
Test Case Prioritization for Object-Oriented Software:An Adaptive Random Sequence
Approach Based on Clustering*

Jinfu Chena, Lili Zhua, Tsong Yueh Chenb, Dave Toweyc, Fei-Ching Kuob, Rubing Huanga, Yuchi Guoa

a(School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang, 202000, China)
{jinfuchen, lilizhu, rbhuang, yuchiguo}@ujs.edu.cn

b(Department of Computer Science and Software Engineering, Swinburne University of Technology, Hawthorn, 3122, Australia)
{tychen,dkuo}@swin.edu.au

c(School of Computer Science, The University of Nottingham Ningbo China, Ningbo, 315100, China)
dave.towey@nottingham.edu.cn

Abstract

Test case prioritization (TCP) attempts to improve fault detection effectiveness by scheduling the important test cases to be executed
earlier, where the importance is determined by some criteria or strategies. Adaptive random sequences (ARSs) can be used to
improve the effectiveness of TCP based on white-box information (such as code coverage information) or black-box information
(such as test input information). To improve the testing effectiveness for object-oriented software in regression testing, in this
paper, we present an ARS approach based on clustering techniques using black-box information. We use two clustering methods:
(1) clustering test cases according to the number of objects and methods, using the K-means and K-medoids clustering algorithms;
and (2) clustered based on an object and method invocation sequence similarity metric using the K-medoids clustering algorithm.
Our approach can construct ARSs that attempt to make their neighboring test cases as diverse as possible. Experimental studies
were also conducted to verify the proposed approach, with the results showing both enhanced probability of earlier fault detection,
and higher effectiveness than random prioritization and method coverage TCP technique.

Keywords:
Object-oriented software, Adaptive random sequence, Test cases prioritization, Cluster analysis, Test cases selection

1. Introduction1

Software testing is an important approach for ensuring the2

quality and reliability of software. Since the development of3

object-oriented (OO) technology, object-oriented software (OO4

S) has become widely used. However, testers may face chal-5

lenges when attempting to apply traditional software testing ap-6

proaches to OOS testing, due to some special characteristics of7

OO languages such as encapsulation, inheritance and polymor-8

phism [1–3]. Many OOS testing approaches have been studied,9

including random testing (RT) [4], state-based testing [5], and10

sequence-based testing [6]. Among these approaches, RT has11

often been used in industry, partly due to its simplicity [7, 8].12

Other testing approaches generally require more professional13

testing skills, and often focus on some specific kinds of soft-14

ware. A problem with the evolution of OOS is that test suites15

generated by these OOS testing approaches often include very16

large numbers of test cases, and hence execution of all of them17

can incur a very high cost [9–11].18

In order to improve the testing efficiency of OOS in regres-19

sion testing, we need to prioritize test cases to find faults as20

quickly as possible. Generally speaking, since only some test21

∗A preliminary version of this paper was presented at the 7th IEEE Interna-
tional Workshop on Program Debugging (IWPD 2016) [21]

inputs can detect faults, if these particular inputs could be pri-22

oritized for early execution, then the testing efficiency could be23

greatly improved. This kind of test case prioritization (TCP)24

should make it possible to detect faults earlier [12].25

Current TCP techniques are developed based on white-box26

or black-box information [13]. The white-box information of-27

ten includes program source code coverage, a program model28

and fault detection history; and black-box information usually29

includes test input information. In regression testing the white-30

box information is usually based on previous program versions,31

but the testing is done on the current version [14]. TCP tech-32

niques using black-box information do not have this problem.33

Random sampling is a black-box prioritization technique,34

and is usually used as a benchmark for effectiveness evaluation35

of other prioritization techniques. In order to improve the effec-36

tiveness of random sequences and present a better prioritization37

benchmark in regression testing, research has resulted in a pri-38

oritization technique using Adaptive Random Sequences (AR-39

Ss) [13, 15]. ARSs can be regarded as an alternative random40

sequence, in which test cases are evenly spread in the input do-41

main with the purpose of improving the performance of the ran-42

dom sequence. ARSs originated from the concept of Adaptive43

Random Testing (ART) [16–19], which is an enhanced version44

of RT that attempts to improve RT’s failure-detection effective-45

ness by evenly spreading test inputs throughout the entire in-46

Preprint submitted to Journal of Systems and Software September 18, 2017

put domain. Adaptive random sampling can generate ARSs to1

make the selection of the ordered test cases as diverse across2

the input domain as possible [20].3

ARSs have been applied to TCP for process-oriented soft-4

ware, based on ART techniques [15, 17, 19]. We first used the5

ARS technique on complex OO programs [21], and proposed an6

ARS approach for OOS test case prioritization. In this paper,7

we extend the previous work and use the notion of clustering8

to generate ARSs for OOS, with test cases of similar proper-9

ties grouped into the same cluster, and test cases in the same10

cluster being different from those in other clusters. Intuitively11

speaking, test cases in the same cluster may have similar fault12

detection capability [22]. Thus test cases extracted from differ-13

ent clusters should have different properties, and hence should14

be able to detect different failures. Based on this intuition, we15

used cluster analysis technology to generate ARSs from differ-16

ent clusters, aiming to achieve an even spread of the prioritized17

adaptive sequence test cases across the input domain.18

In this paper, we report on using method object clustering19

(MOClustering) and dissimilarity metric clustering (DMClus-20

tering) to generate ARSs. MOClustering forms clusters accord-21

ing to the number of objects and the length of method invoca-22

tion sequences, using the K-means and K-medoids clustering23

algorithms. DMClustering uses K-medoids clustering algorith-24

m and the structure information of test inputs to form clusters25

according to the Object and Method Invocation Sequence Sim-26

ilarity (OMISS) metric [23], which is a dissimilarity measure-27

ment for the test inputs of OO programs (based on calculation28

of the dissimilarity between two series of objects and between29

two sequences of method invocations). Additionally, a sam-30

pling strategy called MSampling (maximum sampling) is used31

to construct the ARSs within the MOClustering and the DM-32

Clustering frameworks. Because the proposed approach uses33

three clustering algorithms, three ARSs are constructed. We34

conducted empirical studies using seven open source subject35

programs, with the results showing that the proposed approach-36

es can effectively prioritize the test cases and enhance the fail-37

ure detection effectiveness. In particular, DMClustering out-38

performs other methods in testing large scale programs with39

complex structure.40

The remainder of this paper is organized as follows. The41

research background is given in Section II. The three clustering42

algorithms are explained in Section III. The ARS generation43

algorithm is presented in Section IV. The results of our empiri-44

cal studies and experimental analysis are reported in Section V.45

Some related work is discussed in Section VI. And the conclu-46

sion and future work are presented in Section VII.47

2. Background48

2.1. Regression testing49

Regression testing is important for ensuring software quali-50

ty and reliability. The purpose of regression testing is to ensure51

that the modified program still confirms to the software require-52

ments [24]. Regression testing techniques usually involve test53

case reduction and test case prioritization [10, 25]. Test case re-54

duction selects a subset of a given test suite, and aims to reduce55

regression testing time by only re-running the test cases affect-56

ed by code changes. Test case prioritization techniques aim to57

reorder test executions so as to maximize some objectives, such58

as detecting faults earlier or reducing the testing cost. Com-59

pared to test case reduction, test case prioritization may be a60

more conservative approach, because it does not discard test61

cases and only prioritizes them [10].62

2.2. Cluster analysis63

Cluster analysis can be used to improve software testing64

effectiveness, using the basic idea that test cases with similar65

properties be grouped into the same cluster: test cases in the66

same cluster are similar to each another but different from test67

cases in other clusters. In general, most clustering methods can68

be classified into one of the following five categories [26]: (1)69

partition methods; (2) hierarchical methods; (3) density-based70

methods; (4) grid-based methods; and (5) model-based meth-71

ods.72

2.3. Test Case Prioritization73

The purpose of test case prioritization (TCP) is to increase74

the test suite’s rate of fault detection by scheduling test cases75

with higher priority to be executed earlier, according to some76

criteria. TCP can identify a permutation of a test suite, from77

the set of all possible permutations, that maximizes the value78

of a fitness function — where the function reflects a given test-79

ing goal, such as the number of detected faults. Rothermel et80

al. [12, 27] proposed the weighted average percentage of faults81

detected (APFD) as a metric to measure prioritization perfor-82

mance. If T represents an ordered test suite containing n test83

cases, and F represents a set of m failures detected by T, then84

T Fi represents the number of test cases executed in T’ before85

detecting fault i. The formula of APFD is defined as follows,86

with APFD values ranging from 0 to 1, and higher values indi-87

cating better fault detection rates.88

APFD = 1 − T F1 + T F2 + · · · + T Fm

nm
+

1
2n

(1)

Existing TCP techniques are classified as either white-box89

or black-box [24, 28]. Most white-box TCP techniques are90

based on the coverage information of the test suite for previous91

program versions. The white-box approaches use a selected test92

coverage criterion to prioritize the test suites. Test coverage cri-93

teria mainly include statement coverage, branch coverage, path94

coverage, method coverage and class coverage. Black-box TCP95

techniques usually prioritize the test suites using information96

associated with the test input and output information. Black-97

box TCP techniques mainly include combinatorial interaction98

testing, input model diversity and input (output) test set diame-99

ter.100

2.4. Adaptive random sequence101

Chen et al. proposed Adaptive Random Testing (ART) as an102

enhancement to RT [16, 17]. ART attempts to improve on RT’s103

failure-detection effectiveness by evenly spreading test inputs104

2

throughout the entire input domain, using a similarity/dissimila-1

rity metric [17, 18]. ART can be used not only to generate its2

own sequence of test cases, but also to order a given test suite3

to improve its chance of detecting failures earlier, with such an4

ordered sequence being called an Adaptive Random Sequence5

(ARS). Similar to ART, an ARS is also based on the idea of6

even spreading across the input domain — a concept that has7

been shown to effectively reveal failures faster. ARSs can be ap-8

plied to regression testing, and may be a simple, effective, and9

relatively low-overhead alternate to random sequences (RSs),10

which are commonly used in regression testing. Thus, we can11

use ARSs to prioritize test suites, and to enhance the perfor-12

mance of regression testing for OOS.13

2.5. Test Case Generation14

In integration and system testing of OOS, a test case t can15

consist of two parts: t.OBJ and t.MINV, where t.OBJ is a list of16

objects and t.MINV is an ordered list of methods (representing17

a sequence of method invocations) in the test case. Before or-18

dering the test cases, the test suites for regression testing must19

first be generated.The test suites are randomly generated in our20

approach. Since test cases are generated based on the class in-21

formation of the program under test, it is necessary to first ob-22

tain and analyze the class diagram. Visual Studio [29] was used23

to obtain the detailed class information of the subject programs,24

and the class diagrams.25

The test suites were randomly generated, and the generation26

steps are as follows.First, the class diagram of the program un-27

der test is obtained.Based on this, the second step is to create a28

random number of objects, with random values assigned to each29

member object.Next, a random number of methods are generat-30

ed as the length of method sequence, and the method sequence31

is verified. Finally, values are assigned to the method parame-32

ters by calling a random value generator for the corresponding33

data type.As a result, a test case is generated. The above steps34

were repeated until sufficiently many test cases were generated.35

3. Clustering Algorithms36

In this study, we used three methods to cluster test cas-37

es: MOClustering means (method object clustering with K-38

means), MOClustering medoids (method object clustering with39

K-medoids), and DMClustering (dissimilarity metric cluster-40

ing with K-medoids). MOClustering means and MOCluster-41

ing medoids used the Euclidean distance to calculate the dis-42

similarity between test cases, while DMClustering employed43

the OMISS metric to calculate the dissimilarity. In DMCluster-44

ing, because the OOS test inputs involved objects and methods45

rather than numerical data, the K-means could not be calculat-46

ed. Hence, only the K-medoids clustering algorithm was used47

in DMClustering.48

3.1. Framework overview49

Figure 1 shows the framework for our approaches. Before50

generating the test suites, the class diagram of the program51

under test is first obtained and analyzed. Then the test suites52

are generated, with each test case consisting of objects and the53

methods called by these objects.54

Analyze and obtain the class information

Test suites

Generate objects

Generate method sequence

Cluster 1 Cluster kCluster 2 ...

