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Abstract: A significant amount of work has investigated inventory control problems associated 

with fresh produce. Much of this work has considered deteriorating inventory control with many 

models having been proposed for the various situations that exist. However, no researchers have 

specifically studied fresh produce which has its own special characteristics. Most research cate-

gorise fresh produce into more general deteriorating categories with random lifetimes and non-

decaying utilities. However, this classification is not reasonable or practical because the fresh-

ness condition usually plays a very important role in influencing the demand for the produce, 

which drops gradually over time. In this paper, a single-period inventory and shelf space alloca-

tion model is proposed for fresh produce. These items usually have a very short lifetime. The 

demand rate is assumed to be deterministic and dependent on both the displayed inventory (the 

number of facings of items on the shelves) and the items’ freshness conditions. The freshness 

condition drops continuously over time according to a known function. Several problem in-

stances of different sizes are given and solved by a modified generalised reduced gradient (GRG) 

algorithm. 
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1.  Scope and Purpose 
The profit on general foods, such as cans, frozen vegetables, fruit juice, etc., is gradually de-

creasing due to highly competitive retail conditions. The demand for these products is also slow-

ing. On the other hand, the demand for some other merchandise, such as fresh produce, organic 

food and children clothes, has increased dramatically owing to improving living standards. This 

requires retailers to concentrate more in these areas (Johnson 2002). In this paper, we formulate a 

mathematical model in order to assist in ordering and shelf allocation decisions for the retail of 

fresh produce, such as vegetables, fruits, fresh meats, etc. The main characteristics of these items 

are their very short shelf-life and decaying utilities over time. Preliminary experiments are con-

ducted (using a modified generalised reduced gradient algorithm) in order to demonstrate that 

good quality solutions can be found. Most of the literature have treated fresh produce as deterio-

rating items with a random lifetime and non-decaying utilities (Nahmias 1982, Goyal and Giri 

2001). In this paper, we assume that the produce has a continuous utility and physically deterio-

rates over time. Freshness is one of the main criteria to evaluate a product’s quality and could 

dramatically affect its demand if its condition is inferior. To obtain a good financial performance 

from fresh goods requires the adoption of strict temperature control and intelligent inventory and 

shelf management systems. Furthermore, although a large number of deteriorating inventory 

models have been proposed in previous research, most of them are based on the analysis of a 

single item excluding the constraints of shelf space which come when considering a range of 

goods. No researchers have integrated a deteriorating inventory model with a shelf space alloca-

tion model (which plays a very important role in retail decision making due to the scarce shelf 

space resources). In this paper, we formulate a fresh produce management model which can si-

multaneously decide the ordering policy as well as allocate shelf space among different items, 

together with consideration of utility (i.e. freshness) deterioration. 

2.  Background 
Perishable inventory has been intensively studied and a large number of models have been pro-

posed in the literature. See (Nahmias 1982, Raafat 1991, Goyal and Giri 2001) for comprehen-

sive reviews. However, most models assume that a fixed fraction of the inventory deteriorates 

over time but the utilities of the items do not decay before their expiration dates. Few models 
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specifically consider the fresh produce with the characteristics we mentioned in section 1. In 

summary, these models have the following drawbacks: 1). Most models (Liu 1990, Jain and Sil-

ver 1994) assume that fresh produce, such as vegetables, fruits and fresh meats, have a random 

lifetime (normally assuming an exponentially distributed lifetime) but the item utilities do not 

decay over time. Hence different ages of items capture the same demand however fresh they are 

as long as they are not completely spoilt. This is contradictory to the common sense view that 

freshness is one of the most important quality criteria for fresh produce. 2). Some models 

(Mandal and Phaujdar 1989, Giri et al. 1996) formulate the demand as a deterministic function of 

instantaneous inventory with the assumption that all stock could be displayed on the shelves. 

