
Fault Localisation for WS-BPEL Programs based on Predicate Switching and
Program Slicing

Chang-ai Suna,∗, Yufeng Rana, Caiyun Zhenga, Huai Liub, Dave Toweyc, Xiangyu Zhangd

aSchool of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China
bCollege of Engineering and Science, Victoria University, Melbourne 8001 VIC, Australia

cSchool of Computer Science, University of Nottingham Ningbo China, Zhejiang, 315100, China
dDepartment of Computer Science, Purdue University, West Lafayette, Indiana, USA

Abstract

Service-Oriented Architecture (SOA) enables the coordination of multiple loosely coupled services. This allows users
to choose any service provided by the SOA without knowing implementation details, thus making coding easier and
more flexible. Web services are basic units of SOA. However, the functionality of a single Web service is limited, and
usually cannot completely satisfy the actual demand. Hence, it is necessary to coordinate multiple independent Web
services to achieve complex business processes. Business Process Execution Language for Web Services (WS-BPEL)
makes the coordination possible, by helping the integration of multiple Web services and providing an interface for
users to invoke. When coordinating these services, however, illegal or faulty operations may be encountered, but
current tools are not yet powerful enough to support the localisation and removal of these problems. In this paper,
we propose a fault localisation technique for WS-BPEL programs based on predicate switching and program slicing,
allowing developers to more precisely locate the suspicious faulty code. Case studies were conducted to investigate
the effectiveness of the proposed technique, which was compared with predicate switching only, slicing only, and one
existing fault localisation technique, namely Tarantula. The experimental results show that the proposed technique
has a higher fault localisation effectiveness and precision than the baseline techniques.

Keywords: Fault localisation, Debugging, Business Process Execution Language for Web Services, Web Services

1. Introduction1

In recent years, Service-Oriented Architecture2

(SOA) [1] has been widely adopted to develop dis-3

tributed applications in various domains. Web services,4

as basic units in SOA, are often developed and owned5

by a third party, and are published and deployed in an6

open and dynamic environment. Since a single Web7

service normally provides limited functionalities, multi-8

ple Web services are coordinated to implement complex9

and flexible business processes. Business Process Exe-10

cution Language for Web Services (WS-BPEL) [2] is11

a widely recognised language for service compositions.12

In the context of WS-BPEL, all communications among13

Web services are via standard eXtensible Markup Lan-14

guage (XML) messages [3]. Compared with traditional15

programs written in C or Java, WS-BPEL programs16

∗Corresponding author
Email address: casun@ustb.edu.cn (Chang-ai Sun)

have many new features. For instance, a WS-BPEL17

program is represented as an XML file, and dynamic18

behaviours of the program are embedded into structural19

XML elements; Web services composed by WS-BPEL20

programs may be implemented in hybrid programming21

languages; and WS-BPEL supports concurrency and22

synchronisation that is not common in the traditional23

programs.24

The above unique features make the debugging of25

WS-BPEL programs significantly different from that26

of traditional programs. Unfortunately, very little re-27

search in this direction has been reported. In our pre-28

vious work [4], we presented a block-based fault lo-29

calisation framework for WS-BPEL programs, and syn-30

thesised the three well-known spectrum-based fault lo-31

calisation techniques: Tarantula [5], Set-Union [6], and32

Code Coverage [7, 8]. We also conducted an empir-33

ical study to evaluate the effectiveness of the synthe-34

sized WS-BPEL-specific fault localisation techniques.35

The result showed that the Tarantula technique was the36

Preprint submitted to Journal of Systems and Software September 26, 2017

most effective technique, demonstrated by the highest37

accuracy in localising the blocks that contain the faulty38

statement. However, these techniques could only report39

those suspicious faulty blocks without a deeper analysis40

inside the suspicious block.41

There also exist some development platforms for42

WS-BPEL, such as ActiveBPEL Designer [9] and43

Eclipse BPEL Designer [10]. Unfortunately, these plat-44

forms usually only provide support for WS-BPEL syn-45

tax checking, while the assistance with logical errors46

that most developers expect is missing. If such assis-47

tance were available, perhaps as a plug-in to the plat-48

form, the debugging efficiency might be substantially49

improved.50

In this work, we attempt to develop a technique51

to further improve the effectiveness and efficiency of52

fault localisation for WS-BPEL programs. In particu-53

lar, we propose a new fault localisation technique for54

WS-BPEL programs, based on two popularly used tech-55

niques, namely predicate switching [11] and program56

slicing [12]. The proposed technique first employs pred-57

icate switching to narrow the range of blocks to be58

checked for the fault localisation, and then makes use59

of slicing to go more deeply into the block for a more60

precise analysis of the fault. In particular, we focus61

on the following unique challenges in applying predi-62

cate switching and program slicing into WS-BPEL pro-63

grams.64

• Predicate switching for WS-BPEL programs: For65

C, C++, or Java programs, predicate switching66

is normally implemented through instrumentation.67

However, WS-BPEL programs are basically the68

workflow specifications based on XML, and their69

executions normally rely on a specific interpreter.70

For instance, Apache ODE [13] is a popular WS-71

BPEL engine that compiles all standard BPEL el-72

ements: the compiled VxBPEL is represented as73

an object model containing all necessary resources74

for execution. A runtime component is responsi-75

ble for the execution of compiled processes. Such76

an execution mode means that dynamic changes to77

WS-BPEL programs are not allowed. In contrast,78

the original implementation of predicate switch-79

ing for C programs is based on Valgrind 1. Val-80

grind supports dynamic instrumentation by calling81

the instrumentation functions. These functions, in82

turn, instrument the provided basic block and re-83

turn the new basic block to the Valgrind kernel (re-84

fer to [11] for more details). Clearly, because no85

1Valgrind is a well-known memory debugger and profiler for x86-
kubyx binaries. For more details, please refer to: http://valgrind.org/