DMClustering MOClustering

MSamplingAdaptive random sequence

Test case structure

OMISS Metric

K-mediods

Vector

Euclidean

distance

K-means

Vector

Euclidean

distance

K-mediods

Figure 1: TCP Framework

Next,three methods are applied to cluster test cases of the55

constructed test suites.In MOClustering (method object clus-56

tering), test cases are represented in the form of vectors, and K-57

means and K-medoids clustering algorithms are applied, using58

Euclidean distance, to cluster the test cases — MOClustering59

with K-medoids clustering algorithm is referred to as MOClus-60

tering medoids; and MOClustering algorithm with K-means is61

referred to as MOClustering means. In DMClustering, OMISS62

is used to calculate the dissimilarity between test cases, and the63

K-medoids clustering algorithm groups test cases into clusters.64

Finally, the adaptive random test sequences are generated using65

the MSampling (maximum sampling) strategy.66

3.2. MOClustering67

3.2.1. Object method vector68

When conducting OOS integration and system testing, typ-69

ically, a test case t will consist of a set of objects and an ordered70

list of methods. We therefore use an object method vector to71

represent a test case, defined as follows.72

Definition 1. (object method vector, omv): An object method73

vector of a test case is defined as an ordered pair of the number74

of its objects and the total number of methods called by all of its75

objects, denoted omv=<On, Mn>, where On is the number of76

objects in the test input, and Mn is the total number of methods77

called by all objects that are in the test input.78

For example, the object method vector for a test case t1 with79

three objects and five methods called by all objects is represent-80

ed as <3, 5>.81

3.2.2. Distance measure82

Because Euclidean distance is a natural measurement for83

distance between numerical data, it is used to measure the dis-84

tance between pairs of omv. If X is the omv of t1, and Y is the85

omv of t2, with X=<x1, x2> and Y=<y1, y2>, then the distance86

between X and Y is defined as:87

d(X,Y) =
√

(x1 − y1)2 + (x2 − y2)2 (2)

3

For example, if X is <3, 5> and Y is <3, 4>, then the Eu-1

clidean distance between X and Y is equal to 1, because d(X,Y)2

=

√
(3 − 3)2 + (5 − 4)2 =

√
12 = 1.3

3.2.3. MOClustering means algorithm4

In MOClustering means, test cases are clustered according5

to the numbers of objects and methods in each test case. The6

K-means clustering algorithm is efficient and scalable for large7

data sets, and was therefore used in MOClustering. The algo-8

rithm first selects K test cases as the initial data for each cluster.9

Each remaining test case is allocated to the closest cluster, de-10

fined by the lowest distance to the mean value of the cluster.11

The mean value of each cluster is then updated. This process12

is repeated until objects in each cluster no longer change or the13

sum of square error converges. After clustering, the test cases14

in the same cluster are expected to be similar each another, and15

different to those in other clusters.16

MOClustering means is shown in Algorithm 1, and has three17

input parameters: testcasepool (the simulated input domain), T-18

Num (the number of test cases to be selected from testcasepool19

to form a test suite) and K (the number of clusters to be gen-20

erated). The algorithm will generate K clusters for TNum test21

cases selected from testcasepool. In MOClustering means, T-22

Num test cases are first randomly selected to form a test suite23

that is to be prioritized; and the number of objects and methods24

is extracted from each chosen test case to construct the object25

method vectors set OMV for the TNum test cases, i.e., we con-26

struct the corresponding relationship between OMV and TNum27

test cases, and thus the test cases are grouped based on the cor-28

responding clustering operation of the elements in OMV. Next,29

the first K test cases are selected as the initial cluster center of30

each cluster, and the mean value of each cluster updated accord-31

ing to Formula 3. Then, the Euclidean distance between each32

element of OMV and the mean value of each cluster are cal-33

culated, and the corresponding test case of each object method34

vector is assigned to the closest cluster. This is repeated until35

test cases in each cluster no longer change, or the sum of square36

error (Formula 4) converges. At this point, K clusters would37

have been generated and stored in the data set clustering.38

Let OMV(c) be the set of object method vectors correspond-39

ing to cluster c. Suppose OMV(c) = {omv1, omv2, · · · , omvn},40

where omvi =< Oni,Mni >, i = 1, 2, · · · , n,where Oni is the41

number of objects of the test input ti in c, and Mni is the sum of42

the number of methods called by each object of the test input ti43

in c. Let avg(c) denote the mean of cluster c which is defined44

as a vector of two mean values shown below:45

avg(c) =<

n∑
i=1

Oni

n
,

n∑
i=1

Mni

n
> (3)

Suppose that C is a cluster set, with C = {c1, c2, · · · , cK},46

and OMV(C) (or OMV(ci)) is the set of object method vectors47

corresponding to C (or ci), with OMV(C) =
∪K

i=1 OMV(ci) ,48

where OMV(ci) = {omvi1, omvi2, · · · , omvih}. The mean value49

of cluster ci — avg(ci) —is calculated according to Formula50

Algorithm 1 MOClustering means (testcasepool,K, TNum)
1: Construct OriginalTCase = {} to store the selected test cases;
2: Construct OMV = {} to store the set of object method vectors;
3: Construct Clustering = {} to store the generated clusters;
4: Construct meanValue = {} to store the mean value of each cluster;
5: Choose TNum test cases from testcasepool randomly and add them to

OriginalTCase;
6: for (i=1 to TNum)
7: On = |OriginalTCase[i].Ob jects|; //|OriginalTCase[i].Ob jects| is e-

qual to the number of objects of OriginalTCase[i].
8: Mn = |OriginalTCase[i].Methods|; //|OriginalTCase[i].Methods| is e-

qual to the number of methods of OriginalTCase[i].
9: OMV[i] =< On,Mn >; // The ith element of OMV is denoted by

OMV[i].
10: end for
11: Choose K elements from OMV and add the corresponding test cases to

Clustering as the initial cluster center;
12: Set change = true;
13: while (change == true)
14: Update meanValue for each cluster;
15: for (i=1 to TNum)
16: for (j=1 to K)
17: calculate d(OMV[i],meanValue[j]) according to Formula 2;
18: end for
19: Put the corresponding test case of OMV[i] to the nearest cluster;
20: end for
21: if (each cluster keep invariant)
22: Set change = f alse;
23: else
24: Set change = true;
25: end if
26: end while
27: return Clustering

3. Let ES denote the sum of square error among cluster set C,51

which is defined as:52

ES =
K∑

i=1

h∑
j=1

d(omvi j, avg(ci))2 (4)

For example, suppose that the test suites have five test cas-53

es, and we extract the number of objects and methods from each54

test case to construct OMV: omv1 =< 4, 3 >, omv2 =< 2, 1 >55

, omv3 =< 3, 4 >, omv4 =< 1, 5 > and omv5 =< 3, 2 >. Al-56

so assume that K is set to 2, and that test cases t2 and t3 are57

somehow chosen as the initial cluster centers. We first calcu-58

late the distance between omvi(i = 1, 4, 5) and omv2, and the59

distance between omvi(i = 1, 4, 5) and omv3, then put each test60

case into its nearest cluster. For example, since the distance be-61

tween omv1 and omv2 is 2.83, and the distance between omv162

and omv3 is 1.41, then t1 should be put into cluster c2. After63

the first round distribution, cluster c1 has two test cases t2 and64

t5, and cluster c2 has three t1, t3 and t4. The mean value of the65

new clusters should next be updated. After the second round66

distribution, cluster c1 still has t2 and t5, and cluster c2 still has67

three t1, t3 and t4. Because the clusters are the same as in the68

previous round, the process of clustering is completed. Figure69

2 summarizes the three rounds of distribution for the above ex-70

ample.71

3.2.4. MOClustering medoids algorithm72

The K-medoids clustering algorithm randomly selects K test73

cases as the center points (also referred to as the representa-74

4

Initial state:
t2 t3

c1 c2

avg(c1)=<2,1>

avg(c2)=<3,4>

After first

round of

distribution:
t2,t5 t1,t3,t4

c1 c2

avg(c1)=<2.5,1.5>

avg(c2)=<3.3,3>

t2,t5 t1,t3,t4

c1 c2

avg(c1)=<2.5,1.5>

avg(c2)=<3.3,3>

After second

round of

distribution:

Figure 2: Illustration of MOClustering means clustering process

tive test cases) of K clusters, and whenever the clusters are1

changed, the algorithm iteratively uses non-representative test2

cases (non-center points) to replace the representative test case,3

if necessary. The representative test case O is defined as follow4

[30, 31].5

Definition 2. A Representative Test Case,O, of a cluster is the6

test case that has the minimum absolute error value in the clus-7

ter.8

The absolute error value (E) of the representative test case9

O is calculated by either Formula 5 or Formula 9 according to10

which distance metric is being used. In MOClustering medoids,11

test cases are clustered according to their Object Method Vec-12

tors. Although K-means is efficient, it is also sensitive to out-13

liers. Thus, when a test case with extreme values appears, the14

data distribution may be significantly distorted. The K-medoids15

algorithm can reduce the sensitivity to outliers by selecting a16

test case to represent the cluster without using the mean val-17

ue. Thus, K-medoids was used in the MOClustering method to18

compare with MOClustering means. The algorithm first selects19

K test cases to set up the initial K clusters. Each remaining test20

case is then allocated to the closest cluster, defined by the low-21

est distance to the representative test case of the cluster. The22

representative test case of each cluster is then updated. This23

process is repeated until test cases in each cluster no longer24

change. After clustering, the test cases in one cluster are close25

to the representative test case of that cluster, and far away from26

other clusters.27

MOClustering medoids is shown in Algorithm 2, and has28

three input parameters: testcasepool (the simulated input do-29

main), TNum (the number of test cases to be selected from the30

simulated input domain to form a test suite on which prioriti-31

zation is to be conducted) and K (the number of clusters to be32

generated). That is, the algorithm will generate K clusters for33

TNum test cases selected from testcasepool. In MOCluster-34

ing medoids, TNum test cases are first randomly selected from35

the simulated input domain as the initial data; and the number36

of objects and methods is extracted from each chosen test case37

to construct a data set OMV for these TNum test cases, i.e.,38

we construct the corresponding relationship between OMV and39

TNum test cases, and the test cases are grouped based on the40

corresponding clustering operation on the elements of OMV .41

Next, the first K test cases corresponding to the first K elements42

from OMV are selected as the initial representative test cases43

for the K clusters and the selected representative test cases are44

stored in RepreTCase. Then, the Euclidean distance between45

each element of OMV and the omv of the representative test46

case O (of each cluster) is calculated, and the corresponding47

test case of each object method vector is assigned to the clos-48

est cluster. Finally, for every cluster, we consider each of its49

non-representative test cases, denoted by O′, and calculate the50

absolute error value E′ of O′ using Formula 5 – if E′ is less than51

E which is the absolute value of O, then O is replaced with O′.52

This is repeated until all clusters become steady, that is, there53

are no changes in any clusters after an updating process. By54

then, K clusters would have been generated and stored in the55

data set clustering56

Algorithm 2 MOClustering medoids (testcasepool,K, TNum)
1: Construct OriginalTCase = {} to store the selected test cases;
2: Construct OMV = {} to store the set of object method vectors;
3: Construct Clustering = {} to store the generated clusters;
4: Construct RepreTCase= {} to store representative test cases of each cluster;
5: Choose TNum test cases from testcasepool randomly and add them to O-

riginalTCase;
6: for (i=1 to TNum)
7: On = |OriginalTCase[i].Ob jects|; //|OriginalTCase[i].Ob jects| is e-

qual to the number of objects of OriginalTCase[i].
8: Mn = |OriginalTCase[i].Methods|; //|OriginalTCase[i].Methods| is e-

qual to the number of methods of OriginalTCase[i].
9: OMV[i] =< On,Mn >; // The element of OMV is denoted by OMV[i].

