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Abstract—Among multilevel converter topologies, the
cascaded H-bridge converter (CHB) is one suitable solution
for multiple applications such as flexible ac transmission
systems and motor drives. CHB presents a natural high
modularity because it is formed by the serial connection of
H-bridges. This paper deals with a CHB where the cells do
not have the same aging because the maintenance during
the years of operation forces to replace some damaged
cells of the converter with new or repaired ones. A method
based on clamping one power cell can be used to reduce
the power losses of that cell reducing its temperature and
increasing its lifetime. However, clamping one cell of the
CHB introduces high harmonic distortion around twice the
carrier frequency due to the CHB unbalanced operation
when a conventional phase-shifted PWM is applied. A deep
harmonic distortion analysis of the CHB output voltage with
thermal control based on clamping one cell is presented.
Using this analysis, the harmonic distortion at twice the
carrier frequency is eliminated applying a non-conventional
phase-shifted PWM where the angles between the carriers
of consecutive power cells are modified. Experimental re-
sults show how the thermal control applying the clamping
of a power cell is achieved whilst the harmonic distortion
around twice the carrier frequency is eliminated.

Index Terms—Harmonic analysis, Pulse width modula-
tion, Multilevel converters.

I. INTRODUCTION

The use of multilevel converters has become a reality in
the last decades for a wide variety of power applications
such as fans, pumps, variable frequency drives, power quality
applications and renewable energy integration, among others
[1], [2]. One of the most well-known converter topologies is
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Fig. 1: Three-cell multilevel cascaded H-bridge converter
(CHB): Topology and conventional PS-PWM modulation tech-
nique

the cascaded H-bridge converter (CHB), which was proposed
by McMurray in 1971 [3]. CHB is composed by the serial
connection of H-bridges as shown in Fig. 1 where a three-cell
CHB is represented. The basic power cell is usually the H-
bridge, however in the literature other power cells like NPC
or T-type can be found [4]. In this way, this topology is able
to achieve very high nominal voltages with a large number of
output voltage levels with high modularity and natural fault-
tolerant capability. These good features make the CHB one
of the most used topologies for medium and high-voltage
applications with an excellent quality in the output voltage and
current [5]. In fact, CHB is very popular in countries where
medium voltage grids above 6.6 kV .

A. CHB Converter Description and Operation

The conventional way to operate the CHB is to apply
the conventional phase-shifted pulse-width modulation (PS-
PWM) method. Each power cell is usually operated by a
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conventional unipolar PWM with carrier frequency equal to fc
and triangular carriers between consecutive power cells have
a phase shift displacement. This phase displacement between
consecutive triangular carriers is conventionally defined as π
divided by the number of H-bridges of the CHB phase, denoted
by N [6]. To support this basic idea, unipolar PWM and PS-
PWM concepts are also introduced in Fig. 1 for the three-cell
CHB topology.

PS-PWM applied to CHB presents multiple advantages.
It achieves a natural multiplicative effect of the switching
frequency of the output voltage. If the triangular carriers
of each unipolar PWM have a frequency equal to fc, the
effective switching frequency of the output voltage is 2Nfc. In
addition, PS-PWM naturally achieves a power equalization [7]
of the power cells of the CHB because the voltage reference
of all H-bridges is the same. This fact leads to a natural
equalization of power devices temperature which comes with
equally distributed aging. The conventional operation of a
CHB using the PS-PWM technique can be observed in Fig. 2
from 0 to 40ms where the voltages of the three cells are 150
V and the modulation indices are 0.8.

B. CHB Maintenance and its Effect on the Aging
Thermal stress is the main cause of aging, and hence,

the principal cause of failure due of fatigue generated in
the solder joints inside devices. Repetition of thermal cycles
provoke the expansion and compression of materials leading
to the increase of thermal resistance and it generate more
thermal stress [8]–[10]. Remaining device lifetime is a very
important parameter because the maintenance and operation
cost are directly dependent of it. In this way, many authors and
manufacturers are focusing on the study of predictive models
to obtain the remaining lifetime as function of cumulative
thermal cycles [11], [12].

Fault-tolerant capability is a very important factor for indus-
try because it lets to continue operating the power converter
even if a fault occurs. CHB presents a high-modularity and
natural fault-tolerant capability. It means that the maintenance
operations are straight-forward because if a power device fails,
its H-bridge can be bypassed permitting the power converter
operation [13]. The broken power cell can be easily replaced
by a new one, sending it to be repaired if possible. This
operation is very positive from the maintenance point of view,
keeping the CHB converter always on operation.