interfaces are reserved for calling instrumentation86

functions, it is not possible to implement dynamic87

instrumentation in Apache ODE. Furthermore, in88

this context, instrumentation is not a suitable so-89

lution for WS-BPEL programs. In order to im-90

plement an instrumentation function in WS-BPEL91

programs, it would be necessary to make signifi-92

cant modifications to the original WS-BPEL pro-93

grams. Such modifications would definitely affect94

the whole program, including the partner link, vari-95

able, and interaction sections. Furthermore, these96

modifications would change the semantics of the97

original program, which violates the fundamen-98

tal principle of instrumentation technique. On the99

contrary, the original instrumentation for predicate100

switching in C programs (again refer to [11]) does101

not face this challenge, because it implements the102

instrumentation functions in binaries, and the mod-103

ifications to the original program include only in-104

troducing a new basic block. Finally, collecting105

the execution traces of instrumentation for WS-106

BPEL programs is also challenging. It is easy to107

collect execution traces in the context of C pro-108

grams, which can be done by writing data into a109

file or memory. In contrast, WS-BPEL programs110

normally return a response message through a spe-111

cific activity (i.e. reply), and there is no channel112

for throwing trace data.113

• Dynamic program slicing for WS-BPEL programs:114

Variables in WS-BPEL programs can be either115

an atomic data type or a complex composite type116

whose definitions are normally distributed in var-117

ious namespaces represented in XML files. Thus,118

dynamic slicing of WS-BPEL programs must be119

able to deal with recursive parsing and querying120

of composite variables. Furthermore, it is neces-121

sary to analyse the interpreter’s logs in order to122

obtain the execution traces of the WS-BPEL pro-123

gram. These issues all pose challenges for the dy-124

namic slicing of WS-BPEL programs.125

Based on some new concepts, the above challenges are126

effectively addressed in our proposed technique.127

In order to evaluate the performance of the proposed128

technique, we conducted a comprehensive empirical129

study where three WS-BPEL programs were used as130

object programs, and a total of 166 mutated versions131

were used to simulate various faults. The effectiveness132

and precision of the new technique were compared with133

the Tarantula technique, which had shown the best per-134

formance in fault localisation for WS-BPEL programs135

in our previous work [4]. Experimental results showed136

2

that the proposed technique demonstrates better effec-137

tiveness and higher precision than the previous tech-138

nique.139

The rest of this paper is organised as follows. Sec-140

tion 2 introduces underlying concepts of WS-BPEL, and141

some related fault localisation techniques. Section 3142

describes the main idea of our new fault localisation143

technique. Details on how to apply the technique to144

WS-BPEL programs are also discussed. Section 4 de-145

scribes an empirical study that was conducted to eval-146

uate the proposed fault localisation technique. Section147

5 presents the results of the empirical study, and offers148

an analysis. Section 6 discusses some important work149

related to our study. Finally, Section 7 concludes the150

paper, and discusses the future work.151

2. Background152

2.1. WS-BPEL153

The Business Process Execution Language for Web154

Service (WS-BPEL) is a widely used language for com-155

posing Web services [2]. It can integrate multiple Web156

services to form a business process, and make this avail-157

able in the form of Web services [4]. In this sense, a158

WS-BPEL Web service is actually a composite Web ser-159

vice whose invocation interface can be described using160

the Web Service Description Language (WSDL) [14].161

WS-BPEL programs aim to integrate all Web services162

in one line to reduce the program redundancy, without163

requiring details of the actual implementation of the ser-164

vice [15].165

WS-BPEL programs are usually composed of four166

sections: variable section, partner link section, han-167

dler section, and interaction section [4]. The variable168

section defines input and output messages. The part-169

ner link section describes the relationship among the170

WS-BPEL process and invoked Web services. The han-171

dler section declares the handlers when an exception or172

specific event occurs. The interaction section describes173

how external Web Services are coordinated to execute a174

business process.175

The basic interaction unit of a WS-BPEL program176

is an activity, which can be either a basic activity or a177

structured activity. Basic activities describe an atomic178

execution step (such as assign, invoke, receive, reply,179

throw, wait, and empty); and structured activities are180

composed of several basic activities or other structured181

activities (such as sequence, switch, while, flow, and182

pick). Figure 1 shows an interaction segment of a WS-183

BPEL program.184

<bpel:squence name=“main”>

<bpel:receive name=“receiveInput”

partnerLink= “client”/>

 <bpel:assign name= “a1”> … </bpel:assign>

 <bpel:flow name=“a2-4”>

<bpel:invoke name=“a2”>… </bpel:invoke>

 <bpel:invoke name=“a3”>… </bpel:invoke>

 <bpel:invoke name=“a4”>… </bpel:invoke>

 </bpel:flow>

…

<bpel:reply name= “replyOutput”, …/>

</bpel:squence >

Figure 1: Illustration of the interaction of a WS-BPEL Program

2.2. Fault localisation techniques185

Many fault localisation techniques have been pro-186

posed and examined empirically [16]. These tech-187

niques explore the fault localisation problem in differ-188

ent ways. The reported approaches include those based189

on program analysis, on program execution, on pred-190

icates, and also using data mining or machine learn-191

ing [17]. Among them, spectrum-based fault localisa-192

tion is a family of fault localisation techniques based193

on program execution that counts the executions of pro-194

gram elements in different executions, and uses the ratio195

of a program element being exercised in a failed execu-196

tion and the one in a passed execution to calculate the197

suspiciousness of the program element. We next intro-198

duce one representative spectrum-based technique that199

will be included for evaluation in our experiments re-200

ported in Section 4.201

Jones [5] proposed a program execution-based fault
localisation technique, using statistics, called Tarantula.
Tarantula involves multiple test cases and executions,
recording the pass and fail status for each program ele-
ment a test case executes. The suspiciousness value is
calculated according to Formula 1 below:

suspicion(s) =

f ailed(s)
total f ailed

passed(s)
totalpassed +

f ailed(s)
total f ailed

, (1)

where passed(s) is the number of test cases that have202

executed the program element s with the output as ex-203

pected; f ailed(s) is the number of test cases that have204

executed the program element s with the output not as205

expected; totalpassed is the total number of passing test206

cases; and total f ailed is the total number of failing test207

cases. Program elements are ranked according to these208

suspicion values, with higher values indicating a higher209

3

likelihood of containing the fault. Limitations of the210

Tarantula method include that it requires a large set of211

tests, with the pass or fail status known, and that if ei-212

ther totalpassed or total f ailed is zero, then the formula213

is invalid.214

In our previous work [4], we evaluated the perfor-215

mance of three traditional spectrum-based fault local-216

isation techniques, namely Tarantula, Set-Union, and217

Code Coverage, on two WS-BPEL programs. The fault218

localisation effectiveness was mainly measured by the219

correctness percentage, which refers to the percentage220

of possible position sets that really contain the faulty221

statements. For one program (SupplyChain), Tarantula,222

Set-Union, and Code Coverage can successfully locate223

7 (53.8%), 7 (53.8%), and 5 (38.5%) of 13 faults, re-224

spectively. For the other program (SmartShelf), Taran-225

tula, Set-Union, and Code Coverage can successfully226

locate 10 (50%), 8 (40%), and 8 (40%) of 20 faults,227

respectively. Such observations implied that Tarantula228

was the most effective among these three fault local-229

isation techniques. However, it should be noted that230

the performance of Tarantula (as well as Set-Union and231

Code Coverage) on WS-BPEL programs is not as good232

as that on traditional programs. For instance, Tarantula233

can achieve a score of 90% (i.e. the fault was found234

by examining less than 10% of the executed code) for235

the 55.7% faulty versions in seven C programs in the236

Siements suite [18]. In other words, there is a need237

for more advanced techniques specifically for localising238

faults in WS-BPEL programs.239

In order to further improve the fault localisation ef-240

fectiveness and efficiency of WS-BPEL programs, we241

explore predicate switching and program slicing-based242

fault localisation for WS-BPEL programs, and address243

the key issues of the proposed technique. We also com-244

pare the fault localisation effectiveness and efficiency of245

the proposed technique with that of predicate switching246

only, slicing only, and Tarantula, since Tarantula was247

evaluated to be the most effective technique in our pre-248

vious work [4].249

3. BPELswice: A Fault Localisation Technique for250

WS-BPEL Programs251

Normally, traditional programs written in Java or C252

focus more on trivial operations on various data struc-253

tures, from the simple data types such as char, integer,254

boolean, and real to the complex data types such as ar-255

ray, struct/union, pointer, and their composites. Differ-256

ent from them, WS-BPEL programs specify a work-257

flow with coarse-grained activities, which usually in-258

volve simple operations such as invoking an external259

Web services or a variable assignment. The transitions260

between the activities are implemented through some261

common control logic such as sequence, optional, loop,262

and also newly introduced concurrency and synchroni-263

sation. These unique features of WS-BPEL programs264

pose challenges for fault localisation, and thus call for265

new techniques.266

3.1. Overview267

A fault is considered to be detected when a test case268

causes the program to have an incorrect output. The269

fault-revealing test case is also called the failed test case,270

the counterpart of which is called the successful test271

case that results in correct output. Each failed test case272

corresponds to the execution of a particular path, which273

can help us precisely localise the fault.274

A typical program usually contains a number of275

branches, as part of its logical structure. These branches276

are controlled by some conditional slice, called a predi-277

cate, which evaluates to either true or false. If we force a278

predicate to change its true or false status, then we have279

a process called predicate switching. The goal of this280

process is to find a predicate that has strong influence281

on the data flow, and if the branch outcome of the pred-282

icate is switched and execution is continued, the out-283

put of the program may be changed from “incorrect” to284

“as expected”, thereby providing a valuable clue as to285

the location of the fault. Such a predicate, if it exists,286

is called a critical predicate. Statements that change287

the values of variables related to this critical predicate,288

which exist between it and the start of the program, are289

called the backward slice. Because the critical predi-290

cate may be strongly influenced by the backward slice,291

the analysis is necessary, and may provide further guid-292

ance to precisely locate the actual fault which caused293

the predicate’s incorrect status.294

We hereby propose a fault localisation technique for295

WS-BPEL programs based on the predicate switching296

and backward slices, which is abbreviated as BPEL-297

swice in the rest of the paper. Figure 2 shows the ba-298

sic framework of the technique, for which it is assumed299

that at least one test case demonstrates the presence of a300

fault in the WS-BPEL program.301

As shown in Figure 2, BPELswice includes the fol-302

lowing five major steps:303

1. Parsing the WS-BPEL program enables an enumer-304

ation of all the possible paths through the program305

and all predicates associated with each path, which306

facilitates the backward slice analysis.307

2. Predicate switching revises a predicate of the WS-308

BPEL program and then deploys the revised WS-309

4

WS-BPEL
program Program parsing

Information
of nodes

Test cases Program
execution

Execution
paths

Predicate
switching

WSDL
documents

Critical
predicate

Slicing from critical
predicate

Slicing from
incorrect output

Possible position sets

Documents

Storage

Process

Reference

Control

Critical
predicate

found?