However, this situation seldom occurs in most supermarkets because the shelf space for fresh 

food is normally limited. It is also expensive due to the low temperature requirements. Therefore, 

only a part of the inventory can be displayed on the shelf. Shelf space allocation among different 

items is especially important in this situation. The significance of shelf space allocation for non-

perishable merchandise has already been addressed in previous research (Kotzan and Evanson 

1969, Curhan 1972, Borin et al. 1994, Urban 1998, Yang and Chen 1999, Bai and Kendall 2005). 

3). The approaches that were used to optimise the models (Ben-Daya and Raouf 1993, Kar et al. 

2001) disregarded the integer nature of the solution and assumed that the objective function is a 

quasi-concave function and is differentiable. The last assumption is usually too strict for prob-

lems involving many constraints.   

Different deteriorating inventory models have been classified into two types in the literature: 

fixed lifetime models and random lifetime models. Examples of fixed lifetime models include 

photographic films, medicine, computer chips, canned food, etc. A major characteristic of this 

type of model is that inventory allowed for different ages of items with either a First-In-First-Out 

(FIFO) or Last-In-First-Out (LIFO) issuing policy (Nandakumar and Morton 1990, Liu and Lian 

1999). However, fresh produce was usually treated as a typical example of a random lifetime 

product due to the uncertain spoilage (Liu 1990, Jain and Silver 1994). These models usually as-

sumed a constant fraction of inventory decay or obsolesce over time (called exponential decay in 

some publications). 

Since fresh produce only has a very limited shelf life, most of the literature employed a sin-

gle-period inventory model although different forms of demand function are used. Both stochas-

tic and deterministic demand inventory models were proposed for the perishable products. Ben-
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Daya and Raouf (1993) proposed a multi-item, single-period perishable inventory model with a 

uniform distribution demand. The objective was to maximise the total profit of all the items dur-

ing one period. The “optimal” solution was calculated by a Lagrangian optimisation with the as-

sumption that the objective is differentiable. The integer nature of the variables was also disre-

garded. Furthermore, the method is not efficient when there are a large number of constraints. 

Rajan et al. (1992) proposed a dynamic pricing and ordering decision making model for decay-

ing produce, in which the demand was assumed to be deterministic and dependent on the selling 

price. The products are assumed to have an exponential deterioration. Abad (1996) formulated 

the demand function as a function of instantaneous price. A closed-form mathematical procedure 

was carried out to solve the problem and parameter sensitivities were analysed. However, the 

approach is heavily dependent on the mathematical description of the model so that even adding 

a single constraint could result in this approach becoming invalid. Some other models formulated 

the demand as a deterministic function of instantaneous inventory. Mandal and Phaujdar  (1989) 

formulated a single-period inventory model for deteriorating items. The demand rate was linearly 

dependent on the instantaneous inventory level and the inventory deteriorated according to a 

given function. Backordering was allowed and holding and shortage costs were also considered 

in the model. The objective was to minimise the average cost. The model was optimised by ap-

plying the derivative to the objective function. The variables included the time slots for different 

inventory stages and maximal stock level and maximal stock deficit. Giri et al. (1996) formulated 

the demand as a polynomial function of the instantaneous inventory in their perishable inventory 

model which also assumed an exponential decay. The objective is to maximise the profit, with 

order quantity and reorder point (or cycle time) as decision variables. Some time-dependent de-

mand functions were also proposed in deteriorating inventory models to describe changing de-

mand over time. Xu and Wang (1990) assumed a linear time-dependent demand function within 

a limited time horizon. Exponentially time-dependent demand were also proposed to simulate a 

rapidly increasing/declining market (Hollier and Mak 1983, Zhou et al. 2003). Yet Urban and 

Baker (1997) used a multiplicative demand function of price, time and inventory level in their 

single-period inventory model with the aim of finding optimal ordering and pricing policies for 

non-perishable products.  