10: end for
11: Choose K items from OMV and add the corresponding test cases to

RepreTCase as the initial representative test case;
12: Set change = true;
13: while (change == true)
14: for (i=1 to TNum)
15: for (j=1 to K)
16: Calculate d(OMV[i],RepreTCase[j]) according to Formula 2 ;
17: end for
18: Put the corresponding test case of OMV[i] to the nearest cluster;
19: Update the cluster that OMV[i] corresponds to in Clustering;
20: end for
21: for (i=1 to K)
22: for (each non-representative test case O′ in the cluster)
23: Compute its absolute error value E′; // Formula 5
24: if (E′ < E)
25: RepreTCase[i] = O′;
26: end if
27: end for
28: end for
29: if (each RepreTCase[i] keep invariant)
30: Set change = f alse;
31: else
32: Set change = true;
33: end if
34: end while
35: return Clustering

Suppose that OMV(c) is the set of object method vectors57

corresponding to c, and OMV(c) = {omv1, omv2, · · · , omvn}.58

Let E denote the absolute error value of a test case O in cluster59

c, and omv(O) be the element of OMV(c) corresponding to O.60

In MOClustering medoids, the absolute error value of the test61

5

case O is defined as:1

E =
n∑

i=1

d(omvi, omv(O)) (5)

For example, suppose that the constructed test suite has2

five test cases (that is, TNum is 5) and their respective OMV:3

omv1 =< 4, 3 >, omv2 =< 2, 1 >, omv3 =< 3, 4 >, omv4 =<4

1, 5 > and omv5 =< 3, 2 >. Also assume that K is set to 2,5

i.e., there are two clusters, c1 and c2. The calculation process6

of the earlier stage is the same as in Algorithm 2. Suppose we7

somehow choose two test cases as the initial representative test8

cases: t2 for c1 and t3 for c2. We first calculate the distance9

between omvi(i = 1, 4, 5) and omv2, and the distance between10

omvi(i = 1, 4, 5) and omv3, then put each test case into the n-11

earest cluster. For example, as the distance between omv1 and12

omv2 is 2.83, and the distance between omv1 and omv3 is 1.41,13

then omv1 should be put into cluster c2. After the end of the14

first round distribution based on the similar operations, cluster15

c1 has two test cases (t2 and t5), and cluster c2 has three test16

cases (t1, t3 and t4). Then we need to see whether the represen-17

tative test case of each cluster needs to be updated or not. For18

example, in c2, consider t1. Calculate its absolute error value19

E1 according to Formula 5. If E1 is smaller than E3 (which is20

t3’s E), then t1 replaces t3 to become the new representative test21

case. Other test cases in c2 are also examined. If no change22

is observed for representative test cases of any cluster, then the23

clustering process is completed. Figure 3 summarizes the three24

rounds of distribution for the above example.25

Initial state:
t2 t3

c1 c2

c1.O=t2
c2.O=t3

t2,t5 t1,t3,t4

c1 c2

E2=1.41, E5=1.41

c1.O=t2
E1=5.01,E3=3.65, E4=5.84

c2.O=t3

t2,t5 t1,t3,t4

c1 c2

c1.O=t2
c2.O=t3

After first

round of

distribution:

After second

round of

distribution:

Figure 3: Illustration of MOClustering medoids clustering process

3.3. DMClustering26

3.3.1. OMISS metric27

The OOS test input structure may be very complex because28

it may include different combinations of objects and methods,29

including multiple classes, multiple objects, inherited elements,30

reference objects, self-defined methods, and method invocation31

sequences. To investigate the impact of using different distance32

metrics on test case prioritization, we use our recently devel-33

oped OMISS metric to calculate the distance between test cases34

in the clustering process.35

According to the OMISS metric [23], a test input t con-36

sists of an object set (OBJ) and a method invocation sequence37

(MINV), i.e, t = {t.OBJ, t.MINV}. The distance between test38

inputs (TestcaseDistance) is defined as the sum of the distance39

of object sets (TCobjectDistance) and the distance of method40

invocation sequences (TCmSeqDist), as shown in Formula 6. In41

Formula 6, t1.OBJ and t2.OBJ refer to the objects sets in test-42

case1 and testcase2, respectively; and t1.MINV and t2.MINV43

represent the method invocation sets of testcase1 and testcase2,44

respectively.45

TestcaseDistance(t1, t2) = TCob jectDistance(t1.OBJ, t2.OBJ)

+TCmS eqDist(t1.MINV, t2.MINV)
(6)

46

The distance between two object sets (TCob jectDistance)47

is calculated by comparing each pair of objects in the two set-48

s, and is defined as the minimum sum of distances amongst all49

possible objects pairing between t1.OBJ and t2.OBJ. An object50

can be divided into two parts: the attribute section and behavior51

section. The attribute section includes self-defined attributes52

(the attributes are defined by the current class), inherited at-53

tributes, and reference attributes. The behavior section includes54

self-defined methods and inherited methods. Hence, the dis-55

tance between objects (Ob jectDistance) is determined by the56

attribute section (AttributeDistance) and the behavior section57

(BehaviorDistance) of the object. The distance between ob-58

jects is defined in Formula 7, where p.A refers to the attribute59

section of object p, q.A refers to the attribute section of object60

q, p.B means the behavior section of object p, and q.B means61

the behavior section of object q.62

Ob jectDistance(p, q) = AttributeDistance(p.A, q.A)
+BehaviorDistance(p.B, q.B)

(7)

The distance between the two method invocation sequences,63

which is defined in Formula 8, includes the length difference,64

the set difference and the sequence difference. The sequence65

difference is calculated by S equenceDissimilarity(t1.MINV,66

t2.MINV) in Formula 8 based on the ordered lists, and is equal67

to the number of common methods in the same position divided68

by the number of methods in the shorter sequence. For exam-69

ple, if there are two method invocation sequences, t1.MINV =70

{m3,m2,m1}, which has three methods, and t2.MINV = {m4,m2,71

m1,m3,m5}, which has five methods, then the length difference72

is 2; the set difference is 0.4 (1-3/5), because t1.MINV and73

t2.MINV have three common methods (m1,m2 and m3) and74

five different methods (m1,m2,m3,m4, and m5); the sequence75

difference is 0.667 (=2/3), because the second and third meth-76

ods of t1.MINV are equal to the second and third methods of77

t2.MINV; and t1.MINV is the shorter sequence, with a total of78

three methods. Therefore the distance between t1.MINV and79

t2.MINV is 3.067 (2+0.4+0.667).80

6

TCmS eqDist(t1.MINV, t2.MINV)
= |length(t1.MINV) − length(t2.MINV)|

+(1 −
∣∣∣∣∣ t1.MINV ∩ t2.MINV
t1.MINV ∪ t2.MINV

∣∣∣∣∣)
+S equenceDisssimilarity(t1.MINV, t2.MINV)

(8)

The detailed explanations and examples with regard to For-1

mulas 6, 7, and 8 can be found in [23].2

3.3.2. DMClustering algorithm3

Because DMClustering applies to objects and methods, which4

are not numerical data, the K-means algorithm could not be5

used. Hence, only the K-medoids clustering algorithm was used6

in DMClustering.7

Algorithm 3 DMClustering (testcasepool,K, TNum)
1: Construct OriginalTCase = {} to store the selected test cases;
2: Construct Clustering = {} to store the generated clusters;
3: Construct RepreTCase= {} to store representative test cases of each cluster;
4: Choose TNum test cases from testcasepool randomly and add them to O-

riginalTCase;
5: Choose K items from OriginalTCase and add them to RepreTCase as the

initial representative test case;
6: Set change = true;
7: while (change == true)
8: for (i=1 to TNum)
9: for (j=1 to K)

10: Calculate TestcaseDistance(OriginalTCase[i],RepreTCase[j]);
// Formula 6

11: end for
12: Put OriginalTCase[i] to the nearest cluster;
13: Update the cluster of OriginalTCase[i] in Clustering;
14: end for
15: for (i=1 to K)
16: for (each non-representative test case O′ in the cluster)
17: Compute its absolute error value E′; // Formula 9
18: if (E′ < E)
19: RepreTCase[i] = O′;
20: end if
21: end for
22: end for
23: if (each RepreTCase[i] keep invariant)
24: Set change = f alse;
25: else
26: Set change = true;
27: end if
28: end while
29: return Clustering

DMClustering is shown in Algorithm 3, and has three input8

parameters: testcasepool (the simulated input domain), TNum9

(the number of test cases to be selected from testcasepool to10

form a test suite) and K (the number of clusters to be gener-11

ated). The algorithm generates K clusters for TNum test cases12

selected from testcasepool. In DMClustering, TNum test cases13

are first randomly selected from the testcasepool as the initial14

data, and are then added to OriginalTCase. Next, K items from15

OriginalTCase are selected as the initial representative test case16

O of each cluster, and the generated representative test case is17

stored in RepreTCase. Then, the difference between each re-18

maining test case and each representative test case O (of each19

cluster) are calculated with the OMISS metric (Formulas 6, 7,20

and 8), and each test case is assigned to the nearest cluster. Fi-21

nally, for each non-representative test case O′, its absolute error22

value (E′) is calculated using Formula 9 – if E′ is less than E23

(the absolute value of O), then O is replaced with O′ and the24

clusters are updated. This is repeated until items in each clus-25

ter no longer change, at which point, K clusters will have been26

generated and stored in clustering.27

Suppose that T is the set of test cases for cluster c, T =28

{t1, t2, · · · , tn}. Let E denote the absolute error value of the rep-29

resentative test case O in cluster c. In DMClustering, the abso-30

lute error value of the test case O is defined as:31

E =
n∑

i=1

OMIS S (ti,O) (9)