Data flow

Yes

No

Judge

Figure 2: Framework of the proposed BPELswice technique

BPEL program for execution. In order to exe-310

cute the different conditional part, this stage ac-311

tually changes the predicate value from “true” to312

“false”, or vice versa. The switching is imple-313

mented by negating the predicate of the original314

WS-BPEL program, and accordingly a WS-BPEL315

program variant is derived in this stage. During the316

switching, we can use some strategies to decide the317

switching ordering of the predicates.318

3. Execution includes passing the failed test cases as319

input for the deployed WS-BPEL program variant320

and obtaining the actual output. This stage usu-321

ally involves a WS-BPEL engine, such as Apache322

ODE [13], which produces a series of events in a323

log file. Through the analysis of the log file, one324

can extract all executed path nodes and variable’s325

values during the current execution.326

4. Evaluation involves comparison of the actual out-327

put with what was expected (i.e. the oracle). In this328

stage, the main goal is to observe how the predicate329

switching impacts on the output of the revised WS-330

BPEL program. If the output is different from the331

expected output, then we continue to switch the re-332

maining ordered predicates (i.e. repeat predicate333

switching and evaluation steps). This switching334

process is repeated until the actual output becomes335

the same as the oracle, at which moment the crit-336

ical predicate is found and then we can go to the337

next, slicing, step.338

5. Slicing aims to further reduce the possible position339

set of the fault. In this step, the main task is to340

find backward slices between the critical predicate341

and the start node (i.e. the receiveInput node of342

the WS-BPEL program). Note that the backward343

slices are those nearest statements that directly af-344

fect the values of the elementary variables in the345

critical predicate. Through comparing the values346

achieved at run-time with what we expected, we347

can find the variable and its statement node that348

are different from the expected ones.349

Each major step is detailed in the following sections.350

3.2. Parsing the WS-BPEL program351

It is necessary to parse the WS-BPEL program for352

user’s understanding of its structure. The document root353

is critical for the parsing, and is the entry (the so-called354

“main node”) to the program. Typically, there are two355

traverse methods to read a program: Depth-First Traver-356

sal and Breadth-First Traversal. The choice of traversal357

method does not affect the information we obtain from a358

WS-BPEL program. Once all the WS-BPEL node infor-359

mation has been obtained, it is inserted on a JTree [19],360

which shows all paths through the program.361

The computation in a WS-BPEL program which cal-362

culates an output can be divided into two categories: the363

5

Data Part (DP) and the Select Part (SP) [11]. The Data364

Part includes execution instructions which help in com-365

puting data values or defining variables that are involved366

in computing the output of the program. Sometimes367

these are important parts for backward slices. The Se-368

lect Part includes instructions which cause the selection369

of program branches — for example, in the conditionals370

of “if”, “switch”, and “while” activities. Different pro-371

gram executions may involve different data slices, lead-372

ing to generation of differently computed output values.373

Sometimes the conditions in Select Parts may depend374

on the values computed in the Data Parts. Furthermore,375

because the output values are determined by the selec-376

tion of program branches, it is necessary to analyse the377

Select Parts to locate the faulty code. Figure 3 illustrates378

the Data Part and the Select Part in a sample WS-BPEL379

program.380

<bpel:sequence name="main">

 <bpel:receive name="receiveInput" partnerLink="client"/>

 <bpel:assign validate="no" name="Assign">

 <bpel:copy>

 <bpel:from>……</bpel:from>

 <bpel:to variable="CheckStatusRequest"part="parameters">

 </bpel:to>

 </bpel:copy>

 </bpel:assign>

 <bpel:if>

 <bpel:condition><![CDATA[$_amount < $init_amount]]></bpel:condition>

 <bpel:sequence>

 <bpel:assign validate="no" name="Assign2">…</bpel:assign>

 </bpel:sequence>

 </bpel:if>

 …

</bpel:sequence>

Subset in Data Part

Subset in Select Part

Figure 3: Data Part and Select Part in WS-BPEL Program

In summary, the output of a program is influenced by381

two things in the code: the data dependence part, and382

the selection part. Altering code in the selection part383

may lead to a change in the output, which may enable384

us to track down where in the code an error was made.385

The selection part of the code which controls the flow386

is called a predicate, and a predicate whose outcome is387

changed, e.g., from false to true, resulting in a change388

to the overall program output changing to the expected389

output, is called a critical predicate. The question of390

how to find the critical predicate will be addressed in391

the following.392

3.3. Predicate Switching393

We aim to reduce the possible location range of the394

fault using the critical predicate technique [11], a central395

part of which is predicate switching. Predicate switch-396

ing involves going through a sequence of predicates in397

any executed path, switching the boolean status of each398

(e.g. changing “true” to “false”), and examining the im-399

pact on the output: if the output changes to the expected400

one, then the critical predicate is the predicate whose401

status was most recently switched.402

Before starting to switch predicates, we first order403

them, to reduce the amount of time required to identify404

the critical predicate. We hereby illustrate one typical405

and widely-used ordering strategy, called Last Executed406

First Switching ordering (LEFS) [11].407

The LEFS ordering strategy is based on the observa-408

tion that a failure (that is, the incorrect output differ-409

ent from expectation) usually occurs not far away from410

the execution of the faulty code. This leads to the de-411

cision to reverse the order of predicates such that the412

first one to be checked will be the most recently exe-413

cuted. Suppose that a test case t caused a failure of a414

WS-BPEL program. We first identify the sequence σn415

of predicates when executing t on the program, saying416

p1, p2, ..., pn−1, pn where pn is the predicate closest to417

the point of program failure, while p1 is the predicate418

farthest from the point of failure. LEFS would therefore419

reorder σn to σ′n : pn, pn−1, ..., p2, p1, with the result that420

the last encountered conditional branch is the first to be421

switched.422

The detailed predicate switching procedure is de-423

scribed next. Given a WS-BPEL program BPEL,424

a failed test case t, its expected output O, and its425

associated LFES reordered predicate sequence σ′n :426

pn, pn−1, ..., p2, p1, the following steps will be taken.427

1. Set i = n, where i is used to index the order of428

predicates in σ′n.429

2. Mutate the WS-BPEL program BPEL by negating430

pi (e.g. change the Boolean value of pi from TRUE431

to FALSE, or vice versa) and derive the mutated432

WS-BPEL program BPELVariant.433

3. Redeploy BPELVariant.434

4. Execute BPELVariant with t and obtain its output435

O′,436

- If O′ is the same as O, pi is identified as the437

critical predicate and the procedure is termi-438

nated;439

- If O′ is different from O and i is equal to 1,440

there is no critical predicate and the proce-441

dure is terminated;442

- Otherwise, decrease i by one and go back to443

Step 2.444

As an illustration, in Figure 4, the output remains in-445

correct until pn−4 is switched. In other words, pn−4 is446

the critical predicate. Note that it is possible that none447

6

…

P’