However, after a maintenance operation replacing a power
cell in the CHB, a problem related to the different aging of
the power cells is introduced. The power cell that replaces the
broken one has a different aging compared with all the other
power cells. With years of operation, a non-negligible different
aging between all the power cells of the CHB appears [14].

II. CHB ACTIVE THERMAL CONTROL

Active Thermal Control (ATC) is a technique that allows
modifying the thermal stress of the power modules by chang-
ing the electrical parameters of the converter [10]. At it is
shown, power cycling is one of the main causes of failure
for power modules and industry and academia have been

studying the phenomenon in depth. Lifetime models that
predict the number of sustainable power cycles at specific
average temperatures with a certain amplitude are available
in the technical literature [15].

Modifying the control parameters, as an example switching
frequency, capacitor voltages and modulation indexes, [10] can
change the power loss, decreasing the thermal cycle amplitude
and the effects in terms of lifetime extension can be predicted
with the available lifetime models. In the following, two
possibilities are deeply analyzed. At it will be shown, when
the CHB cells are operated with different control parameters,
an increase of the THD voltage is noticeable.

One possible option to mitigate the non-equalized aging
effect is to apply a different modulation index to each power
cell. So, more damaged cells would generate less voltage
than the new ones. As the same current flows through all
power cells, each power cell delivers a different level of power
leading to improve the average aging of the power cells. The
more damaged cells will operate with reduced modulation
index and the less damaged cells compensate it increasing
their modulation index values [16]. This can be observed in
Fig. 2a from 40 to 80ms.

A second option is to deal with the switching losses of
each power cell. In this way, it is possible to clamp the
more damaged cells generating the maximum voltage during
a portion of the fundamental period [17]. Remaining cells
have to compensate it decreasing their reference voltages.
This second option has been also represented in Fig. 2a from
80 to 120ms. As a drawback, during the clamping time the
CHB converter operates with less voltage levels increasing the
current ripple.

These two methods can be applied in order to achieve an
active thermal control, which means that those methods can
manage the temperature of the converter power devices. It
can be noticed that both methods applied to the CHB are
complementary and can be applied simultaneously if required.

The effectiveness of the Active Thermal Control in affecting
the lifetime of the power electronics, effectively reducing the
spread of the end-of-life has been demonstrated in previous
publications [18], [19]. Monte Carlo simulations can also be
an effective tool to analyze the sensitivity of the converter
lifetime to parameter variation [20].

One drawback of both active thermal control methods
(modification of the modulation indexes or clamping) is that
the CHB operates under unbalanced conditions and the con-
ventional PS-PWM does not work so efficiently as expected.
This phenomenon can be observed taking into account the
harmonic spectrum of the output voltage represented in Fig. 3.
If the clamping method active thermal control is active, a non-
negligible harmonic distortion appears at 2fc.

This fact has been studied by researches in past years and
some modulation techniques have been proposed. A part of
them are based on the feed-forward idea considering real dc
voltages to carry out some calculations in order to determine
the duty cycles. As example, this technique is the base of
methods presented in [21], [22] for PS-PWM and [23]–[27] for
the well-known space-vector modulation technique. However,
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Fig. 3: Spectrum magnitude of the CHB output voltage under
PS-PWM operation with one clamped cell.

these proposel does not deal with the distortion generated at
2fc.

Whenever such balanced conditions are not met, the con-
ventional PS-PWM fails and different solutions have been
proposed in literature to fit the carrier phase shifting to this
kind of operation. For instance, the technique proposed in [28]
can be considered an extension of the classical PS-PWM to the
case of unequal dc voltages and it achieves the best possible
harmonic cancellation through an asymmetrical carrier phase-
shifting. The same asymmetrical PS-PWM proposed in [28]
is investigated with more details in [29]. In fact, harmonic
cancellation capability of such technique is assessed as well
as the upper limit for the equivalent switching frequency.
Another adaptation of the classical PS-PWM is presented in
[30]. In particular, the proposed asymmetrical carrier phase
shifting addresses the case of equal dc voltages which tend to
become unbalanced because of different power levels managed
by the H-bridges or different power losses. Unlike [28], this
technique allows the best harmonic cancellation in case of
different modulating signals that have to be used to implement
the dc-link voltage balance control. The Fourier series of the
pulses, produced in each PWM period by the H-bridges, is
used in [31] to carry out the variable carrier phase shifting.
In this case the cancellation of the fundamental harmonic of
the pulses produced in every carrier period by each H-bridge
is achieved. This technique can cope with unequal modulating

signals and unequal dc voltages.
In this paper, as the main contribution, an improvement of

the active thermal control based on clamping one H-bridge of
the CHB will be presented. The aim of the proposed method
is to eliminate the undesirable harmonic distortion present at
2fc modifying the conventional PS-PWM method in order to
achieve ATC without deteriorating the power quality. The way
to achieve this goal is based on determining every fundamental
period the corresponding phase displacements between carriers
of adjacent H-bridges.