For example, assume that a cluster c1 has three test cases, t1,32

t2, and t3. First, calculate the sum of the distances OMIS S (t2, t1)33

and OMIS S (t3, t1), denoted E1 (the E for t1). Then, calculate34

the sum of OMIS S (t1, t2) and OMIS S (t3, t2), denoted E2 (the35

E for t2), and the sum of OMIS S (t1, t3) and OMIS S (t2, t3), de-36

noted E3 (the E for t3). If E3 is smaller than E1 and E2, then t337

is the representative test case of cluster c1.38

4. Adaptive Random Sequence Generation39

After all test cases have been clustered, a sampling strategy40

is needed to choose test cases from the clusters. The traditional41

random sampling strategy selects n test cases randomly from42

the entire pool of test cases. Some of these n test cases may43

be from the same cluster, which may have similar properties,44

including the ability to detect the same fault. Such a test case45

sequence may lead to a poor fault detection rate. The same46

problem occurs if random sampling is applied to choose a clus-47

ter, from which a test case is then selected. To maintain the48

diversity in test cases, we use a new MSampling (maximum)49

sampling mechanism.50

MSampling is explained in Algorithm 4. It has three in-51

put parameters: K (the number of generated clusters), n (the52

specified number of test cases to be prioritized), and clustering53

(the K clusters generated by MOClustering and DMClustering),54

where n is less than or equal to the number of test cases in all K55

clusters. The specific steps of MSampling are: (1) Randomly56

choose an initial cluster. (2) When these clusters are generat-57

ed by MOClustering, the distances between the selected cluster58

and the unselected clusters are calculated using Formulas 1059

and 11. When the clusters are generated using DMClustering,60

the distance is calculated with Formula 12. (3) The most dis-61

tant cluster is selected next. (4) Steps 2 and 3 are repeated until62

all clusters are selected, and an ordered sequence of clusters63

is generated. (5) According to the order of clusters in the se-64

quence, randomly choose a unique test case from each cluster,65

in sequence. (6) Repeat Step 5 until the specified number (n) of66

prioritized test cases has been obtained. If the number of test67

cases selected in the current cluster is equal to the length of this68

cluster, we should jump to the next cluster. The prioritized test69

case sequence is stored in the data set GTCases.70

7

Algorithm 4 MSampling(K, n, clustering)
1: Construct a set to store K clusters OC = {c1, c2, · · · , ci, · · · , cK };
2: Construct C = () to store the chosen cluster;
3: Construct GTCases =() to store the prioritized test case sequence;
4: Randomly choose a cluster c;
5: Add c to C;
6: while !(all clusters are added to C)
7: for (i = 1 to K)
8: if (OC[i] is not added to C)
9: Calculate the distance between C and OC[i];

10: end if
11: end for
12: Update c = the cluster that has the farthest distance with C;
13: Add c to C;
14: end while
15: while !(the number of test cases in GTCases is up to n)
16: for (each c in C (in their order in C and assume C is circular))
17: if (the number of test cases selected in c < the length of c)
18: Take a test case t from each cluster in turn;
19: Append t to GTCases;
20: else
21: Jump to the next cluster;
22: end if
23: end for
24: end while
25: return GTCases;

When these clusters are generated by MOClustering means,1

then, if C is a cluster set, and C = {c1, c2, · · · , cK}, AVG is the2

mean value set, and AVG = {avg1, avg2, · · · , avgK}, where avgi3

is the mean value of ci. Let DMO M(ci, c j) be the distance4

between clusters ci and c j (i, j = 1, 2, · · · ,K). The distance5

between any two clusters is defined as:6

DMO M(ci, c j) = d(avgi, avg j) (10)

Similarly, when the clusters are generated by MOCluster-7

ing medoids, if C is a cluster set, and C = {c1, c2, · · · , cK}, OS8

is a representative test cases set, and OS = {o1, o2, · · · , oK},9

with oi being the representative test case of the corresponding10

ci, (i = 1, 2, · · · ,K). Let DMO K(ci, c j) be the distance be-11

tween clusters ci and c j, (i, j = 1, 2, · · · ,K). The distance be-12

tween clusters is defined as:13

DMO K(ci, c j) = d(omv(oi), omv(o j)) (11)

With DMClustering, if C is a cluster set, and C = {c1, c2, · · · ,14

cK}, OS is a representative test cases set, and OS = {o1, o2, · · · ,15

oK}, with oi being the representative test case of the correspond-16

ing ci. Let DDM(ci, c j) stand for the distance between clusters17

ci and c j, which is defined as:18

DDM(ci, c j) = OMIS S (oi, o j) (12)

For example, if we have three clusters, c1 = {t11, t12}, c2 =19

{t21, t22}, and c3 = {t31, t32}, then suppose c2 is chosen as the20

first cluster, and the distances between c1 and c2 and between21

c3 and c2 are calculated. If the distance between c1 and c2 is22

less than that between c3 and c2, then the order of clusters is c2,23

c3 and c1. Based on Algorithm 4, test cases are selected from24

c2, c3 and c1 in sequence. Suppose GTCases = (t21, t31, t11) af-25

ter the first round of selection, then the next round of selection26

is conducted. At the end of the sampling strategy, a final adap-27

tive random sequence for the prioritized test cases is generated:28

GTCases = (t21, t31, t11, t22, t32, t12). Test cases in the sequence29

are expected to be evenly spread in the input domain and are30

executed in this order in the testing framework.31

5. Empirical Studies And Analysis32

5.1. Setup of the empirical studies33

Mutant programs are often used in empirical studies to in-34

vestigate the fault detection effectiveness of different testing35

methods. Given the same test inputs, if the outputs produced36

by a mutant version are different from the outputs produced by37

the original program, then these test inputs can be regarded as38

failure-causing inputs. Our study also used mutation programs39

to evaluate how quickly a test case prioritization method could40

find failure-causing inputs.41

Table 1 presents the seven subject programs investigated in42

the experiment. The programs were all written in the C++ or43

C# language and are from some open sources websites [32–35].44

Faults were manually seeded into the subject program methods45

based on common mutation operators. In this study, we used46

the following 13 operators [36], which generate some typical47

program faults.48

1) arithmetic operators replacement (AOR);49

2) logical operators replacement (LOR);50

3) relational operators replacement (ROR);51

4) constant for scalar variable replacement (CSR);52

5) scalar variable for scalar variable replacement (SVR);53

6) scalar variable for constant replacement (SCR);54

7) array reference for constant replacement (ACR);55

8) new method invocation with child class type (NMI);56

9) argument order change (AOC);57

10) accessor method change (AMeC);58

11) access modifier change (AMoC);59

12) hiding variable deletion (HVD);60

13) property replacement with member field (PRM).61

Of these 13 mutation operators, the last six are OO-specific,62

and are used to generate OO-specific faults. Table 2 shows the63

type of mutation operators and the number of faults seeded for64

each program. The machine used to conduct the testing has an65

Intel dual core i3-2120 3.3 GHz processor, 4 GB of RAM, and66

runs under the Windows 7 operating system.67

5.2. Effectiveness measure criteria68

In our study, we used three measures to compare the TCP69

approaches: Fm (F-measure) – the number of the test cases ex-70

ecuted before finding the first fault; E – the total number of71

distinct faults detected by a specific number of test cases; and72

APFD – the weighted average percentage of faults detected.73

A testing approach is considered effective if it has a low F-74

measure, a high E, and a high APFD value [37]. In this study,75

we compared MOClustering means, MOClustering medoids, DM-76

Clustering, and RT-ms (RT with method sequence — a random77

sequence generation approach for OOS test cases with method78

8

Table 1: SUBJECT PROGRAMS

ID name
Lines

of
code

Num.
of

public
classes

Num. of
public

methods

Num.
of

faults
Description

1 CCoinBox [32] 120 1 7 4 C++ library that simulates a vending machine
2 WindShieldWiper [32] 233 1 13 4 C++ library that simulates a windshield wiper
3 SATM [32] 197 1 9 4 C++ library that simulates an Automatic Teller Machine
4 RabbitsAndFoxes [33] 770 6 33 9 C# program that simulates a predator-prey model
5 WaveletLibrary [34] 2406 12 84 15 C# library for wavelet algorithms
6 IceChat [34] 571000 101 271 24 C# program that implements an IRC (Internet Relay Chat)

Client
7 CSPspEmu [35] 406808 443 1433 26 C# program for a PSP (PlayStation Portable) emulator

Table 2: MUTATION OPERATORS AND THE NUMBER OF FAULTS
SEEDED

ID Num.of Mutation operators (number)faults
1 4 AOR(1), LOR(2), ROR(1)
2 4 AOR(1), LOR(1), ROR(1), ACR(1)
3 4 AOR(1), LOR(1), ROR(1), SCR(1)

4 9 AOR(1), LOR(1), SVR(1), NMI(1),
AOC(1), AMeC(1), AMoC(1), HVD(1), PRM(1)

LOR(1), SVR(1),CSR(2), SCR(1), ACR(2),
5 15 NMI(1), AOC(1), AMeC(1), AMoC(2), HVD(2),

PRM(1)
AOR(2), LOR(1), ROR(1), SVR(2),CSR(2),

6 24 SCR(1), ACR(2), NMI(2), AOC(3), AMeC(2),
AMoC(2), HVD(2), PRM(2)

AOR(2), LOR(1), ROR(1),SVR(2),CSR(1),
7 26 SCR(1), ACR(2), NMI(2), AOC(3), AMeC(3),

AMoC(3), HVD(3), PRM(2)

invocation sequence),and Method Coverage (a method cover-1

age TCP technique).2

In order to properly assess the statistical significance of the3

differences between our methods and other methods, we con-4

ducted the effective statistical analysis based on the p-values5

and effect size (set at a 5% level of significance) using the un-6

paired two-tailed Wilcoxon-Mann-Whitney test and the non-7

parametric Vargha and Delaney effect size measure [38–40].8

The p-value is used to show the statistical significance of d-9

ifference. If the p-value (probability value) is less than 0.05,10

which means that there is significant difference between the t-11

wo compared methods, otherwise not [38]. Additionally, we12

used the non-parametric effect size (ES) measure to show the13

probability that one method is better than another [39]. That is,14

when we get the ES for any two methods A and B, a higher ES15

value indicates higher probability showing A is better than B.16

In this study, we used R language [41] to obtain the p-value and17

ES value for the pair-wise TCP techniques.18

5.3. Experimental parameters19

For both the K-means and the K-medoids clustering algo-20

rithms, K is the main input parameter. If the value of K is not21

suitable, low quality clusters may be generated: if test cases are22

clustered into too many clusters, then some similar test cases23

may be put into different clusters; if they are clustered into too24

few, then dissimilar test cases may be put into the same clus-25

ter. Both of these situations may lead to poor failure detection26

performance.27

In this study, in order to find its most suitable value, K was28

set to 2%, 5%, 10%, 15%, 20%, 25%, and 30% of the total29

number of test cases (5000 test cases). Based on the overall30

experimental results, appropriate values of K for each subject31

program were determined, as shown in Table 3.32

Table 3: THE VALUE OF K FOR EACH SUBJECT PROGRAMS
Percentage of the

ID Name K total number of test
cases

1 CCoinBox 500 10%
2 WindShieldWiper 500 10%
3 SATM 500 10%
4 RabbitsAndFoxes 750 15%
5 WaveletLibrary 750 15%
6 IceChat 750 15%
7 CSPspEmu 750 15%