 p1 p2 pn-1 pn

Incorrect output

Switch pn Incorrect output

 p1 p2 pn-1 pn

Switch pn-1
1 1 1 1

1 1 1 1

1 1 1 1
 p1 p2 pn-2 pn-1

Incorrect output

Switch pn-4
1 1 1 1

Correct output

 Critical predicate

 p1 p2 pn-5 pn-4

Figure 4: Illustration of searching critical predicate

of the predicates could be identified as the critical pred-448

icate even after all of them have been switched. In our449

BPELswice technique, the backward slicing will be im-450

plemented either from the critical predicate (if it is iden-451

tified) or from the end node of the program (if no critical452

predicate is identified).453

Unlike the original predicate switching, our method454

employs a mutation-based technique to implement pred-455

icate switching, i.e. we first mutate a predicate in the456

WS-BPEL program according to the LEFS strategy and457

then redeploy the mutated WS-BPEL program. This458

treatment is different from the implementation of pred-459

icate switching for traditional programs. For instance,460

a dynamic instrumentation technique was used to im-461

plement predicate switching for C programs [11]. We462

do not believe instrumentation is suitable for WS-BPEL463

programs, because it may introduce significant changes464

to the original program and require modifications of the465

existing WS-BPEL engine, as discussed in Section 1.466

3.4. Execution467

During the execution process, we use an Apache468

ODE engine [13] to redeploy the WS-BPEL service.469

The ODE engine is capable of talking to Web services,470

sending and receiving messages, handling data manip-471

ulation and performing error recovery, as described in472

the process definition. It supports both long and short473

duration process executions to facilitate all services in474

an application, and enables WS-BPEL programs to be475

invoked as services. The execution process consists of476

two steps: service deployment and process compiling.477

During the service deployment, the package (including478

all individual services and description files) is copied to479

the server, where the ODE engine deploys the service480

and outputs the deploy.xml file. We used Apache Tom-481

cat for this. The second step (process compiling) helps482

ensure that the service can be executed and invoked suc-483

cessfully. When a new WS-BPEL program variant is484

copied into the process directory of the engine, previous485

ones are deleted, and the engine redeploys it at once.486

Communication between the client and server de-487

pends on Apache Axis2 [20], which encapsulates the488

test case in a soap message, and sends it to the server.489

After sending these messages, Axis2 parses and passes490

them to receiveInput in the WS-BPEL program. The491

engine then assigns values and invokes some services to492

complete the operation. As soon as the engine produces493

the output, Axis2 parses and encapsulates it into a soap494

message, and passes it to the client side.495

3.5. Evaluation496

Following the execution, an output is produced, and497

one of the following two situations exists: either this is498

the first execution, in which case the next step is to begin499

the switching process; or it is necessary to compare the500

output with what was expected to confirm whether or501

not the current predicate under evaluation is the critical502

predicate — output being consistent with expectation503

means that the critical predicate has been found. If the504

outputs remain different, then the critical predicate has505

not yet been found, and the predicate switching process506

continues.507

3.6. Slicing508

Once the critical predicate has been identified, we509

first examine whether the fault is located in the criti-510

cal predicate. If yes, the fault localisation process can511

be terminated. Otherwise, the related program slices512

7

should be examined to localise the most suspicious513

statements related to the fault. The procedure for iden-514

tifying these slices is discussed as follows.515

The input of the slicing procedure includes516

• P(T), the execution trace when executing the517

program P with a failed test case. P(T) =<518

X1, X2, ..., Xi, ..., Xn >, where Xi is a node in the519

execution path, 1 ≤ i ≤ n, and n is the total number520

of nodes in the path.521

• Xq, the critical predicate, which is an element of522

P(T), that is, 1 ≤ q ≤ n.523

• US (Xi), the set of def-use pairs of a node Xi.524

US (Xi) = {< vi
d1, v

i
u1 >, < vi

d2, v
i
u2 >, · · · }. It can be525

obtained from the parsing of WS-BPEL program526

and WSDL documents, as detailed in the follow-527

ing.528

According to the basic concepts of data flow analysis529

[21], the def of a variable refers to the operation where530

a concrete value is allocated to the variable, while the531

use operation means that the variable is utilised either532

in a calculation (c-use) or a predicate (p-use). Since the533

data flow in WS-BPEL is different from that in tradi-534

tional programming languages, we have the following535

definitions for the def and use in WS-BPEL programs.536

• In WS-BPEL, the def of a variable normally hap-537

pens at538

– The Receive activity: the “variable” attribute,539

– The Invoke activity: the “outputVariable” at-540

tribute, and541

– The Assign activity: the left part of the ex-542

pression in the “to” element.543

• In WS-BPEL, the c-use of a variable normally hap-544

pens at545

– The Invoke activity: the “inputVariable” at-546

tribute,547

– The Reply activity: the “variable” attribute,548

and549

– The Assign activity: the right part of the ex-550

pression in the “from” element.551

• In WS-BPEL, the p-use of a variable normally hap-552

pens at553

– The Switch activity: the Boolean expression554

in the “case” statement,555

backwardSlice (P(T), Xq, US(Xi))
{
1 set a set C = Φ;

2 initialise a set V = { ,..., 21
q
u

q
u vv }, where q

ujv is

used in Xq;

3 for each q
ujv (j = 1, 2, …) {

4 if (q
ujv is of basic type) {

5 for each Xk (k = q-1, q-2, …) in P(T) {

6 if (q
uj

k
dh vv) {

/*< k
dhv , q

ujv > is a def-use pair. */

7 add Xk into C;
8 break;
9 }
10 }
11 }
12 else {
13 find all variables of basic type {p1, p2, …}

that compose q
ujv ;

14 for each pl (l = 1, 2, …){
15 for each Xk (k = q-1, q-2, …) in P(T) {

16 if (l
k
dh pv) {

17 add Xk into C;
18 break;
19 }
20 }
21 }
22 }
23 return C;
}

Figure 5: Procedure of backward slicing

– The While activity: the “condition” attribute,556

and557

– The If activity: the “condition” attribute.558

The basic procedure of backward slicing is as fol-559

lows. Assume that the critical predicate is Xq, and all560

the variables used in Xq are {vq
u1, v

q
u2, · · · }. For each vq

u j,561

we search the nearest node backward (that is, first Xq−1,562

then Xq−2, . . .) until we find the node Xk where vq
u j (or563

the variables of basic type that comprise vq
u j) is defined564

(that is, the latest definition of vq
u j before it is used in565

Xq). The collection of all Xk will be the set of slices that566

are expected to contain the fault. The detailed back-567

ward slicing procedure is given in Figure 5. Note that,568

unlike programs written in traditional languages, WS-569

BPEL programs normally involve variables of complex570

type. For a variable vq
u j of complex type, we need to first571

8

decompose it into variables of basic type ({p1, p2, . . .} in572

Figure 5), and find the nearest node where each pl is de-573

fined. Such a process, as shown by Statements 12 to 21574

in Figure 5, is specific to WS-BPEL.575

3.7. Illustration576

We use the SmartShelf WS-BPEL program to illus-577

trate how our BPELswice technique works. SmartShelf578

is composed of 53 nodes and 13 services, as shown in579

Figure 6. Every service uses some parameters which580

come from the WS-BPEL program ReceiveInput part:581

SmartShelf uses the three parameters named “name”,582

“amount” and “status”, the first two of which come from583

ReceiveInput, and the third from the ReadStatus.584

For the CheckStatus service, SmartShelf invokes dif-585

ferent services according to the variable “amount”, and586

refers to the status to judge whether the product is ex-587

pired or not, returning “Expired commodity has been re-588

placed” or “Commodity is in good status”, respectively.589

The CheckLocation service returns whether or not the590

product is available on the shelf. If not, it invokes an-591

other service to correct the location. The CheckQuan-592

tity service checks whether or not a sufficient amount of593

the good is available, returning either “Quantity is suffi-594

cient”, or “Warehouse levels are insufficient, alert staff595

to purchase”, as appropriate.596

The test case with “name”= candy, and “amount”597

= 100, “candy&&100”, can be passed as input to this598

WS-BPEL service. Because of the initial settings in599

the database, the executed flow structure sequence in-600

volves the services “CheckStatus”, “CheckLocation”601

and “CheckQuantity”. The executed runtime path is602

Path1 = {1 − 6, 7 − 10, 16 − 17, 18 − 21, 27 − 28, 29 −603

32, 33 − 37, 38 − 42, 48 − 53}, as obtained from the604

ODE engine. Next, the predicate nodes are identi-605

fied in the path: the predicate set in Path1 is Pre1 =606

{10, 21, 32, 37}. These predicates can then be switched.607

In this study, we use the LEFS ordering strategy, which608

reorders Pre1 to Pre′1 = {37, 32, 21, 10}. The predicate609

details for Path1 are shown in Table 1.610

When switching the predicates according to the order611

in Pre′1, two steps are involved. First, we identify the612

target predicate, and switch its status (e.g., status = 0613

becomes status ! = 0). Then, the previous WS-BPEL614

file is deleted and replaced with this new one, and the615

ODE engine is used to redeploy the service.616

After each predicate is switched, the same test case617

(“candy&&100”) is input, and the output is recorded618

and compared with the expected output. Suppose that619

when the predicate with “ location = 0” (that is, If2 at620

node 21) is switched to “ location ! = 0”, the resulting621

output becomes the same as the expected output — this622

predicate is therefore the critical predicate, and is there-623

fore suspected to be strongly connected to the fault. If624

the fault is found in this predicate, the localisation pro-625

cess can be successfully ended. Otherwise, some back-626

ward slices can be captured at runtime using the ODE627

engine. In this example, from the critical predicate (at628

node 21), we search backward and identify Assign16629

(node 20), CheckLocation (node 18), and Assign (node630

3) as the slices that are expected to contain the fault.631

4. Empirical Study632

We conducted a series of experiments to evaluate633

the performance of the proposed BPELswice technique.634

The empirical study was designed as follows.635

4.1. Research Questions636

Our empirical study was mainly focused on answer-637

ing the following four research questions.638

RQ1 How effectively does BPELswice localise the639

fault in a WS-BPEL program?640

One critical criterion for evaluating the effective-641

ness of a fault localisation technique is whether642

or not it can successfully identify the state-643

ments/blocks that contain the fault. In our study,644

we applied BPELswice in the debugging of hun-645

dreds of mutants of three object programs, and then646

measured its effectiveness through examining how647

many faults BPELswice successfully localised.648

RQ2 How precise is BPELswice in fault localisation?649

In addition to the high fault localisation effective-650

ness, it is also important for a technique to have a651

high precision in the localisation. One naive way652

to maximise the high fault localisation effective-653

ness is to simply identify all executable statements654

in the program, which must contain the fault. Ob-655

viously, such a way is useless and very inefficient.656

In order to improve the efficiency of debugging, the657

number of statements identified by a fault localisa-658

tion technique should be as small as possible, with-659

out eliminating the faulty statement. In our study,660

we measured the precision of BPELswice by eval-661

uating how many statements it identified for each662

mutant.663

RQ3 How quickly can BPELswice localise the fault?664

If a technique is very time-consuming, its appli-665

cability would be greatly hindered. Therefore, it666

is necessary to investigate the execution time of667

9

Figure 6: Structure of the SmartShelf WS-BPEL program

Table 1: SmartShelf’s Predicate Set in Path1 for Test Case “candy&&100”
If3 (node 10) If2 (node 21) If (node 32) If1 (node 37)
$ status = 0 $ location = 0 $ amount < $init amount warehouseManagerReturn < $init amount