The first research to consider the effect of utility deterioration on demand was described by 

(Fujiwara and Perera 1993) in the formulation of an Economic Order Quantity (EOQ) perishable 
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inventory model. In this publication, an exponential penalty function ( 1) ( 0, 0)teβα α β− > >  was 

used to measure the cost of keeping an aging item in inventory. A closed form of economic order 

quantities was obtained by a quadratic approximation of exponential terms. The results show that 

this model is consistent with other EOQ models with exponential decay. Sarker et al. (1997) also 

attempted to incorporate the negative effect of aging inventory on demand. In their production-

inventory model, the demand function in the inventory build-up phase and depletion phase con-

sidered a constant term and a negative term which is proportional to the instantaneous inventory 

(i.e. ( ) ( )f t D I tβ= − , where ( )f t is the demand function, 0β > , D is constant demand and I(t) is 

the instantaneous inventory level). However, illogically, the demand during the inventory deple-

tion phase is actually an increasing function due to the continuous decrease of the inventory I(t) 

over time. This contradicts the authors’ initial intention to represent a declining demand with the 

aging of the inventory.  

Almost all of the models described above only consider a single item without any constraints 

being included, with the optimal solution normally obtained by some mathematical derivations. 

Recently, researchers have begun to incorporate the shelf space allocation technologies into their 

inventory systems. Kar et al. (2001) proposed a single-period inventory model for multi-

deteriorating items with the constraints of shelf space and investment. The problem considers 

selling the deteriorating items from two stores. At the beginning of the period, the ordered items 

are separated into fresh items and items that have begun to deteriorate. The fresh items are 

shipped to the main store, selling with a high price and the deteriorating items are delivered to 

the second store and sold at a lower price.  During the period, all decayed items in the main store 

are retained and delivered to the second store. The demand rate in the first store was formulated 

as a function of the item selling price and instantaneous inventory. However, the demand in the 

second store was only dependent on the selling price. A Generalised Reduced Gradient (GRG) 

method was used to optimise the model. However, as stated in (Lasdon et al. 1978), GRG may 

not be efficient or robust for larger problem sizes and can only guarantee a local optimum. Be-

sides, the non-integer variables and continuous objective assumption are the major drawbacks of 

this approach in solving many NP-hard problems with integer variables. Hence, some meta-

heuristic approaches (Glover and Kochenberger 2003) have been introduced into this area to op-

timise these models. Borin et al. (1994) used a simulated annealing approach to solve a product 

assortment and shelf space allocation problem. Genetic algorithms were employed in Urban’s 
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publication (Urban 1998) to solve an integrated product assortment, inventory and shelf space 

allocation model. 

3.  Model Formulation  
Instead of assuming that fresh food has a random lifetime with an exponential decay, here we 

assume that fresh food has predictable expiry dates but their freshness condition decreases con-

tinuously according to a known function over time. The demand for the fresh produce is deter-

ministic and is both dependent on the displayed inventory level and their freshness condition. 

The main difference between these two assumptions is that the former assumed that all items that 

have not yet deteriorated capture the same demand however fresh they are. This may sound rea-

sonable for long lifetime perishable items (like photographic films and medicine) but is unrealis-

tic for fresh produce as freshness is one of the most important aspects in evaluating their quality. 

In this paper, all fresh items are assumed to have a fixed, but very short, lifetime and will not en-

tirely lose utilities before their expiration date. However, freshness keeps deceasing over time, 

which has an effect on demand. It should be noted that the assumption of a fixed lifetime of fresh 

produce, with decreasing utilities is realistic considering the advances in food planting, packing 

and conservation technologies, especially the introduction of temperature control systems in 

most supermarkets.  

The following notations are used in our model:  

− ( )iD t  is the demand function of item i over time. 

− ( )if t is a decreasing function (within range [0,1]) representing the freshness condition of 

item i over time. 

− ( )iI t  is the inventory level of item i at time t. 

− iq  is the procurement quantity of item i. 

− is  is the number of the facings assigned to item i. 

− ir  is the surplus of item i at the end of the cycle. 

− W is the total shelf space available.  

− ia  is the space required for one facing of item i. 

− ip  is the unit selling price of item i. 