In addition, in all experiments (Fm, E and APFD),testcase-33

pool in Algorithms 1 to 3 simulated the input domain, and T-34

Num in Algorithms 1 to 3 was the total number of test cases35

(5000). The value of n in Algorithm 4 was set to 100, 500,36

1000, 1500, 2000, 2500, 3000, 3500, 4000 and 5000.37

5.4. Experiments38

To evaluate the effectiveness of our approaches, we attempt-39

ed to answer the following three research questions:40

RQ1: Do cluster TCP techniques perform better than prior-41

itization with random sequences or method coverage, in terms42

of Fm?43

RQ2: Do cluster TCP techniques perform better than prior-44

itization with random sequences or method coverage, in terms45

of E?46

RQ3: Do cluster TCP techniques perform better than prior-47

itization with random sequences or method coverage, in terms48

of APFD?49

5.4.1. Results and discussion50

1)Do MOClustering means, MOClustering medoids and DM-51

Clustering perform better than prioritization with random se-52

quences and Method Coverage, in terms of Fm ?53

Table 4 summarizes the Fm results for the five different54

methods. All results in the table were averaged over 100 runs of55

tests for each subject program, each time with a different seed.56

9

Table 4: FM OF VARIOUS TCP METHODS

ID
Fm

MOClustering
means

MOClustering
medoids

DMClus
tering

Method
Coverage RT-ms

1 53.94 70.37 72.15 71.92 74.87
2 63.88 58.54 58.85 68.84 75.54
3 49.93 46.67 47.17 49.05 52.90
4 21.88 27.08 22.91 24.02 28.45
5 6.96 8.58 6.75 8.44 8.66
6 37.58 36.54 33.14 40.19 55.00
7 85.14 77.14 71.98 83.53 89.67

mean 45.62 46.42 44.71 49.43 55.01
sDev 48.30 51.47 49.82 41.29 58.20

Table 4 shows that, for the CCoinBox program, MOCluster-1

ing means used the least number of test cases to detect the first2

failure, followed by MOClustering medoids, Method Coverage,3

DMClustering and RT-ms. For programs WindShieldWiper,4

MOClustering medoids found the first fault with the least num-5

ber of test cases, followed by DMClustering, MOClustering me-6

ans, Method Coverage and RT-ms. For programs SATM, MO-7

Clustering medoids found the first fault with the least number8

of test cases, followed by DMClustering, Method Coverage,9

MOClustering means and RT-ms. For the RabbitsAndFoxes10

program, the number of test cases used by MOClustering means11

and DMClustering to detect the first failure was similar, and less12

than that for Method Coverage, MOClustering medoids and RT-13

ms. For the WaveletLibrary, IceChat, and CSPspEmu program-14

s, DMClustering used the least number of test cases to find15

the first failure, and RT-ms used the most. For the program-16

s IceChat and CSPspEmu, MOClustering medoids performed17

better than MOClustering means and RT-ms, but for the pro-18

gram WaveletLibrary, MOClustering means performed better19

than Method Coverage, MOClustering medoids and RT-ms. Th-20

erefore, in terms of the Fm, on average, DMClustering per-21

formed best, especially for the large-scale programs, followed22

by MOClustering means, MOClustering medoids, Method Cov-23

erage and RT-ms. Compared with RT-ms, DMClustering achie-24

ved an average of 18.72% improvement; MOClustering means25

achieved an average of 17.07%; and MOClustering medoids26

achieved an average of 15.62% improvement. Compared with27

Method Coverage, DMClustering achieved an average of 9.55%28

improvement; MOClustering means achieved an average of 7.71%;29

and MOClustering medoids achieved an average of 6.09% im-30

provement. Hence, the proposed cluster TCP techniques always31

performed better than prioritization with random sequences and32

method coverage prioritization, in terms of Fm.33

In order to further analyze the Fm of each testing method for34

each subject program, Tables 4 and 5 also summarize the main35

statistical measures including sDev (standard deviation) for the36

7 subject programs. The standard deviation for RT-ms is the37

biggest (58.20), which indicates that its data points are spread38

out over a wider range than other TCP techniques.39

Figure 4 to 10 are box-plots diagrams showing the Fm re-40

sults for the seven subject programs, with the data in each box-41

plot being the Fm results over 100 runs for each subject program42

with different seeds.43

MOClustering_means MOClustering_medoids DMClustering Method_Coverage RT−ms

0

50

100

150

200

250

300

350

Approaches

F
m

Figure 4: Fm experimental results for CcoinBox

MOClustering_means MOClustering_medoids DMClustering Method_Coverage RT−ms

0

50

100

150

200

250

300

350

400

Approaches

F
m

Figure 5: Fm experimental results for WindShieldWiper

MOClustering_means MOClustering_medoids DMClustering Method_Coverage RT−ms

0

50

100

150

200

250

Approaches

F
m

Figure 6: Fm experimental results for SATM

MOClustering_means MOClustering_medoids DMClustering Method_Coverage RT−ms

0

20

40

60

80

100

120

140

160

180

Approaches

F
m

Figure 7: Fm experimental results for RabbitsAndFoxes

10

Table 5: STATISTICAL RESULT OF FM FOR 7 SUBJECT PROGRAMS

ID MOClustering MOClustering DMClustering Method RT-msmeans medoids Coverage

1 mean 53.94 70.37 72.15 71.92 74.87
sDev 48.93 64.43 64.39 53.93 70.01

2 mean 63.88 58.54 58.85 68.84 75.54
sDev 61.27 66.24 57.75 48.59 71.40

3 mean 49.93 46.67 47.17 49.05 52.90
sDev 43.13 38.56 40.43 36.79 51.90

4 mean 21.88 27.08 22.91 24.02 28.45
sDev 17.37 24.50 20.80 16.42 29.32

5 mean 6.96 8.58 6.75 8.44 8.66
sDev 6.22 6.88 5.39 5.50 7.67

6 mean 37.58 36.54 33.14 40.19 55.00
sDev 34.09 35.88 34.57 34.13 39.36

7 mean 85.14 77.14 71.98 83.53 89.67
sDev 53.06 56.03 54.40 60.42 61.91

Table 6: COMPARISON BETWEEN VARIOUS PAIRS OF METHODS USING P-VALUE AND EFFECTIVE SIZE METHODS ON FM

Pair MOClustering MOClusterig MOClustering MOClustering DMClustering MOClustering MOClustering MOClustering

of means and medoids and DMClusterig means and medoids and and Method means and medoids and means and

methods RT-ms RT-ms and RT-ms Method Method Coverage DMClustering DMClustering MOClustering
Coverage Coverage medoids

P-value 0.007193 0.006183 0.000192 0.000943 0.000692 1.64E-05 0.261891 0.360047 0.844637

ES 0.5434847 0.5422582 0.557556 0.551042 0.5523612 0.566514 0.4826837 0.485873 0.503026

Better MOClustering MOClustering DMClustering MOClustering MOClustering DMClustering DMClustering DMClustering MOClustering
Method means medoids means medoids means

MOClustering_means MOClustering_medoids DMClustering Method_Coverage RT−ms

0

5

10

15

20

25

30

35

40

Approaches

F
m

Figure 8: Fm experimental results for WaveletLibrary

MOClustering_means MOClustering_medoids DMClustering Method_Coverage RT−ms

0

50

100

150

200

Approaches

F
m

Figure 9: Fm experimental results for IceChat

MOClustering_means MOClustering_medoids DMClustering Method_Coverage RT−ms

0

50

100

150

200

250

300

Approaches

F
m

Figure 10: Fm experimental results for CSPspEmu

As can be observed from Figure 4, both the outlying and the1

maximum observed values of MOClustering means are far s-2

maller than corresponding values of RT-ms. Figure 5 shows that3

the performances of the five methods are similar, but the medi-4

ans of MOClustering means, MOClustering medoids and DM-5

Clustering are much smaller than the medians of Method Coverage6

and RT-ms. This implies that in most cases, Method Coverage7

and RT-ms required more test cases to find the first fault. As8

shown by Figure 6, three cluster TCP techniques outperform9

other methods with smaller medians. As observed from Fig-10

ure 7, the performances of MOClustering medoids, MOClus-11

tering means, DMClustering, and Method Coverage are simi-12

lar, while they outperform RT-ms with larger outlying point val-13

ues and maximum values. As seen from Figures 8 and 10, DM-14

Clustering has the shorter IQR (interquartile range) and smaller15

medians than Method Coverage and RT-ms, which means that16

its performance is more stable than that of these two methods17

11

for the two larger programs. Figure 9 shows that all three cluster1

TCP techniques have smaller medians than Method Coverage2

and RT-ms, which implies that their performances are better3

than those of these two methods for the program on average.4

From Figures 4 to 10, we can find that the cluster TCP tech-5

niques have shorter IQRs and smaller medians than the other6

methods. Hence, they have more stable performance, especial-7

ly for the larger programs.8

In order to further study the significance of the differences9

in Fm, we report in Table 6 the p-value and effective size (ES)10

[38] for pairwise comparisons between the representative tech-11

niques from two different groups, from which we can find that12

the difference of Fm between our methods and RT-ms is signif-13

icant (because the p-value is less than 0.05), and the difference14

in Fm between DMClustering and Method Coverage is also sig-15

nificant. But the difference among our methods is not signifi-16

cant (because the p-value is larger than 0.05). Through a further17

analysis on the ES values for different pairwise comparison-18

s, we can find that these values between our methods and other19

methods including RT-ms and Method Coverage are larger than20

0.5, which indicates that our methods perform better than RT-21

ms and Method Coverage. Column “Better Method” of Table22

6 presents the better method of the relevant pair. In three clus-23

ter TCP techniques, DMClustering performs best, followed by24

MOClustering means and MOClustering medoids on average.25

We also analyzed the time taken to detect the first failure26

(Fm-time) for the different methods for the seven subject pro-27

grams. Table 7 shows the Fm-time results for the five different28

methods. RT-ms required the least amount of time to detect29

the first failure. The testing time depends on the specific pro-30

gram under test, and the testing time generally includes both31

test case generation and execution time, which is usually the32

main cost in real testing activities. The testing times for MO-33

Clustering means, MOClustering medoids and DMClustering34

were not more than twice that of RT-ms on average.35

Table 7: FM-TIME OF VARIOUS TCP METHODS

ID
Fm-time (Seconds)

MOClustering
means

MOClustering
medoids

DMClus
tering

Method
Coverage RT-ms

1 0.71 0.86 1.13 0.67 0.64
2 1.15 1.37 1.85 1.05 0.96
3 0.79 0.83 1.17 0.71 0.68
4 0.83 0.92 1.22 0.73 0.67
5 0.74 0.82 1.06 0.69 0.62
6 1.28 1.64 2.13 1.14 0.97
7 1.84 2.36 3.04 1.46 1.35