the proposed BPELswice technique to see whether668

it can provide a high effectiveness and precision669

within reasonable time.670

RQ4 How many times does BPELswice need to switch671

predicates?672

It can be naturally conjectured that the computa-673

tional overhead in BPELswice is mainly related674

to the predicate switching process. In this study,675

we will evaluate the concrete number of predicate676

switches conducted by BPELswice on WS-BPEL677

programs.678

4.2. Variables and Measures679

4.2.1. Independent variable680

The independent variable of our empirical study is the681

fault localisation technique. Our proposed BPELswice682

technique was selected for this variable. Since BPEL-683

swice is based on the predicate switching and backward684

slicing techniques, it is natural to select each of these685

two techniques (denoted switchOnly and sliceOnly in686

the rest of the paper) as the baseline techniques for com-687

parison. In addition, we selected the Tarantula tech-688

nique as another baseline technique for a better compar-689

ison with previous work [4]. As discussed in Section 2,690

10

Tarantula was the most effective fault localisation tech-691

nique for WS-BPEL programs, compared with the Code692

Coverage and Set-Union techniques [4].693

4.2.2. Dependent variable694

The dependent variable relates to the measurement.695

In order to answer RQ1, we used the metric success rate696

to measure the fault localisation effectiveness. Given a697

number of faults, the success rate of a fault localisation698

technique is defined as the percentage of the number of699

successfully localised faults out of the total number of700

faults, that is,701

success rate =
number of localised faults

total number of faults
×100%, (2)

where a fault is said to be localised by a technique if702

the statement identified by the technique contains the703

fault. Obviously, the higher the success rate is, the more704

effective a technique is in fault localisation.705

In order to answer RQ2, we measured the precision706

with the metric identification ratio. Given a fault, if a707

technique successfully localises it, the precision of the708

technique is defined as the percentage of the number of709

statements identified by the technique against the total710

number of statements of the program, that is,711

identification ratio

=
number of identified statements

total number of statements
× 100%.

(3)

Intuitively speaking, the lower the identification ratio712

is, the more precise a technique is in fault localisation.713

For RQ3, we made use of the runtime to measure how714

fast a fault localisation technique can be. For the BPEL-715

swice technique, the runtime is composed of the time716

for finding the critical predicate and that for backward717

slicing. Note that the execution time of the Tarantula718

technique is not available, as the ranking of the pro-719

gram elements is purely based on suspiciousness val-720

ues, which are calculated based on the information at721

the testing stage. Therefore, we only compared the run-722

time for BPELswice, switchOnly, and sliceOnly.723

For RQ4, we measured the number of predicate724

switches (denoted Nps) that BPELswice requires when725

it is used to localise a fault in a WS-BPEL pro-726

gram. Note that there is no predicate switching process727

in sliceOnly and Tarantula, and the switchOnly tech-728

nique should have exactly the same Nps as BPELswice.729

Hence, we will only present the Nps of BPELswice.730

4.3. Object Programs731

We selected three WS-BPEL programs, SmartShelf,732

TravelAgency, and QuoteProcess, as the objects in733

our empirical study. The basic information of these734

three programs is summarised in Table 2, which gives735

the lines of code (LOC), the number of implemented736

external services (#Services), and the number nodes737

(#Nodes) of each program. The SmartShelf program738

accepts the input parameters, including the name and739

amount of commodity, implements various services,740

and returns the status of commodity, the location of741

shelf, the quantity in warehouse, etc. The TravelA-742

gency program is basically a booking system, involv-743

ing the selection of travel plan, hotel reservation, ticket744

booking, and banking. The QuoteProcess program is745

used to simulate the user’s selection of activities: it se-746

lects different activities according to user’s input param-747

eters. Note that TravelAgency is a sample WS-BPEL748

program, which was first introduced by OASIS [22],749

and is currently available at [23], while SmartShelf and750

QuoteProcess, on the other hand, were created by us751

according to third party business scenarios (available752

at [24]).753

Table 2: Object programs
Program LOC #Services #Nodes
SmartShelf 579 13 53
TravelAgency 427 6 24
QuoteProcess 400 6 21

4.4. Mutant Generation754

For each object program, we generated a family of755

mutants using the MuBPEL tool [25]. Each mutant756

contains one and only one fault, which was seeded by757

applying a mutation operator into a certain statement.758

In MuBPEL, there are totally over 30 mutation opera-759

tors [26]. However, not all the operators were applica-760

ble to each object program. As a matter of fact, due to761

the unique features of WS-BPEL, normally only a few762

mutation operators can be applied to a WS-BPEL pro-763

gram [27]. In our study, we used seven, nine, and seven764

mutation operators to generate mutants for SmartShelf,765

TravelAgency, and QuoteProcess, respectively. After766

the mutants were generated, we found that some could767

not be executed due to syntactic errors, so we eliminated768

them. There were also several so-called equivalent mu-769

tants, that is, they always showed the same execution770

behaviours as the basic programs. These equivalent mu-771

tants were also eliminated. Finally, our empirical study772

11

used 57, 56, and 53 mutants for SmartShelf, TravelA-773

gency, and QuoteProcess, respectively. The basic mu-774

tant generation information is summarised in Table 3.775

Table 3: Mutant generation
Program #Operators #Mutants
SmartShelf 7 57
TravelAgency 9 56
QuoteProcess 7 53