 7 

− dip  is the unit discount price of item i. This price should be low enough such that all of 

the remaining items at the end of period can be sold out in a very short time at this price. 

− aic  is the unit acquisition cost of item i (or unit procurement price).  

− hic  is the unit holding cost of item i (including the costs caused by inventory loses, dam-

age, maintenance, interest, insurance, etc.). 

− sc  is the shelf cost per unit space. 

− Coi is the constant order cost of item i (independent of the order quantity). 

− eiT  is the lifetime of item i after which the item is rotten (i.e. cannot be sold). 

− Li is the lower bound of the number of facings of item i. 

− Ui is the lower bound of the number of facings of item i. 

− iT  is the length of the cycle period of item i. 

Figure 1: Graphical Representation of Inventory Level Changes Over Time 

 

Many researchers (e.g. Kar et al. 2001, Urban 2002) use the function depicted in figure 1 to de-

scribe the change of inventory level over time t. From time 0 to t1i, si facings of item i are dis-

played on the shelf with some of the stock stored in the backroom. As sales are made, the items 

in the backroom are moved to the shelf until the stock in backroom reaches zero (corresponding 

to the point when time reaches t1i). Therefore, during this period, the shelf is fully stocked and 

the demand is only a function of product freshness. From time t1i to t2i, the shelf is only partly 

stocked and the demand is both dependent on the freshness and the instantaneous inventory 

t 
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qi 

si 

ri 
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level. Once the time reaches point Ti, a new order of quantity qi is placed for item i (assuming no 

lead time) and the ri surplus of item i are sold at a discount price pdi. In this research, we will 

adopt this representation together with a polynomial demand function that is widely used in 

many shelf space allocation models (Corstjens and Doyle 1981, Giri et al. 1996, Urban and 

Baker 1997, Urban 1998): 

 1*

1 2
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where iα and iβ are scale parameters and the space elasticity of item i respectively and 

0,  0< 1i iα β> < . In this paper, we assume that the demand function conforms to a multiplicative 

form of the instantaneous inventory and the item’s freshness condition, i.e. *( ) ( ) ( )i i iD t D t f t= ⋅  

where ( )if t  is a continuously decreasing function over time and 0 ( ) 1if t≤ ≤ . ( )if t  could be a lin-

ear, quadratic or exponential function of time. During the beginning of the period, the items are 

fresh and the value of freshness function is almost 1. The demand rate is only affected by the 

displayed inventory level. However, as time elapses, ( )if t gradually decreases and the demand is 

scaled down according to how long an item has been kept in inventory. To be consistent with the 

exponential decay assumption in the literature, here, we assume that an items’ freshness condi-

tion decreases exponentially over time, i.e. ( ) it
if t e σ−= , where iσ  is a constant decay rate and 

>0iσ . Hence we have: 
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Based on the assumptions above, the inventory level of item i can be described by the following 

differential equation: 

 ( ) / ( )i idI t dt D t= −  (3) 

During time [0, t1i], we have  

 ( ) / i it
i i idI t dt s eβ σα −= −  (4) 

with the boundary conditions (0)i iI q=  and 1( )i i iI t s= . The solution of eq. (4) is: 

 ( ) ( 1)    
i

iti i
i i

i

s
I t q e

β
σα

σ
−= + −  (5) 

and   
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During time [t1i, t2i], we have the following differential equation: 

 ( ) / [ ( )] i it
i i idI t dt I t eβ σα −= − ⋅  (7) 

with the boundary conditions 1( )i i iI t s=  and 2( ) 0i iI t = . The solution of eq. (7) is: 
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where [ ( )] i

i i i i i i iK q q s s ββ µ−= − − −  and  
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i
i
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In general, we have the following inventory function: 
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The length of cycle period Ti ( ( )i i iI T r= ) is:  

 (1 )1 1
ln ( )i

i i i
i i

T r Kβ

σ µ
− 

= − − 
 

 (11) 

The holding cost during [0, t1i] is: 

 1
1

1 1 20
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The holding cost during [t1i, Ti] is: 

