

technique but it suffers for poor efficiency and long processing time. Thermochemical 

pathways such as incineration, pyrolysis and gasification have improved efficiencies with 

faster processing and versatile end applications. However, they all are energy intensive 

for high moisture containing feedstock such as wet sludge. In addition, flue gases (in 

incineration) and syngas (in gasification) require conditioning and expensive clean-up 

prior to usage and emissions. Same is the case with pyrolysis derived bio-oil which also 

needs upgrading prior to its application. Therefore, innovation is needed in the existing 

pathways to eliminate these limitations. AD coupled with pyrolysis, co-combustion and 

co-incineration can be the viable routes provided the process economics is enhanced via 

proper process design and reduction in energy requirements. This may lead to the scale 

up of pilot plant studies to commercial level applications. 

There can be other sustainable solutions for efficient and cost-effective disposal of 

sludge with simultaneous energy and materials recovery. An integrated bio-refinery 

system could be designed focusing on reuse options rather than disposal pathways to 

generate power and recover all the possible resources. It will not only valorize the sludge 

but will also aid in reducing adverse environmental impact to a significant extent. This 

integrated system can be designed based on the local circumstances such as composition 

and amount of sludge, economy, topography, and weather conditions. In addition, sludge 

disposal and application models given by EU and USA can serve as references for other 

developing nations. On the whole, application of advanced technologies for WAS 
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management must transform from treatment of a liability toward a promising opportunity 

(i.e. recovery of embedded energy, metals, and nutrients), while enduring to protect the 

environment and public health. 
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ABBREVIATIONS 

AD   Anaerobic digestion 

AC  Activated carbon 

Bt  Bacillus thuringiensis 

BES  Bioelectrochemical systems 

BSA  Bovine Serum Albumin  

BCA  Bicinchonic Acid 

COD  Chemical oxygen demand 

C/N  Carbon to nitrogen ratio 

CER   Cation exchange resin 

CCE   Carbon conversion efficiency 

CGE  Cold gas efficiency 

C-GT  Carver-Greenfield technology 

CT  Cycle time  

DFC  Down flow combustor 

ER  Equivalence ratio 
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FB  Fluidized bed  

GRT  Gas residence time 

GHG  Greenhouse gas 

GE  Gasification efficiency 

HMs  Heavy metals 

HR  Heating rate 

LHV  Lower heating value 

LBs  lignocellulosic biomasses 

MW   Microwave 

MWe  Megawatt 

Mt  Metric tons 

MSW  Municipal solid waste 

MFCs  Microbial fuel cells 

OMs   Organic matters  

OLR  Organic loading rates 

OFS  Oil-from-Sludge technology 

PHA  Polyhydroxyalkanoates 

POPs  Persistent organic pollutants 

PVC  Polyvinylchloride 

RPM  Revolution per minute 

SSBT  Siemens Schwell-Brenna technology 

Tx  Entomotoxicity 

TEs  Trace elements 

TS  Total solids  

TD  Tons of dry solids/dry   

VFAs  Volatile fatty acids 

VM  Volatile matter 

WAS   Waste activated sludge  

WGS   Water-gas shift 
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WWTP Wastewater treatment plant 

WWT  Wastewater treatment 
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