4.5. Test Case Generation776

We used random testing to generate a large amount777

of test cases. For a given WS-BPEL program, we first778

parsed the program to obtain the constraints on the in-779

put parameters. Random test data were generated for780

each input parameter, with the condition that the random781

data must satisfy the constraints. The random test case782

generation process was repeated until each fault was de-783

tected by at least one test case. Here, a fault was consid-784

ered to be detected when a test case caused the relevant785

mutant to show different behaviour (more specifically,786

different output) to the basic program.787

4.6. Experiment Procedure788

Our empirical study was conducted on a laptop with a789

Windows 7 64-bit Operating System, an 8-core 3.4GHz790

CPU (i7-4790), and 16G memory. The experiments791

were run on Tomcat 6 and the ODE engine [13], which792

can provide a lot of runtime information, including the793

execution path, predicates on the path, and the variable794

values. All this information can assist us in finding the795

fault. The basic procedure of the experiments is as fol-796

lows.797

1. Start the ODE engine, and deploy one mutant of a798

WS-BPEL program.799

2. Execute the test cases.800

3. Obtain the critical information, including execu-801

tion path, predicate sets, and actual output.802

4. Find the test case that kills the mutant (that is, that803

causes the actual output to differ from the expected804

output).805

5. Initiate predicate switching to identify the critical806

predicate.807

6. If the critical predicate is identified, execute back-808

ward slicing from the critical predicate to localise809

the fault.810

7. If the critical predicate is not identified, execute811

backward slicing from the wrong output.812

8. Repeat the above steps until all mutants of each813

object program have been executed.814

4.7. Threats to Validity815

4.7.1. Internal validity816

The main threat to internal validity relates to the im-817

plementation. The programming for implementing the818

BPELswice involved a moderate amount of work. Two819

of our authors conducted the programming work, one820

mainly for predicate switching, and the other mainly821

for slicing. All the source code was reviewed, cross-822

checked, and tested by different individuals. We are823

confident that the proposed BPELswice technique was824

correctly implemented, and thus the threat to internal825

validity has been minimised.826

4.7.2. External validity827

The threat to external validity is concerned with the828

selection of object programs and the fault types under829

study. In our study, we selected three representative830

WS-BPEL programs as the objects. These programs831

implement different functionalities, invoke different ser-832

vices, and have different scopes. Although we have en-833

deavoured to maximise the diversity of object programs,834

we cannot guarantee that the results obtained from these835

three programs can be generally applied to any other836

WS-BPEL program. In addition, due to the nature of837

WS-BPEL programs, we could not study all possible838

fault types (mutation operators) for WS-BPEL, so it is839

also uncertain whether our conclusion is applicable to840

those fault types that were not investigated in this study.841

Moreover, it was assumed in this study that only one842

fault exists in a mutant. However, it would be very un-843

likely that the BPELswice technique could not work ef-844

fectively for multiple faults — this is something that re-845

quires further empirical investigation.846

4.7.3. Construct validity847

There is little threat to construct validity in our study.848

The two metrics used in this study, success rate and849

identification ratio, are very straightforward in measur-850

ing the fault localisation effectiveness and precision.851

4.7.4. Conclusion validity852

In our experiments, we examined the performance of853

BPELswice based on 166 mutants of three object pro-854

grams. A large amount of test cases were generated ran-855

domly. Therefore, a sufficient amount of experimental856

data was collected to guarantee the reliability of our re-857

sults. In this sense, the threat to conclusion validity is858

very small.859

12

42/57

53/56

43/53

33/57

41/56

31/53

9/57
12/56 12/53

11/57

16/56

19/53

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

SmartShelf TravelAgency QuotoProcess

Su
cc
es
s r
at
e

BPELswice switchOnly sliceOnly Tarantula

Figure 7: Comparison of success rates for BPELswice, switchOnly,
sliceOnly, and Tarantula

5. Results and analysis860

5.1. RQ1: Effectiveness861

The experimental results of the success rates for862

BPELswice, switchOnly, sliceOnly, and Tarantula are863

given in Figure 7.864

Based on Figure 7, we can observe that among 57, 56,865

and 53 faults (each in one mutant) for SmartShelf, Trav-866

elAgency, and QuoteProcess, respectively, BPELswice867

could successfully localise 42, 53, and 43 faults, giving868

success rates of 73.68%, 94.64%, and 81.13%, which869

were consistently the highest among the four fault lo-870

calisation techniques. These results clearly show that871

BPELswice was much more effective than the other872

three techniques in the fault localisation for WS-BPEL873

programs.874

We also investigated the faults that BPELswice failed875

to localise. We found that all these faults are of the876

types of “remove an activity” and “remove an element”.877

Since BPELswice is based on the execution path, it can-878

not localise fault types related to “removal”. For the879

same reason, Tarantula cannot localise these “removal”880

fault types either. In other words, all the faults localised881

by Tarantula were also successfully localised by BPEL-882

swice, but some faults localised by BPELswice could883

not be localised by Tarantula.884

5.2. RQ2: Precision885

The identification ratios for BPELswice, switchOnly,886

sliceOnly, and Tarantula are summarised in Figure 8.887

In these figures, box plots are used to display the dis-888

tribution of identification ratios for one fault localisa-889

tion technique on one object program. In each box, the890

lower, middle, and upper lines represent the first quar-891

tile, median, and the third quartile values of the identi-892

fication ratios, respectively, while the lower and upper893

whiskers denote the min and max values, respectively;894

in addition, the mean value is depicted with the round895

dot.896

Figure 8 clearly shows that the BPELswice technique897

outperformed the other three techniques in terms of898

identification ratio. In other words, BPELswice was899

the most precise technique for fault localisation of WS-900

BPEL programs.901

In summary, the proposed BPELswice technique was902

not only effective in localising most faults, but also pre-903

cise in identifying a small number of statements that904

contain the faults. This high efficacy and high precision905

of BPELswice would, in turn, significantly improve the906

cost-effectiveness of debugging WS-BPEL programs.907

5.3. RQ3: Runtime908

In our experiments, we executed a fault localisa-909

tion technique three times on every mutant, and then910

recorded the runtime. The runtime results for BPEL-911

swice, switchOnly, and sliceOnly are given in Figure 9,912

where box plots are again used to show the distribution913

of the runtime (in seconds) for each object program. As914

discussed in Section 4.2, the runtime of Tarantula is not915

included here.916

It can be observed from Figure 9 that, compared with917

BPELswice and switchOnly, sliceOnly has a very short918

runtime. This implies that predicate switching is much919

more time-consuming than slicing. Also due to the neg-920

ligible runtime of slicing, the overall runtime of BPEL-921

swice is almost the same as that of switchOnly. We can922

also observe that the complete fault localisation proce-923

dure of BPELswice only takes tens of seconds. Such924

a runtime is acceptable, especially considering the high925

effectiveness and precision of BPELswice.926

5.4. RQ4: Predicate Switches927

As shown in the previous section, predicate switching928

is the main computation overhead in BPELswice. For929

each mutant where BPELswice successfully localised930

the fault, we also recorded the number of predicate931

switches (Nps) for each mutant, as summarised in Ta-932

ble 4. As discussed in Section 4.2, we only report the933

Nps of BPELswice, as switchOnly has exactly the same934

values.935

In the third column of Table 4, we report the num-936

ber of mutants that are associated with the same value937

of Nps (in the second column). In addition, the fourth938

column gives the range of the runtime (in seconds) for939

13

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

BPELswice switchOnly sliceOnly Tarantula

(a) SmartShelf

0%

10%

20%

30%

40%

50%

60%

BPELswice switchOnly sliceOnly Tarantula

(b) TravelAgency

0%

10%

20%

30%

40%

50%

60%

BPELswice switchOnly sliceOnly Tarantula

(c) QuoteProcess

Figure 8: Comparison of identification ratios for BPELswice,
switchOnly, sliceOnly, and Tarantula

0

5

10

15

20

25

30

35

40

45

50

BPELswice switchOnly sliceOnly

0

0.05

0.1

0.15

0.2

sliceOnly

(a) SmartShelf

0

5

10

15

20

25

30

35

BPELswice switchOnly sliceOnly

0

0.05

0.1

0.15

0.2

0.25

sliceOnly

(b) TravelAgency

0

5

10

15

20

25

BPELswice switchOnly sliceOnly

0

0.05

0.1

0.15

0.2

sliceOnly

(c) QuoteProcess

Figure 9: Comparison of runtime for BPELswice, switchOnly, and
sliceOnly

14

executing BPELswice with the same Nps. It can be ob-940

served that BPELswice only needed to switch predi-941

cates several times, with a maximum number of four942

times. In addition, there is a strong correlation between943

the value of Nps and the runtime, which is intuitively944

as expected — the more predicates switched, the longer945

BPELswice executed.946

6. Related work947

How to effectively locate faults reported by testing is948

a crucial activity in debugging. A lot of effort on this949

topic has been made and a number of fault localisation950

techniques have been proposed [16][28][17]. These951

techniques explore the fault localisation problem in dif-952

ferent ways. The reported approaches include those953

based on program analysis, on program execution, and954

also using data mining or machine learning. Next, we955

discuss related work in terms of slicing-based fault lo-956

calisation techniques, predicate-based fault localisation957

techniques, and fault localisation techniques for WS-958

BPEL programs.959

6.1. Slicing-based fault localisation techniques960

One category of fault localisation techniques is based961

on program analysis techniques such as program slic-962

ing [29], symbolic execution [30], and formal methods.963

Program slicing is the most widely used one for debug-964

ging aids. The principle of program slicing is to strip965

a program of statements without influence on a given966

variable at a given statement [29]. The idea of program967

slicing-based fault localisation is: given a program p968

and a variable v at a statement i where a fault appears,969

the suspicious slice is the statements that directly affect970

the value of v at i — this eliminates those that have no971

Table 4: Nps of BPELswice

Program Nps #Mutants Runtime range
(second)

SmartShelf 1 8 [9.98, 11.95]
2 15 [19.05, 23.50]
3 10 [31.57, 35.29]
4 9 [41.21, 47.53]

TravelAgency 1 18 [6.89, 7.66]
2 9 [14.60, 17.64]
3 7 [21.94, 23.01]
4 19 [28.84, 31.25]