 
1

1
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i
i i

i

T t
i hi i it

HC c e K dtσ βµ − −= +∫  (13) 

The approximate expression of 2iHC  is given in the Appendix. However, calculation results 

show that this part is very small and a simpler approximation is used in this paper (using 

( ) / 2i is r+  as an approximation of average inventory during [t1i, Ti]): 

 2 1[ ]( ) / 2i hi i i i iHC c s r T t= + −  (14) 

Therefore, the average profit of item i per unit time is the total income less any costs involved 

divided by the time of the period, we have: 
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 1 2

1
[ ( ) ]i i i i di i ai i oi i i s i i

i

M p q r p r c q C HC HC c s a
T

= − + − − − − −  (15) 

The objective is to maximise the overall profit of all items during the unit time: 

 max 
1

( , , )
n

i i i ii
M s q r

=∑  (16)                      

 subject to 
1

n

i ii
s a W

=
≤∑  (17) 

             1,2,...,i i iL s U i n≤ ≤ =  (18) 

              1,2,...,i i ir s q i n≤ ≤ =  (19) 

                     1,2,...,i ir q i n< =  (20) 

 0              1,2,...,i eiT T i n< ≤ =  (21) 

 , {1,2,3,...}    1,2,...,i is q i n∈ =  (22) 

 {0,1,2,...}         1,2,...,ir i n∈ =  (23) 

The decision variables are shelf space, order quantity and the amount of surplus at the end of the 

cycle. Constraint (17) ensures that the total shelf space allocated to each item is no more than the 

total available shelf space. Constraint (18) makes sure that the space allocated to each item must 

be within an upper and a lower bound. Constraint (19) ensures sure that the order quantity of 

each item must be greater than the shelf displayed quantity which itself should be greater than 

the number of surplus. Constraint (21) ensures that the span of one cycle period must be less than 

the product validity period. Constraint (22) and (23) ensures than the number of facings, order 

quantity and the number of surplus are integers. The model is a non-linear combinatorial optimi-

sation problem and is difficult to optimise by utilising conventional mathematical approaches.  

Suppose we have n products, the total number of variables is 3 n× . From the model, we have 

the upper and lower bounds of variables ri ( 0 i ir s< ≤ ) and si ( i i iL s U< ≤ and lower bound of qi 

( i iq s≥ ). The upper bound of qi can be obtained from constraint (21). Since  

 (1 )1 1
ln ( )i

i i i ei
i i

T r K Tβ

σ µ
− 

= − − ≤ 
 

 (24) 

we have  

 (1 )1

(1 ) (1 )
i i i i ei iTi i i

i i i i i i
i i i i

q r s s s e sβ β β σ βα β α
β σ β σ

− −≤ + − −
− −

 (25) 
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Let x    represents the largest integer no greater than value x, the upper bound of order quantity 

ub
iq  is  

 (1 )1

(1 ) (1 )
i i i i ei iTub i i i

i i i i i i
i i i i

q r s s s e sβ β β σ βα β α
β σ β σ

− − 
= + − − − − 

                        (26) 

An interesting derivation of the model is that inventory depletes exponentially over time (see 

eq.(10)), which is consistent with the exponential decay models in the literature. In addition, 

when 0iσ → , 1it
ie tσ σ− → − , the inventory function becomes the same polynomial function de-

rived in (Urban 2002). 

4.  Optimisation of the Model  
We use a generalised reduced gradient (GRG) algorithm to search for a good quality solution to 

the problem subject to the model (16). The underlying ideas of the algorithm were described in 

(Gabriele and Ragsdell 1977, Lasdon et al. 1978). The GRG algorithm has been shown to be ef-

ficient in solving non-linear programming problems with smooth objective functions and its ap-

plications in optimising the inventory and shelf space allocation model include (Urban 1998, Kar 

et al. 2001), with good results being reported. The GRG algorithm is imbedded in many spread-

sheet software packages. The one we used is called Solver that is included in Microsoft Excel 

2002. However, GRG algorithm has two major drawbacks: 1. it can only solve continuous-

variable models. Although the package included in Microsoft Excel 2002 can deal with integer 

variables, it takes too long for the search to converge (1800 seconds computation time is needed 

even for a problem with 6 items, running on a PC with Pentium IV 1.8GHZ and 256MB RAM. 