Mean 1.05 1.31 1.66 0.92 0.84

RT-ms performs better than MOClustering means, MOClus-36

tering medoids, DMClustering and Method Coverage in terms37

of Fm-time, but it has low effectiveness in terms of Fm. DM-38

Clustering outperforms RT-ms in terms of Fm. Due to the com-39

plex structure of OOS test inputs in the subject programs under40

test, OMISS requires more time to calculate the distance be-41

tween test inputs. Hence, DMClustering improves the fault de-42

tection effectiveness, but at the expense of more time for com-43

puting the OMISS metric.44

On the other hand, MOClustering (especially MOCluster-45

ing means) outperforms RT-ms in terms of Fm, and outper-46

forms DMClustering in terms of Fm-time. Since the distance47

between test inputs in MOClustering is calculated using the48

Euclidean distance which is much simpler than OMISS metric49

used in DMClustring, the Fm-time of MOClustering was less50

than that of DMClustering on average. Therefore, according to51

the different testing requirements, we have a trade-off for em-52

ploying different methods. In other words, when we know the53

approximate execution time for specific subject programs, we54

may be able to determine which method should be used based55

on Fm performance. For example, if the test case execution56

time is less than or equal to the test case generation time, then57

we may consider the influence of the generation time; but, if the58

generation time is much less than the execution time, then we59

may ignore its impact.60

2) Do MOClustering means, MOClustering medoids and61

DMClustering perform better than prioritization with random62

sequences and Method Coverage, in terms of E?63

Table 8 shows the total number of distinct faults detected64

for seven subject programs using ten different test suite sizes –65

100, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000 and 5000.66

All results were again obtained over 100 runs, with different67

seeds for each run.68

Table 8: THE SUM OF FAULT DETECTED FOR ALL SEVEN SUBJECT
PROGRAMS WITH DIFFERENT NUMBERS OF TEST CASES

Number of
Test Cases

E
MOClustering

means
MOClustering

medoids
DMClus

tering
Method
Coverage RT-ms

100 16.10 16.10 17.01 15.82 13.79
500 38.92 37.80 39.20 38.50 36.12
1000 46.55 45.71 46.97 44.10 42.77
1500 50.47 49.70 50.89 48.58 46.55
2000 53.41 52.64 54.11 51.52 49.14
2500 55.86 54.74 56.42 52.92 51.52
3000 57.75 56.77 58.52 56.14 53.55
3500 59.29 58.38 59.78 57.40 55.30
4000 60.76 60.06 61.25 58.80 57.19
5000 62.97 62.91 63.33 62.83 62.56

Table 8 shows, as expected, that as the number of test cas-69

es used increases, the sum of distinct faults detected also in-70

creases. Furthermore, DMClustering has the best performance71

among the testing methods, followed by MOClustering means,72

MOClustering medoids, Method Coverage and RT-ms.73

Figure 11 shows the total number of distinct faults detect-74

ed by a number (n) of test inputs generated by each testing75

method, across all subject programs. We found that DMClus-76

tering outperformed all other methods, followed by MOClus-77

tering means, MOClustering medoids, Method Coverage and78

RT-ms, regardless of the value of n.79

In order to further analyze the difference between different80

methods for each program as the number of test cases increases,81

Figure 12 to 18 show the number of detected faults in ten stages82

– 100, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000 and83

5000. Since different test suites may detect different numbers84

of faults in the 100 runs, the results were averaged over 10085

runs, each time with a different seed and different test suites.86

Looking at Figure 12, 13, and 15, it appears that MOClus-87

tering means has the best performance; MOClustering medoids88

performs best in Figure 14; and in Figure 16 to 18, it is DM-89

12

Clustering that finds the most faults, regardless of the number of1

test cases used. This is because the distance metric used in DM-2

Clustering is more effective when applied to large-scale pro-3

grams, but MOClustering means and MOClustering medoids4

are more effective in relatively small-scale programs. In Fig-5

ure 14 and 16, we can observe that the lines of MOCluster-6

ing means, MOClustering medoid, DMClustering, Method C-7

overage and RT-ms are almost coincident when the number of8

test cases reaches 2000. The most appropriate explanation is9

that the rates of fault detection for SATM and WaveletLibrary10

are very high, and the faults are easily found. In Figure 17 and11

18, all methods display a trend of finding more faults as the12

number of test cases use increases. Through a further analy-13

sis, we can observe that some seeded faults in program IceChat14

and CSPspEmu are very difficult to be detected by random test15

cases, because they are associated with very lower failure rates.16

Thus, 5000 test suite is not large enough to detect all faults for17

these two programs, but large enough to detect all faults for the18

other programs.19

100 500 1000 1500 2000 2500 3000 3500 4000 5000
10

20

30

40

50

60

70

Number of test cases

N
um

be
r o

f f
au

lts
 fo

un
d

MOClustering_means
MOClustering_medoids
DMClustering
Method_Coverage
RT−ms

Figure 11: Relationship between average number of distinct faults found and
number of test cases used for all seven subject programs

100 500 1000 1500 2000 2500 3000 3500 4000 5000
1

1.5

2

2.5

3

3.5

4

Number of test cases

N
u

m
b

e
r

o
f
fa

u
lts

 f
o

u
n

d

MOClustering_means
MOClustering_medoids
DMClustering
Method_Coverage
RT−ms

Figure 12: Relationship between the average number of faults found and the
number of test cases used for CcoinBox

100 500 1000 1500 2000 2500 3000 3500 4000 5000
1

1.5

2

2.5

3

3.5

4

Number of test cases

N
um

be
r o

f f
au

lts
 fo

un
d

MOClustering_means
MOClustering_medoids
DMClustering
Method_Coverage
RT−ms

Figure 13: Relationship between the average number of faults found and the
number of test cases used for WindShieldWiper

100 500 1000 1500 2000 2500 3000 3500 4000 5000
1

1.5

2

2.5

3

3.5

4

Number of test cases

N
u

m
b

e
r

o
f
fa

u
lts

 f
o

u
n

d

MOClustering_means
MOClustering_medoids
DMClustering
Method_Coverage
RT−ms

Figure 14: Relationship between the average number of faults found and the
number of test cases used for SATM

100 500 1000 1500 2000 2500 3000 3500 4000 5000
2

3

4

5

6

7

8

9

Number of test cases

N
um

be
r

of
 fa

ul
ts

 fo
un

d

MOClustering_means
MOClustering_medoids
DMClustering
Method_Coverage
RT−ms

Figure 15: Relationship between the average number of faults found and the
number of test cases used for RabbitsAndFoxes

100 500 1000 1500 2000 2500 3000 3500 4000 5000
6

7

8

9

10

11

12

13

14

15

Number of test cases

N
um

be
r

of
 fa

ul
ts

 fo
un

d

MOClustering_means
MOClustering_medoids
DMClustering
Method_Coverage
RT−ms

Figure 16: Relationship between the average number of faults found and the
number of test cases used for WaveletLibrary

13

Table 9: COMPARISON BETWEEN VARIOUS PAIRS OF METHODS USING P-VALUE AND EFFECTIVE SIZE METHODS ON E WITH DIFFERENT
NUMBERS OF TEST CASES

Number DMClustering MOClustering MOClustering DMClustering MOClustering MOClustering
of and means and medoids and and Method means and Method medoids and Method

Test RT-ms RT-ms RT-ms Coverage Coverage Coverage
Cases P-value ES P-value ES P-value ES P-value ES P-value ES P-value ES
100 0.000017 0.642921 0.008701 0.574365 0.005234 0.566491 0.003482 0.531962 0.008672 0.523585 0.009823 0.523491
500 0.000236 0.623832 0.007124 0.553474 0.004352 0.537582 0.007573 0.542852 0.010583 0.524774 0.198732 0.512827
1000 0.000648 0.620743 0.009833 0.544585 0.006763 0.528643 0.006462 0.533946 0.008472 0.535668 0.007410 0.526918
1500 0.000092 0.615612 0.007721 0.555694 0.005542 0.539532 0.007573 0.524739 0.006384 0.526754 0.009321 0.527826
2000 0.000025 0.609758 0.005643 0.576783 0.003631 0.558443 0.005682 0.535648 0.005493 0.537863 0.008432 0.528935
2500 0.000138 0.607869 0.004532 0.567892 0.005742 0.549556 0.006894 0.536757 0.007502 0.528974 0.009543 0.520624
3000 0.000246 0.598750 0.008621 0.558763 0.006853 0.530447 0.008013 0.547868 0.009611 0.538083 0.004432 0.528530
3500 0.000571 0.579862 0.006732 0.559854 0.003962 0.551536 0.005124 0.538757 0.006520 0.529195 0.007541 0.539423
4000 0.000304 0.558751 0.003510 0.548743 0.004851 0.532425 0.006251 0.529847 0.008651 0.525206 0.008657 0.528934
5000 0.846479 0.509167 0.899845 0.508654 0.913564 0.501065 0.935468 0.500957 0.957851 0.500672 0.965874 0.500478

100 500 1000 1500 2000 2500 3000 3500 4000 5000
0

2

4

6

8

10

12

14

Number of test cases

N
um

be
r o

f f
au

lts
 fo

un
d

MOClustering_means
MOClustering_medoids
DMClustering
Method_Coverage
RT−ms

Figure 17: Relationship between the average number of faults found and the
number of test cases used for IceChat

100 500 1000 1500 2000 2500 3000 3500 4000 5000
0

5

10

15

Number of test cases

N
um

be
r o

f f
au

lts
 fo

un
d

MOClustering_means
MOClustering_medoids
DMClustering
Method_Coverage
RT−ms

Figure 18: Relationship between the average number of faults found and the
number of test cases used for CSPspEmu

From Table 8 and Figures 12 to 18, we have the follow-1

ing observations: the number of faults detected increases as n2

increases; based on the 5000 test inputs (TNum in Algorithms3

1 to 3), DMClustering outperforms other methods, followed by4

MOClustering means, MOClustering medoids, Method Coverage5

and RT-ms (regardless of the value of n).6

In order to further analyze the significance of the differ-7

ence in E with different test cases, we report in Table 9 the8

p-value and effective size (ES) for pairwise comparisons be-9

tween the representative techniques from two different groups.10

We find that the difference between our methods and RT-ms is11

significant (because the p-value is less than 0.05), and the d-12

ifference between our methods and Method Coverage is also13

significant, in most cases with different number of test cases.14

Through a further analysis of the ES values for different pair-15

wise comparisons, we found that the ES values between our16

methods and RT-ms and Method Coverage are larger than 0.5,17

which indicates that our methods perform better than RT-ms18

and Method Coverage. Amongst the three cluster TCP tech-19

niques, DMClustering performs best, followed by MOCluster-20

ing means and MOClustering medoids. In addition, when the21

number of test cases is 5000, all methods have similar results,22

which can be seen based on the values of p-value and ES. The23

reason for this is that 5000 test cases can find most of the faults24

in most of the subject programs.25

3) Do MOClustering means, MOClustering medoids and26

DMClustering perform better than prioritization with random27

sequences and Method Coverage, in terms of APFD?28

Table 10 shows the average APFD values of the seven sub-29

ject programs. All results were averaged over 100 runs, each30

time with a different seed.31

Table 10: APFD OF VARIOUS TCP METHODS

ID
APFD

MOClustering
means

MOClustering
medoids DMClustering Method

Coverage RT-ms

1 0.90 0.89 0.88 0.88 0.87
2 0.93 0.93 0.94 0.93 0.92
3 0.96 0.96 0.96 0.95 0.94
4 0.92 0.90 0.91 0.90 0.90
5 0.96 0.95 0.96 0.95 0.94
6 0.70 0.70 0.72 0.70 0.69
7 0.69 0.68 0.76 0.68 0.67