III. HARMONIC ANALYSIS OF THE CONVERTER OUTPUT
USING PS-PWM WITH ONE CLAMPED CELL

A. Clamped Cell Output Voltage Description

Assuming the normalized reference voltage for the clamped
cell shown in Fig. 4a, it is possible to undergo a harmonic
analysis of its output voltage and to derive, after considerable
mathematical manipulations, its analytical expression with all
the harmonic components, where the factor Z(x) is introduced
in order to simplify the expressions:

Z(x) =
sin(xφ)

x
(1)

.
From expression (8), it is possible to notice that the carrier

harmonics are never present and the sideband harmonics do not
exist in the odd carrier groups. Therefore, odd carrier groups
are completely eliminated and hence only even carrier groups
still exist. In these groups only odd sideband harmonics exist.
Using the expression (8) it is possible to plot the trend of
the normalized fundamental harmonic as a function of the
clamping angle φ for different values of the modulation index
Mc as shown in Fig. 4c. It is evident that also with this
technique it possible to extend the loading capability over 1
and even further 1.15.

B. Non-clamped Cell Output Voltage Description

Assuming a three-cell CHB with one clamped cell and two
non-clamped cells, the normalized reference voltage to be used
for the non-clamped cells is shown in Fig. 4b. Also in this case
a harmonic analysis of the switching cell output voltage has
been carried out and results are summarized in the analytical
expression (9).

Using the expression (9) it is possible to plot the trend
of the normalized fundamental harmonic as a function of the
clamping angle φ for different values of the modulation indices
Mi and Mc as shown in Fig. 5. It is clear that the first har-
monic of the non-clamped cells depend both on the clamping
angle φ and on the modulation index of the clamped cell
Mc. The loading capability of the switching cells decreases
as the clamping angle grows up and the modulation index of
the non-switching cell decreases. Moreover, it is possible to
notice that only modulation index values Mi > 0.5 guarantee
always a positive value of the first harmonic amplitude. For
the lower values of the modulation index it exists a particular
value of the clamping angle beyond which negative values
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of the first harmonic occur (i.e. phase opposition). Therefore,
beyond this limit the cell changes its power processing attitude
(i.e. a power flow direction change occurs).

C. Total CHB Output Voltage Description

Assuming two non-clamped cells and just one clamped cell,
the harmonic components of the CHB output voltage can be
expressed by expression (10), where Mc is the modulation
index of the clamped cell, Mi is the modulation index of the
ith non-clamped cell, V dc

c is the dc voltage of the clamped
cell, V dc

i is the dc voltage of the ith non-clamped cell, ω0 is
the pulsation of the modulating signal, m and n are indices to
account for baseband, carrier and sideband harmonics, J2n−1
is the Bessel function of order 2n− 1, ωc is the pulsation of
the carrier signal and θi is the carrier phase of the ith non-
clamped cell with respect to the carrier phase of the clamped
cell.

IV. HARMONIC ANALYSIS RESULTS

Taking into account the previous harmonic analysis, the
normalized spectrum of the total output voltage generated by
the CHB has been obtained considering the conditions reported
in Table I.

An equally spaced carrier phase (equal to the conventional
value defined by the PS-PWM method) with phase displace-
ments equal to θ1 = π/3 and θ2 = 2π/3 have been considered.
Figure 6a shows the normalized harmonic spectrum of the
CHB output voltage with the clamping angle φ = 60◦. In this
unbalanced case, it is not achieved any harmonic cancellation.

V. VARIABLE-ANGLE PS-PWM FOR THREE-CELL CHB
WITH ONE CLAMPED CELL

It could be possible to implement a suitable phase shift of
the carriers in order to achieve the cancellation of the sideband
harmonics that more deeply influence the WTHD0 value
(”Main Harmonics”). In fact, in this case, the cancellation
condition is not the same for all the harmonics belonging to
the same carrier group and hence a whole carrier group can
not be cancelled all at once. The sidebands to be cancelled
are the ones right next the missing carrier of the first carrier
group (m = 1 and n = 0), leading to determine expressions
(2) and (3) from (8) and (9) respectively.