QuoteProcess 1 9 [6.16, 8.27]
2 19 [13.36, 15.13]
3 15 [21.41, 22.39]

impact on the value of v at i. A pioneering study was972

reported by Weiser [31] and showed the evidence that973

programmers slice when debugging.974

Generally, program slicing can be either static or dy-975

namic: the former is only based on the source code,976

while the latter works on a specific execution of the977

program (for a given execution trace). Fault localisa-978

tion based on static program slicing analyzes the data979

flow and control flow of the program statically to re-980

duce the search scope of faults [32], and its fault local-981

isation precision is low since no other information than982

source code is used. Fault localisation based on dy-983

namic program slicing introduces more precise slicing984

criteria for a particular execution and the search scope985

of faults can be further reduced [33]. Many efficient986

slicing algorithms have been proposed, and these algo-987

rithms may be used to further improve the efficiency988

of program slicing-based fault localisation techniques.989

For instance, roBDD is an efficient forward dynamic990

slicing algorithm using reduced ordered binary decision991

diagrams [34]. Recently, Wen [35] proposed program992

slicing spectrum to improve the effectiveness of statisti-993

cal fault localisation methods, where the program slice994

is first used to extract dependencies between program995

elements and refine execution history, and then the sus-996

piciousness of each slice is calculated to locate the fault997

based on statistical indices.998

In our study, a backward dynamic program slicing999

technique was used to further improve the efficiency of1000

locating faults in WS-BPEL programs. Our approach1001

first analyzes the execution trace from an WS-BPEL1002

engine and then extract suspicious statements via data1003

flow analysis. Only those statements that have a direct1004

impact on the value of elementary variables in the crit-1005

ical predicate are chosen. Our approach addressed the1006

challenges due to the fact that the syntax, data structure,1007

and execution mode of WS-BPEL programs are differ-1008

ent from that of traditional programs.1009

6.2. Predicate-based fault localisation techniques1010

The other category of fault localisation techniques is1011

based on program execution. Typically, such techniques1012

make use of a program execution spectrum obtained1013

in software testing to locate the suspicious elements.1014

These techniques count the executions of program ele-1015

ments in different executions, and use the ratio of a pro-1016

gram element being exercised in a failed execution and1017

that in a passed execution to calculate the suspicious-1018

ness of the program element. Naish et al. [16] surveyed1019

33 different formulas for the suspiciousness calculation.1020

The existing approaches work either at the level of state-1021

ments or based on predicates.1022

15

Fault localisation techniques at the level of state-1023

ments, such as Tarantula [5] and Code Coverage [7], of-1024

ten rely on statistics and need both successful and failing1025

test cases to work. However, because they depend more1026

on the pass or fail status of the test cases, and do not1027

consider the static structure of the program, these meth-1028

ods may face other challenges. Renieris and Reiss [6]1029

proposed a Set-Union technique based on neighboring1030

queries which separated the failing program slices from1031

the successful slice sets, deleting slices that appeared in1032

both successful and failed execution paths, thereby gen-1033

erating a suspicious statement set.1034

Fault localisation techniques based on predicates first1035

instrument predicates in programs, and then capture1036

and/or sample execution behaviours to efficiently iden-1037

tify fault-relevant program elements. Among these1038

techniques, some are based on statistics, and others1039

are based on predicate switching. Typical predicate-1040

based statistical fault localisation techniques include:1041

Liblit et al. [36] ranked the predicates according to1042

the probability that the program under study will fail1043

when those predicates are observed to be true; Nainar1044

et al. [37] used compound Boolean predicates to lo-1045

cate faults; Zhang et al. [38] investigated the impact1046

of short-circuit evaluations on the effectiveness of ex-1047

isting predicate-based techniques; Chilimbi et al. [39]1048

used path profiles as fault predictors to locate faults;1049

Hao et al. [40] proposed a self-adaptive fault localisa-1050

tion algorithm which dynamically selects the intensity1051

of each predicate based on predicate execution informa-1052

tion analysis.1053

Predicate-switching based fault localisation was first1054

proposed by Zhang et al. [11]: it focuses on a failed run1055

corresponding to single input for fault localisation. Un-1056

like existing statistical techniques, the idea of this tech-1057

nique is to forcibly switch a predicate’s outcome at run-1058

time and alter the control flow until the program pro-1059

duces the desired output. By examining the switched1060

predicate, the cause of the fault can then be identi-1061

fied. Although predicate-switching based fault local-1062

isation significantly reduces the search space of po-1063

tential state changes, the overhead for locating a pro-1064

gram with scaled predicates may still be high. Wang1065

and Liu [41] proposed a hierarchical multiple predicate1066

switching method which restricts the search for criti-1067

cal predicates to the scope of highly suspect functions1068

identified by employing spectrum-based fault localisa-1069

tion techniques. The predicate switching technique has1070

demonstrated good efficiency for locating faults in C1071

programs.1072

In our study, the predicate switching technique was1073

employed to narrow the search scope of blocks within1074

WS-BPEL programs. In particular, we implemented the1075

predicate switching technique through mutating predi-1076

cates rather than instrumentation, which is very differ-1077

ent from previous studies [11, 41].1078

6.3. Fault localisation techniques for WS-BPEL pro-1079

grams1080

As mentioned before, WS-BPEL programs demon-1081

strate new features that are not common in traditional1082

programs, and accordingly suffer from new fault types.1083

In our previous work [4], we explored the fault local-1084

isation issue of WS-BPEL programs and proposed a1085

block-based fault localisation framework. We synthe-1086

sized three well-known spectrum-based fault localisa-1087

tion techniques within the framework (Tarantula [5],1088

Set-Union [6], and Code Coverage [7]), and evaluated1089

the effectiveness of the synthesized techniques using1090

two WS-BPEL programs. Although such techniques1091

were empirically evaluated to be effective in previous1092

studies [18], however, their effectiveness was not as1093

good as expected when they were used for the fault lo-1094

calisation of WS-BPEL programs.1095

In this study, we addressed the above problem with1096

a new fault localisation technique for WS-BPEL pro-1097

grams which combines predicate switching with pro-1098

gram slicing. We empirically evaluated and compared1099

the effectiveness and precision of the proposed tech-1100

nique with the Tarantula technique, which showed the1101

best performance in the synthesized techniques for WS-1102

BPEL programs in our previous work.1103

7. Conclusion1104

WS-BPEL program have many new features and also1105

suffer from new types of faults when compared with tra-1106

ditional programs that are written in C, C++, or Java. In1107

this paper, we have presented a novel fault localisation1108

technique, BPELswice, for WS-BPEL programs. The1109

proposed technique is composed of two main compo-1110

nents: the predicate switching method, which is used1111

to greatly reduce the state search space of faulty codes1112

through looking for so-called critical predicates, and the1113

dynamic backward slicing method, which is used to im-1114

prove the fault localisation precision through dataflow1115

analysis of execution traces of WS-BPEL programs.1116

Three case studies were conducted to evaluate the fault1117

localisation performance of the proposed technique in1118

terms of correctness and precision, and compare its per-1119

formance with that of predicate switching only, slicing1120

only, and Tarantula, which was considered to be the1121

16

most effective one for WS-BPEL programs. The experi-1122

mental results show that the proposed BPELswice tech-1123

nique had a higher fault localisation effectiveness and1124

precision than predicate switching only, slicing only,1125

and Tarantula. In other words, this study proposes1126

a more effective fault localisation technique for WS-1127

BPEL programs.1128

This study advances the state of the art for the fault1129

localisation of WS-BPEL programs in the following1130

ways: (i) we propose a new fault localisation framework1131

to further improve the fault localisation effectiveness of1132

WS-BPEL programs, considering new features of WS-1133

BPEL programs (i.e. a new style of programs); (ii) we1134