Mean 0.87 0.86 0.88 0.86 0.85
sDev 0.11 0.11 0.10 0.12 0.12

As Table 10 shows, for program CCoinBox, MOCluster-32

ing means performs best, followed by MOClustering medoids,33

DMClustering, Method Coverage and RT-ms. For program Rab-34

bitsAndFoxes, MOClustering means also performs best, and35

DMClustering outperforms MOClustering medoids, Method36

Coverage and RT-ms. For program SATM, the APFD values37

of three proposed methods are the same, and are much better38

than Method Coverage and RT-ms. In programs WindShield-39

Wiper, WaveletLibrary, IceChat and CSPspEmu, DMClustering40

performs best, followed by MOClustering means, MOCluster-41

ing medoids, Method Coverage and RT-ms in programs Wind-42

ShieldWiper and WaveletLibrary, and followed by Method Co-43

verage, MOClustering means, MOClustering medoids and RT-44

ms in programs IceChat and CSPspEmu. On average, DMClus-45

tering performs best, followed by MOClustering means, MO-46

Clustering medoids, Method Coverage and RT-ms.47

In order to further analyze the APFD of each testing method48

14

for each subject program, Table 11 summarizes the major s-1

tatistical measures including sDev (standard deviation) for the2

7 subject programs. The standard deviation for RT-ms is the3

biggest (0.12), which indicates that the data points are spread4

out over a wider range of values than other TCP techniques.5

Figure 19 to 25 show the APFD box-plots for the seven sub-6

ject programs. In the figures, the x-axis has the prioritization7

methods and the y-axis gives the APFD values for each method.8

MOClustering_means MOClustering_medoids DMClustering Method_Coverage RT−ms

0.7

0.75

0.8

0.85

0.9

0.95

1

Approaches

A
P

F
D

Figure 19: APFD values for CcoinBox

MOClustering_means MOClustering_medoids DMClustering Method_Coverage RT−ms

0.75

0.8

0.85

0.9

0.95

1

Approaches

A
P

F
D

Figure 20: APFD values for WindShieldWiper

MOClustering_means MOClustering_medoids DMClustering Method_Coverage RT−ms

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

Approaches

A
P

F
D

Figure 21: APFD values for SATM

MOClustering_means MOClustering_medoids DMClustering Method_Coverage RT−ms

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

Approaches

A
P

F
D

Figure 22: APFD values for RabbitsAndFoxes

MOClustering_means MOClustering_medoids DMClustering Method_Coverage RT−ms

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

Approaches

A
P

F
D

Figure 23: APFD values for WaveletLibrary

MOClustering_means MOClustering_medoids DMClustering Method_Coverage RT−ms

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Approaches

A
P

F
D

Figure 24: APFD values for IceChat

MOClustering_means MOClustering_medoids DMClustering Method_Coverage RT−ms

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Approaches

A
P

F
D

Figure 25: APFD values for CSPspEmu

15

Table 11: STATISTICAL RESULT OF APFD FOR 7 SUBJECT PROGRAMS

ID MOClustering MOClustering DMClustering Method RT-msmeans medoids Coverage

1 mean 0.90 0.89 0.88 0.88 0.87
sDev 0.06 0.05 0.06 0.04 0.07

2 mean 0.93 0.93 0.94 0.93 0.92
sDev 0.03 0.03 0.02 0.03 0.03

3 mean 0.96 0.96 0.96 0.95 0.94
sDev 0.02 0.02 0.02 0.03 0.02

4 mean 0.92 0.90 0.91 0.90 0.90
sDev 0.03 0.02 0.03 0.05 0.03

5 mean 0.96 0.95 0.96 0.95 0.94
sDev 0.01 0.02 0.01 0.03 0.02

6 mean 0.70 0.70 0.72 0.70 0.69
sDev 0.05 0.05 0.07 0.11 0.09

7 mean 0.69 0.68 0.76 0.68 0.67
sDev 0.06 0.03 0.05 0.07 0.07

Table 12: COMPARISON BETWEEN VARIOUS PAIRS OF METHODS USING P-VALUE AND EFFECTIVE SIZE METHODS ON APFD
Pair MOClustering MOClusterig MOClustering MOClustering DMClustering MOClustering MOClustering MOClustering

of means and medoids and DMClusterig means and medoids and and Method means and medoids and means and

methods RT-ms RT-ms and RT-ms Method Method Coverage DMClustering DMClustering MOClustering
Coverage Coverage medoids

P-value 8.58E-08 0.002017 2.59E-09 0.003581 0.004118 0.001594 0.202008 0.197287 0.604694

ES 0.582653 0.547663 0.591930 0.544963 0.535095 0.548731 0.480305 0.480291 0.503989

Better MOClustering MOClustering DMClustering MOClustering MOClustering DMClustering DMClustering DMClustering MOClustering
Method means medoids means medoids means

In Figures 19, 20 and 21, the upper quartile and median val-1

ues of three cluster TCP techniques are all higher than those of2

Method Coverage and RT-ms, implying a better performance,3

with respect to APFD values. In Figure 22, the lower quartile,4

median and upper quartile values for MOClustering means are5

all higher than those of the other methods. In Figures 23, 24,6

and 25, the lower quartile and median values for DMClustering7

are all higher than those of the other methods.8

In order to further analyze the significance of the difference9

in APFD, we report in Table 12 the p-value and effective size10

(ES) for pairwise comparisons between the representative tech-11

niques from two different groups. We find that the difference12

between our approaches and RT-ms and Method Coverage is13

significant (because the p-value is less than 0.05). But the dif-14

ference among our proposed clustering methods is not signifi-15

cant (because the p-value is larger than 0.05). Through a further16

analysis on the ES values for different pairwise comparisons,17

we can find that these values between our methods and RT-ms18

and Method Coverage are larger than 0.5, which indicates that19

our methods perform better than RT-ms and Method Coverage.20

Column “Result” of Table 12 gives the better method of the rel-21

evant pair. Amongst three cluster TCP techniques, DMCluster-22

ing performs best, followed by MOClustering means and MO-23

Clustering medoids on average.24

In summary, based on Table 4 to 12, and Figure 4 to 25, we25

have the following observations: (1) DMClustering performs26

better than other methods for larger programs (WaveletLibrary,27

IceChat and CSPspEmu); (2) MOClustering means and MO-28

Clustering medoids have good performance with smaller pro-29

grams, and MOClustering means is relatively more effective30

than MOClustering medoids in terms of Fm, E and APFD; (3)31

generally speaking, DMClustering performs best in terms of32

Fm, E and APFD on average; (4) the three cluster TCP tech-33

niques (DMClustering, MOClustering means and MOCluster-34

ing medoids) outperform Method Coverage (method coverage35

prioritization) in terms of Fm, E and APFD; and (5) the four36

TCP techniques (DMClustering, MOClustering means, MO-37

Clustering medoids and Method Coverage) perform better than38

RT-ms (prioritization with random sequences) in terms of Fm,39

E and APFD. All the above outperformance is statistically sig-40

nificant.41

5.4.2. Threats to validity42

Although we believe that the experiment was well-designed43

and implemented, the study may still face some threats to it-44

s validity, as explained in the following. In the clustering al-45

gorithms, the number of clusters K is generally required to be46

known in advance. Obviously, the value of K has a significant47

influence on the clustering quality. Hence, if K is not correctly48

chosen, then the clustering analysis algorithm may produce low49

quality results. In this study, the value for K was determined50

experimentally, but in some other studies, it was determined51

according to the gap statistic algorithm [42] and the distribu-52

tion characteristics of the test cases. In addition, the subject53

programs were downloaded from some open source websites,54

but these subject programs may not be associated with any test55

cases. Although we tried our best to find some OO programs56

(in C# or C++), with real test cases for OO integration test-57

ing in some famous software repositories such as the Software58

Infrastructure Repository (SIR) [43], unfortunately, we did not59

find suitable ones. Hence, we developed a tool which randomly60

generates test cases for these subject programs. In the absence61

of real test suites, we believe that random test suites are fair and62

16

reasonable solutions.1

In this study, the mutants in the seven subject program-2

s were generated by hand, due to a lack of good automatic3

mutation tools for both C++ and C# programs. However, the4

location and type of seeded faults were selected using a ran-5

dom number generator, thus making the process semirandom6

and semiautomatic. Additionally, in order to reduce the threats,7

we manually filter as many subsumed mutants [44] as possible.8

6. Related Work9

Chen et al. [17] first suggested how to use ART in test case10

prioritization, calling such an approach an adaptive random se-11

quence (ARS), and explaining how it could be a cost-effective12

alternative to random sequences. Rothermel et al. [27] pro-13

posed several code coverage based TCP approaches, includ-14

ing total statement coverage prioritization, additional statemen-15

t coverage prioritization, total branch coverage prioritization,16

and total fault-exposing potential prioritization. Their experi-17

mental results show that these methods can improve the fault18

detection rates of test suites.19

Cluster analysis has drawn a lot of attention in the TCP20

community. Dickinson et al. [45] proposed a clustering based21

test case filtering technique that improves on the efficiency of22

random sampling by using an agglomerative hierarchical clus-23

tering algorithm, which is a bottom-up approach, where each24

test case is used as a cluster, and the clusters with minimal25

dissimilarity are merged into larger clusters until a predefined26

number of clusters remain. They studied several dissimilarity27

metrics, including binary metric, proportional metric, SD (stan-28

dard deviation) metric, histogram metric, linear regression met-29

ric, count-binary metric, and proportional-binary metric. The30

inputs to the cluster analysis are function call profiles. In the31

profile, each pair of methods is represented as an entry showing32

the frequency of the executed methods. Although this approach33

can reflect the dynamic behavior of test cases, only the meth-34

ods’ execution time (including whether or not the method is35

executed) is used.36

Yoo et al. [46] proposed a cluster-based TCP technique that37

significantly reduces the required number of pair-wise compar-38

isons. Their clustering method partitions test cases into dif-39

ferent subsets based on their dynamic runtime behavior, with40

test cases in each group having common properties. The clus-41

tering approach uses binary strings to represent test inputs and42

whether or not a statement is executed: If the source code s-43

tatement has been executed, the digit of the corresponding bit44

in the binary string is set to 1; otherwise, it is set to 0. Zhang et45

al. [15] proposed online and offline ARS-based TCP techniques46

using black-box information based on the string distances of the47

input data, without referring to the execution history and code48

coverage information. The offline TCP algorithm selects new49

test cases farthest from all prioritized ones; and the online algo-50

rithm uses feedback information such that the next prioritized51

test case depends on the existing execution results.52

7. Conclusion And Future Work53

Software testing is an important aspect of examining the54

quality and reliability of object-oriented software (OOS). Be-55

cause OOS test cases may be very complex, traditional software56

testing approaches may not be appropriate for testing OOS. Al-57

though studies have been carried out to enhance OOS testing,58

OOS test case prioritization (TCP) has not yet been fully ex-59

plored. TCP can increase fault detection rates by optimizing60

test case execution sequences such that more important test cas-61

es are executed earlier - based on some criteria. Cluster analysis62

has recently been applied to improving TCP effectiveness.63

In this paper, in order to improve the effectiveness of TCP64

for OOS, we have proposed an ARS approach based on cluster-65

ing techniques. We used three clustering methods to define our66

ARS methods: MOClustering means, MOClustering medoids67

and DMClustering. In MOClustering means and MOCluster-68

ing medoids, test cases are clustered according to the number69

of objects and methods, using K-means and K-medoids clus-70

tering algorithms. In these two methods, the Object Method71

Vector is constructed to calculate the distance between test cas-72

es using the Euclidean distance formula. In DMClustering, test73

cases are clustered based on an object and method invocation74

sequence similarity (OMISS) metric with the K-medoids clus-75

tering algorithm. Furthermore, a sampling strategy MSampling76

is used to construct the ARSs. The final prioritized test case77

sequence is generated from the K clusters. The experimen-78

tal results show that the three proposed cluster methods out-79

perform Method Coverage and RT-ms in terms of Fm, E and80

APFD; and DMClustering performs best overall, and is there-81

fore a good choice for test case prioritization, especially for82

large scale OOS testing. Furthermore, all the better perfor-83

mances are statistically significant.84

Based on the observations from our experimentations, we85

recommend that for large programs, it is better to set K to around86

15% of the total number of test cases, and for small programs,87

it is better to set it to around 10%.88

In future, we will conduct further investigations into OOS89

test case features, and add other important information to the90

Object Method Vector and OMISS metric to enhance the prob-91

ability of the selected test cases for OOS to be more evenly92

spread across the input domain. We also will improve the sam-93

pling strategy to better optimize the TCP test cases.94

Acknowledgement95

This work is partly supported by National Natural Science Foun-96

dation of China (NSFC grant numbers: 61202110 and 61502205),97

and the Postdoctoral Science Foundation of China (Grant num-98

bers: 2015M571687 and 2015M581739).99

References100

[1] R. V. Binder, “Testing object-oriented software: a survey,” Software Test-101