The cancellation of the Main Harmonics occurs if the
following conditions are met.

TABLE I: Parameter Values under Unequal dc Voltages and
Unequal Modulating Signals

Parameter Value

Number of cells in the CHB 3
Cell switching frequency fc (kHz) 1

DC voltages [V dc
c , V dc

1 , V dc
2 ] (V ) [810, 720, 840]

Modulation indices [Mc,M1,M2] [0.55, 0.9, 0.95]
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Vc + V1cos(ϕ1) + V2cos(ϕ2) = 0

V1sin(ϕ1) + V2sin(ϕ2) = 0 (4)

where ϕ1 = 2θ1 and ϕ2 = 2θ2 are respectively the displace-
ment angles between the main harmonics of the first/second
non-clamped cell and the main harmonic of the clamped cell.
The solution to expression (4) is:

cos(ϕ1) =
1

2

−V 2
c − V 2

1 + V 2
2

VcV1

cos(ϕ2) =
1

2

−V 2
c + V 2

1 − V 2
2

VcV2
(5)

Valid solutions for the displacement angles ϕ1 and ϕ2 are
obtained only if the following conditions are met:

|Vc − V1| ≤ V2 ≤ (Vc + V1)

|Vc − V2| ≤ V1 ≤ (Vc + V2) (6)

This analysis has been taken into account in order to elimi-
nate the ”main harmonics” (harmonic distortion located at 2fc)
applying a variable-angle PS-PWM with phase displacement
angles determined by expression (5). It is very important to
notice that the calculation of the phase displacement angles
using expressions (2), (3) and (5) has to done every funda-
mental period (usually 20 miliseconds). In addition, to obtain
the angles (ϕ1,ϕ2) only values of k ≤10 are required to be

included in the calculations reducing the computational cost of
(2) and (3). Factors with higher values of k are negligible and
can be discarded. Taking into account these facts, although
the calculations are not simple, the computational burden is
acceptable and does not represent a problem of the method.

In order to test the proposed method, the obtained harmonic
spectrum of the output voltage with the CHB working with
parameters of Table I and φ equal to 60◦ is represented in
Fig. 6b. The harmonic located at 2fc are eliminated using the
proper phase displacement angles calculated by the proposed
method (ϕ1=2θ1=94.02◦, ϕ1=2θ1=245.26◦).

It is possible to notice that the proposed method allows to
lower the WTHD0 value from 0.3115% to 0.2869% which
means approximately a 8% reduction. Since the WTHD0 can
inherently take into consideration the effect that a given volt-
age harmonic produces on the corresponding current harmonic,
the achieved reduction shows that the proposed solution can
effectively limit the low order voltage harmonics that have a
major influence on the current waveform distortion. Therefore,
assuming that the AC filter parameters are not changed, this
reduction of the WTHD0 produces its beneficial effects on
the current quality. On a different perspective, the achieved
improvement of the WTHD0 allows for the AC filter size
reduction keeping the same current waveform quality.

VI. EXPERIMENTAL RESULTS

In order to check the good performance of the proposed
active thermal control with improved harmonic distortion
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response, some experimental results have been taken in the lab-
oratory prototype which is shown in Fig. 7. The power devices
which compose the basic power cell are IXYB82N120C3H1
from IXYS and the whole power system is managed by
MPC5643L microprocessor from NXP. Moreover, the most
important passive elements values and parameters that take
part of this experiment are shown in Table II.

From the frequency domain point of view, the obtained
results are shown in Fig. 8 where the CHB output voltage and
the corresponding harmonic spectrum is represented. In the
experiment, as can be consulted in Table II, the CHB converter
operates with unbalanced dc voltages

(
[134, 130, 140]V

)
and

different modulation indices
(
[0.5, 0.9, 1.0]

)
.

At the beginning of the experiment, the CHB is operated
clamping the first cell with φ = 60◦ and applying the
conventional PS-PWM method. The resulting output voltage
harmonic spectrum are represented in Fig. 8a being easy
to see the distortion provoked by the unbalanced operation.
After that, the variable-angle PS-PWM technique is applied
under the same unbalanced conditions leading to the following
displacement angles, ϕ1 = 109.80◦ and ϕ2 = 262.96◦. The
corresponding harmonic spectrum using the variable method
is also included in Fig. 8c. In blue, it is represented the result
using the conventional PS-PWM method whereas the result
using the proposed modification of the PS-PWM technique
is drawn in red. It is clear that the main harmonic distortion
present at 2fc is completely eliminated when the proposed
modification is applied. Moreover, in Fig. 8b and Fig. 8d, a
detail of the low order voltage spectrum is shown where it

TABLE II: CHB parameters setup, passive elements and
unbalanced operation point considered for the experiment.