address the challenging issues related to when predicate1135

switching is used for WS-BPEL programs, where the1136

predicate switching mechanism is very different from1137

that which was developed for C programs [11]; (iii) we1138

report on the technical treatment of the backward dy-1139

namic slicing technique for WS-BPEL programs, which1140

is significantly different from that for traditional pro-1141

grams; (IV) we provide a comprehensive evaluation1142

and comparison of the proposed technique with exist-1143

ing techniques in this field.1144

In our future work, we are interested in the follow-1145

ing directions: (i) extending the proposed framework to1146

cover other sections of WS-BPEL programs (the current1147

one only consider the faults in the interaction section1148

of WS-BPEL programs); (ii) developing techniques to1149

enable isolation of the faults in the level of WS-BPEL1150

programs or invoked services; and (iii) investigating the1151

differentiation of types of locating fault among the dif-1152

ferent fault localisation techniques.1153

Acknowledgements1154

This research is supported by the National Nat-1155

ural Science Foundation of China under Grant No.1156

61370061, the Beijing Natural Science Founda-1157

tion (Grant No. 4162040), the Beijing Municipal1158

Training Program for Excellent Talents under Grant1159

No.2012D009006000002, and the Aeronautical Science1160

Foundation of China (Grant No. 2016ZD74004). Dave1161

Towey acknowledges the financial support from the Ar-1162

tificial Intelligence and Optimisation Research Group of1163

the University of Nottingham Ningbo China, the Inter-1164

national Doctoral Innovation Centre, the Ningbo Edu-1165

cation Bureau, the Ningbo Science and Technology Bu-1166

reau, and the University of Nottingham. The authors are1167

grateful to An Fu and Cuiyang Fan from University of1168

Science and Technology Beijing for their help in con-1169

ducting extra experiments reported in this work, and to1170

the anonymous referees for their helpful comments on1171

an earlier version of this paper.1172

References1173

[1] M. Papazoglou, P. Traverso, S. Dustdar, F. Leymann, Service-1174

oriented computing: A research roadmap, International Journal1175

on Cooperative Information Systems 17 (2) (2008) 223–255.1176

[2] Eviware, Web Services Business Process Execution Language1177

Version 2.0, http://docs.oasis-open.org/wsbpel/2.0/1178

OS/wsbpel-v2.0-OS.html (2012).1179

[3] W3C, Extensible Markup Language (XML), http://www.w3.1180

org/XML/ (2008).1181

[4] C.-A. Sun, Y. M. Zhai, Y. Shang, Z. Zhang, BPELDebugger: An1182

effective BPEL-specific fault localization framework, Informa-1183

tion and Software Technology 55 (12) (2013) 2140–2153.1184

[5] J. A. Jones, Fault localization using visualization of test infor-1185

mation, in: Proceedings of 26th International Conference on1186

Software Engineering, IEEE Computer Society, 2004, pp. 54–1187

56.1188

[6] M. Renieres, S. P. Reiss, Fault localization with nearest neighbor1189

queries, in: Proceedings of 18th IEEE International Conference1190

onAutomated Software Engineering, IEEE, 2003, pp. 30–39.1191

[7] W. E. Wong, Y. Qi, L. Zhao, K.-Y. Cai, Effective fault local-1192

ization using code coverage, in: Proceedings of 31st Annual1193

InternationalComputer Software and Applications Conference1194

(COMPSAC 2007), Vol. 1, IEEE, 2007, pp. 449–456.1195

[8] L. Zhao, Z. Zhang, L. Wang, X. Yin, Pafl: Fault localization1196

via noise reduction on coverage vector, in: Proceedings of the1197

Twenty-Third International Conference on Software Engineer-1198

ing and Knowledge Engineering(SEKE 2011), 2011, pp. 203–1199

206.1200

[9] Rose India, Activebpel designer v1.0,1201

http://www.roseindia.net/eclipse/plugins/webservices/ActiveBPEL-1202

Designer.shtml.1203

[10] Eclipse, Bpel designer v1.0, http://www.eclipse.org/bpel/.1204

[11] X. Zhang, N. Gupta, R. Gupta, Locating faults through auto-1205

mated predicate switching, in: Proceedings of 28th international1206

conference on Software engineering, ACM, 2006, pp. 272–281.1207

[12] B. Xu, J. Qian, X. Zhang, Z. Wu, L. Chen, A brief survey of1208

program slicing, ACM SIGSOFT Software Engineering Notes1209

30 (2) (2005) 1–36.1210

[13] Apache, Apache ODE, http://ode.apache.org/ (2006).1211

[14] H. Haas and A. Brown, W3C, Web Services Glossary, http:1212

//www.w3.org/TR/ws-gloss/ (2004).1213

[15] M. N. Huhns, M. P. Singh, Service-oriented computing: Key1214

concepts and principles, IEEE Internet Computing 9 (1) (2005)1215

75–81.1216

[16] L. Naish, H. Lee, K. Ramamohanarao, A model for spectra-1217

based software diagnosis, ACM Transactions on Software En-1218

gineering and Methodology 20 (3) (2011) 11:1–11:32.1219

[17] W. Wong, R. Gao, Y. Li, R. Abreu, F. Wotawa, A survey on1220

software fault localization, IEEE Transactions on Software En-1221

gineering (2016) in press.1222

[18] J. A. Jones, M. J. Harrold, Empirical evaluation of the tarantula1223

automatic fault-localization technique, in: Proceedings of the1224

20th IEEE/ACM International Conference on Automated Soft-1225

ware Engineering (ASE 2005), 2005, pp. 273–282.1226

[19] Java Platform, Standard Edition 7 API Specification,1227

http://docs.oracle.com/javase/7/docs/api/javax/1228

swing/JTree.html (2016).1229

[20] Apache, Apache Axis2, http://axis.apache.org/axis2/1230

java/core/ (2012).1231

17

[21] U. Khedker, A. Sanyal, B. Sathe, in: Data Flow Analysis: The-1232

ory and Practice, CRC Press, 2009.1233

[22] OASIS, Web Services Business Process Execution Language1234

Version 2.0, http://docs.oasis-open.org/wsbpel/2.0/1235

OS/wsbpel-v2.0-OS.html (2007).1236

[23] Linagora, Travel Agency, https://research.linagora.1237

com/display/easiestdemo/Travel+Agency (2016).1238

[24] ActiveVOS, ActiveVOS sample applications, http://www.1239

activevos.com/developers/sample-apps (2017).1240

[25] A. Estero-Botaro, F. Palomo-Lozano, I. Medina-Bulo,1241

J. Dominguez-Jimenez, A. Garcia-Dominguez, Quality1242

metrics for mutation testing with applications to WS-BPEL1243

compositions, Software Testing, Verification and Reliability1244

25 (5-7) (2014) 536–571.1245

[26] A. Estero-Botaro, F. Palomo-Lozano, I. Medina-Bulo, Mutation1246

operators for WS-BPEL 2.0, in: Proceedings of 21th Interna-1247

tional Conference on Software & Systems Engineering and their1248

Applications, 2008.1249

[27] C.-A. Sun, L. Pan, Q. Wang, H. Liu, X. Zhang, An empirical1250

study on mutation testing of WS-BPEL programs, The Com-1251

puter Journal 60 (1) (2017) 143–158.1252

[28] X. Xie, T. Y. Chen, F.-C. Kuo, B. Xua, A theoretical analysis of1253

the risk evaluation formulas for spectrum-based fault localiza-1254

tion, ACM Transactions on Software Engineering and Method-1255

ology 22 (4) (2013) 31:1–31:40.1256

[29] M. Weiser, Program slicing, IEEE Transactions on Software En-1257

gineering 10 (4) (1984) 352–357.1258

[30] J. C. King, A symbolic execution and program testing, Commu-1259

nications of the ACM 19 (7) (1976) 385–394.1260

[31] M. Weiser, Programmers use slices when debugging, Commu-1261

nications of the ACM 25 (7) (1982) 446–452.1262

[32] J. R. Lyle, M.Weiser, Automatic program bug location by pro-1263

gram slicing, in: Proceedings of the Second International Con-1264

ference on Computers and Applications, 1987, pp. 877–883.1265

[33] H. Agrawal, R. A. DeMillo, E. H. Spafford, Debugging with1266

dynamic slicing and backtracking, Software - Practice and Ex-1267

perience 23 (6) (1993) 589–616.1268

[34] X. Zhang, R. Gupta, Y. Zhang, Efficient forward computation of1269

dynamic slices using reduced ordered binary decision diagrams,1270

in: Proceedings of 26th International Conference on Software1271

Engineering, IEEE Computer Society, 2004, pp. 502–511.1272

[35] W. Wen, Software fault localization based on program slicing1273

spectrum, in: Proceedings of 34th International Conference on1274

Software Engineering, IEEE Press, 2012, pp. 1511–1514.1275

[36] B. Liblit, M. Naik, A. Zheng, A. Aiken, M. Jordan, Scalable1276

statistical bug isolation, in: Proceedings of the 2005 ACM SIG-1277

PLAN Conference on Programming Language Design and Im-1278

plementation (PLDI 2005), 2005, pp. 15–26.1279

[37] P. Nainar, T. Chen, J. Rosin, B. Liblit, Statistical debugging us-1280

ing compound boolean predicates, in: Proceedings of the 20071281

ACM SIGSOFT International Symposium on Software Testing1282

and Analysis (ISSTA 2007), 2007, pp. 5–15.1283

[38] Z. Zhang, B. Jiang, W. Chan, T. Tse, X. Wang, Fault localization1284

through evaluation sequences, Journal of Systems and Software1285

83 (2) (2010) 174–187.1286

[39] T. Chilimbi, B. Liblit, K. Mehra, A. Nori, K. Vaswani, Holmes:1287

effective statistical debugging via efficient path profiling, in:1288

Proceedings of the 31st International Conference on Software1289

Engineering (ICSE 2009), 2009, pp. 34–44.1290

[40] P. Hao, Z. Zheng, Z. Zhang, Self-adaptive fault localization al-1291

gorithm based on predicate execution information analysis, Chi-1292

nese Journal of Computers (2014) 500–510.1293

[41] X. Wang, Y. Liu, Automated fault localization via hierarchical1294

multiple predicate switching, Journal of Systems and Software1295

104 (2015) 69–81.1296

18