ing Verification and Reliability, vol. 6, no. 3, pp. 125–252, 1996.102

[2] M. Pezze and M. Young, “Testing object-oriented software,” in 26th103

International Conference on Software Engineering Proceedings (ICSE104

2004),United Kingdom, pp. 739–740, IEEE, 2004.105

17

[3] H. Y. Chen, T. H. Tse, F. T. Chan, and T. Y. Chen, “In black and white:1

an integrated approach to class-level testing of object-oriented program-2

s,” Acm Transactions on Software Engineering and Methodology, vol. 7,3

no. 3, pp. 250–295, 1998.4

[4] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen, W. Grieskamp,5

M. Harman, M. J. Harrold, P. Mcminn, and A. Bertolino, “An orchestrated6

survey of methodologies for automated software test case generation,”7

Journal of Systems and Software, vol. 86, no. 8, pp. 1978–2001, 2013.8

[5] N. E. Holt, L. C. Briand, and R. Torkar, “Empirical evaluations on the9

cost-effectiveness of state-based testing: An industrial case study,” Infor-10

mation and Software Technology, vol. 56, no. 8, pp. 890–910, 2014.11

[6] S. U. Hui, Y. Zhang, H. Yao, and R. Fei, “Object-oriented software12

cluster-level testing based on uml sequence diagram,” Computer Engi-13

neering, vol. 31, no. 24, pp. 78–80, 2005.14

[7] R. Hamlet, “Random testing,” Encyclopedia of Software Engineering,15

John Wiley and Sons, 2002.16

[8] T. Y. Chen, K. Fei-Ching, T. Dave, and Z. Z. Quan, “A revisit of three17

studies related to random testing,” Science China Information Sciences,18

vol. 58, no. 5, pp. 1–9, 2015.19

[9] C. Nie, H. Wu, X. Niu, F. C. Kuo, H. Leung, and C. J. Colbourn, “Com-20

binatorial testing, random testing, and adaptive random testing for detect-21

ing interaction triggered failures,” Information and Software Technology,22

vol. 62, pp. 198–213, 2015.23

[10] Y. Ledru, A. Petrenko, S. Boroday, and N. Mandran, “Prioritizing test24

cases with string distances,” Automated Software Engineering, vol. 19,25

no. 1, pp. 65–95, 2012.26

[11] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer, “Artoo:adaptive random test-27

ing for object-oriented software,” in ACM/IEEE 30th International Con-28

ference on Software Engineering (ICSE 2008), IEEE, New York, USA,29

pp. 71–80, 2008.30

[12] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test case prioriti-31

zation: A family of empirical studies,” IEEE Transactions on Software32

Engineering, vol. 28, no. 2, pp. 159–182, 2002.33

[13] X. Zhang, X. Xie, and T. Y. Chen, “Test case prioritization using adaptive34

random sequence with category-partition-based distance,” in IEEE Inter-35

national Conference on Software Quality, Reliability and Security (QRS36

2016), IEEE, Washington, USA, pp. 374–385, 2016.37

[14] Q. Luo, K. Moran, and D. Poshyvanyk, “A large-scale empirical compar-38

ison of static and dynamic test case prioritization techniques,” in ACM39

SIGSOFT Symposium on the Foundations of Software Engineering (FSE40

2016), ACM, Washington, USA, pp. 559–570, 2016.41

[15] X. Zhang, T. Y. Chen, and H. Liu, “An application of adaptive ran-42

dom sequence in test case prioritization,” in International Conference on43

Software Engineering and Knowledge Engineering (SEKE 2014), IEEE,44

Canada,, pp. 126–131, 2014.45

[16] T. Y. Chen, H. Leung, and I. K. Mak, “Adaptive random testing,” in Pro-46

ceedings of the 9th Asian Computing Science Conference (ASIAN 2004),47

Thailand, pp. 320–329, Springer LNCS, 2004.48

[17] T. Y. Chen, F. C. Kuo, R. G. Merkel, and T. H. Tse, “Adaptive random49

testing: The art of test case diversity,” Journal of Systems and Software,50

vol. 83, no. 1, pp. 60–66, 2010.51

[18] T. Y. Chen, F. C. Kuo, H. Liu, and W. E. Wong, “Code coverage of adap-52

tive random testing,” IEEE Transactions on Reliability, vol. 62, no. 1,53

pp. 226–237, 2013.54

[19] A. C. Barus, T. Y. Chen, F. C. Kuo, H. Liu, R. Merkel, and G. Rothermel,55

“A cost-effective random testing method for programs with non-numeric56

inputs,” IEEE Transactions on Computers, vol. 65, no. 12, pp. 3509–57

3523, 2016.58

[20] H. Liu, F. C. Kuo, D. Towey, and T. Y. Chen, “How effectively does59

metamorphic testing alleviate the oracle problem?,” IEEE Transactions60

on Software Engineering, vol. 40, no. 1, pp. 4–22, 2014.61

[21] J. Chen, L. Zhu, T. Y. Chen, R. Huang, D. Towey, F. C. Kuo, and62

Y. Guo, “An adaptive sequence approach for oos test case prioritization,”63

in IEEE International Symposium on Software Reliability Engineering64

Workshops(ISSRE-IWPD 2016), IEEE, Canada, pp. 205–212, 2016.65

[22] S. M. Aqilburney and H. Tariq, “K-means cluster analysis for image66

segmentation,” International Journal of Computer Applications, vol. 96,67

no. 4, pp. 1–8, 2014.68

[23] J. Chen, F. C. Kuo, T. Y. Chen, D. Towey, C. Su, and R. Huang, “A simi-69

larity metric for the inputs of oo programs and its application in adaptive70

random testing,” IEEE Transactions on Reliability, vol. PP, no. 99, pp. 1–71

30.72

[24] O. Legunsen, F. Hariri, A. Shi, Y. Lu, L. Zhang, and D. Marinov, “An73

extensive study of static regression test selection in modern software74

evolution,” in ACM Sigsoft International Symposium on Foundations of75

Software Engineering(FSE 2016), ACM, Washington, USA, pp. 583–594,76

2016.77

[25] A. Gonzalez-Sanchez, E. Piel, R. Abreu, H. G. Gross, and A. J. C.78

Van Gemund, “Prioritizing tests for software fault diagnosis,” Soft-79

warełpractice and Experience, vol. 41, no. 10, pp. 1105–1129, 2011.80

[26] S. R.Suganya and G.S.Devi, “Data mining: concepts and techniques,”81

Data Mining and Knowledge Engineering, pp. 929–948, 2010.82

[27] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Prioritizing test83

cases for regression testing,” IEEE Transactions on Software Engineer-84

ing, vol. 27, no. 10, pp. 929–948, 2002.85

[28] C. Henard, M. Papadakis, M. Harman, Y. Jia, and Y. L. Traon, “Compar-86

ing white-box and black-box test prioritization,” in International Confer-87

ence on Software Engineering, pp. 523–534, 2016.88

[29] “Microsoft visual studio.” https://www.visualstudio.com. 2013.89

[30] L. Kaufmann and P. J. Rousseeuw, “Clustering by means of medoids,”90

in Statistical Data Analysis Based on the L1-norm and Related Methods,91

North-Holland, pp. 405–416, 1987.92

[31] H. S. Park and C. H. Jun, “A simple and fast algorithm for k-medoids93

clustering,” Expert Systems with Applications, vol. 36, no. 2, pp. 3336–94

3341, 2009.95

[32] “Codeforge-free open source codes forge and sharing.” http://www.96

codeforge.com. 2013.97

[33] “Sourceforge-download, develop and publish free open source software.”98

http://sourceforge.net. 2013.99

[34] “Codeplex-open source project hosting.” http://www.codeplex.com.100

2013.101

[35] “Github, where software is built.” https://github.com. 2015.102

[36] Y. Jia and M. Harman, “An analysis and survey of the development of103

mutation testing,” IEEE Transactions on Software Engineering, vol. 37,104

no. 5, pp. 649–678, 2010.105

[37] T. Y. Chen and R. Merkel, “An upper bound on software testing effec-106

tiveness,” Acm Transactions on Software Engineering and Methodology,107

vol. 17, no. 3, pp. 1–27, 2008.108

[38] A. Arcuri and L. Briand, “A hitchhiker’s guide to statistical tests for as-109

sessing randomized algorithms in software engineering,” Software Testing110

Verification and Reliability, vol. 24, no. 3, pp. 219–250, 2014.111

[39] A. Vargha and H. D. Delaney, “A critique and improvement of the CL112

common language effect size statistics of mcgraw and wong,” Journal of113

Educational and Behavioral Statistics, vol. 25, no. 2, pp. 101–132, 2000.114

[40] M. Harman, P. McMinn, J. Souza, and S. Yoo, “Search based software115

engineering: techniques, taxonomy, tutorial,” in Empirical Software En-116

gineering and Verification, pp. 1–59, 2012.117

[41] R. D. C. Team, “Development core team, r: A language and environment118

for statistical computing,” 2009.119

[42] R. Tibshirani, G. Walther, and T. Hastie, “Estimating the number of clus-120

ters in a data set via the gap statistic,” Journal of the Royal Statistical121

Society, vol. 63, no. 2, pp. 411–423, 2001.122

[43] “Software-artifact infrastructure repository.” http://sir.unl.edu/123

portal/index.php. 2016.124

[44] M. Papadakis, C. Henard, M. Harman, Y. Jia, and Y. L. Traon, “Threats125

to the validity of mutation-based test assessment,” in International Sym-126

posium on Software Testing and Analysis, pp. 354–365, 2016.127

[45] W. Dickinson, D. Leon, and A. Fodgurski, “Finding failures by cluster128

analysis of execution profiles,” in 23rd IEEE International Conference on129

Software Engineering Proceedings (ICSE 2001), IEEE, Ontario, Canada,130

pp. 339–348, 2001.131

[46] S. Yoo, M. Harman, P. Tonella, and A. Susi, “Clustering test cases to132

achieve effective and scalable prioritisation incorporating expert knowl-133

edge,” in Eighteenth International Symposium on Software Testing and134

Analysis, ISSTA 2009, Chicago, Il, Usa, July, pp. 201–212, 2009.135

18