Parameter Value

Number of cells in the CHB 3
Cell switching frequency fc (kHz) 10

Cell DC Capacitance (mF ) 2.2

DC voltages [V dc
c , V dc

1 , V dc
2 ] (V ) [134, 130, 140]

Modulation indices [Mc,M1,M2] [0.5, 0.9, 1.0]

Clamping angle φ (◦) 60

Load Inductance (mH) 0.3
Load Resistance (Ω) 10

can be clearly observed that the low order components are not
affected.

In order to validate the effect of the clamping angle in
combination with the proposed methodology on the thermal
behavior of the CHB, in Fig. 9 the device case temperature of
each power cell are shown under a constant ambient tempera-
ture of 23◦C. Until t = 48 minutes the power converter is con-
ventionally operated reaching each power cell approximately
37.5, 36.8 and 35.2◦C, respectively. Afterward,the proposed
method with 60◦ clamping angle is applied in one H-bridge
from t = 48 to t = 58.5 minutes, leading in a significant
temperature reduction of 1.1◦ in the clamped cell whereas the
remaining cells are unaffected. This experiment demonstrates
that the proposed method enables to improve the harmonic
performance facilitating the active thermal control.

VII. CONCLUSIONS

Reducing as much as possible the maintenance costs are
a key factor of industrial power converters based products.
Prognostic maintenance should be implemented in order to
improve the power converter operability. In a modular structure
such as the CHB, the possibility to delay the failure of one cell
by means of active thermal control could allow implementing
planned maintenance. Unfortunately, active thermal control
methods introduces harmonic distortion at low frequency
which is a drawback in terms of output waveforms filtering
costs.

In this paper, a method to reduce this problem is presented.
The method is based on a modification of the conventional PS-
PWM technique where the phase displacement angles between
consecutive power cells is not fixed. The calculation of the
phase displacement angles to be applied is based on the Fourier
analysis of the power cell waveforms. The calculations have to
be carried out every fundamental period so the computational
burden is limited.

The proposed method is suited to be applied to three-
cell CHB converters. CHB converters are a mature comercial
product for high-power applications becoming a very well-
suited mainly for high-power motor drives and flexible ac
transmission systems (FACTS). In fact, many CHB comercial
converters can be found in the market, some of them formed
by the serial connection of three H-bridges. As commercial
industrial solutions, RMVC 5100 (3kV class) by RXPE and
MVW3000 (3kV class) by WEG can be found as CHB
converters formed by three-cells. The applicability of the
proposed method is direct in these commercial products using
a thermal measurement in each cell (normally already available
for safety purposes).

Experimental results validate the proposed method showing
that the thermal control of the CHB topology can be done and
the harmonic distortion around twice the carrier frequency is
eliminated. The results show how the proposed strategy im-
proves the harmonic spectra of the output waveforms without
affecting the thermal control.

APPENDIX

In this section the equation set resulting from the mathemat-
ical analysis of the CHB converter operating with one clamped
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Fig. 8: Experimental results: Harmonic spectrum under the unbalanced operation point provided by Table II. a) Conventional
PS-PWM technique. b) Enlarged low order detail. c) Proposed variable-angle PS-PWM. d) Enlarged low order detail.

45 50 55 60 65
Time (min)

35

36

37

38

C
as

e 
te

m
pe

ra
tu

re
 (°
C

 )

a

Á = 60°

Fig. 9: Thermal experimental results. Case temperature mea-
surement of power devices in each power cell. The color
scheme is as follows: first cell in blue, second cell in red
and third cell in yellow.

cell is compiled.
It has to be noticed that all the expressions have been

simplified using the coefficients presented in (7). Equation (8)
shows the output voltage of an H-bridge which is operated
by a D-PWM modulation technique clamping it during φ
radians as shown in Fig. 4a. On the other hand, in (9) the
output voltage of a non-clamped HB cell is shown. Finally,
the complete output voltage expression of the CHB under ATC
operation using D-PWM modulation technique is presented in
(10) determined by the sum of expressions (8) and (9).

a = 2n− 1 b = n− 1 c = m+ n− 1

d = n+ k − 1 e = n− k (7)
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