For a problem with 18 products, the algorithm does not converge even after one hour). 2. GRG 

usually only gives a local optimum which is closest to the initial solution. Some preliminary ex-

periments showed that, if the initial solution is not carefully chosen, GRG performed very badly. 

To solve these shortcomings, in this application, we used a multi-thread GRG algorithm together 

with a solution repair heuristic to optimise the model. Each thread of the algorithm can be di-

vided into three sub-procedures: initialisation, GRG calling and solution repair, described in fig-

ure 2.  



 12 

To prevent the GRG getting stuck at a local optimum, MaxIter runs of GRG were executed 

using different initial states (solutions) and the best solution was output as the final solution. In 

this application, we set MaxIter = 5 after some preliminary experiments. The initialisation

 

Set MaxIter; 
Set iter = 0; 
Loop 

//Initialisation sub-procedure 
For each item i (1 i n≤ ≤ ) set i is L= , i iq s= , 0ir = ; 

      Loop 
Select a random item j; 

1j js s= + ; 

Until no more facings can be added without violating the space constraint (17); 
For each item i 

Increase iq  until no improvement can be obtained in the objective value; 

Increase ir  until no improvement can be obtained in the objective value; 

Output solution 0 ( , , )i i iS q s r  
 
//GRG calling sub-procedure 
S’=Solver(S0); 
 
//Solution repair sub-procedure  
Round every is , iq , ir  (1 i n≤ ≤ ) in S’  to their nearest integers 
While space constraint (17) is violated 

Rank the items by their unit space profit value /( )i i iM a s ; 
Delete one facing of the item with the smallest unit space profit value (if this opera-
tion causes a constraint violation, the next item in the ranking list is considered);  

If free shelf space > the size of the smallest item 
Loop 

Rank the items by their unit space profit value /( )i i iM a s ; 
Add one facing of the item with the largest unit space profit value (the next item 
in the ranking list is considered if the operation generates a constraint viola-
tion); 

Until no more facings can be added without violating the space constraint (17); 
For each item i (1 i n≤ ≤ ) 

Increase/decrease iq  until no improvement can be obtained in the objective value; 

Increase/decrease ir  until no improvement can be obtained in the objective value; 
Remember the best solution (Sbest) found so far; 
iter++; 

Until iter = MaxIter; 
Output Sbest; 
 

 
Figure 2: Pseudo Code of the Multi-start GRG Algorithm 
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sub-procedure was used to generate a set of diverse solutions that can be used by GRG. Note that 

because GRG is only efficient in handling continuous variables, a relaxed model (ignoring inte-

ger constraints (22) and (23)) was input into the Excel Solver. Therefore, the solution output by 

GRG lost feasibility. The solution repair sub-procedure was used to recover the feasibility of the 

solution and further improve it by using a simple local search method described in figure 2 (sev-

eral other rounding heuristics were tried and the one presented in this paper generally performs 

best across the five problem instances we tested). All results were averaged over ten runs on a 

PC with a Pentium IV 1.8GHZ CPU and 256MB RAM, running Microsoft Windows 2000 pro-

fessional Version 5. 

5.  A Numerical Example  
To allow a better understanding of the model and the solution procedure described above, a nu-

merical example with 6 items was generated (denoted by BORIN94/6).  The problem scale pa-

rameters (αi) and space elasticities (βi) are taken from (Borin et al. 1994) and the other parame-

ters are listed in table 1. The GRG algorithm described in section 4 was run 10 times with differ-

ent initial random solutions. The algorithm consistently returned the same solution which is 

shown in table 2. For the purpose of comparison, an exhaustive search was also carried out to get 

an optimal solution which is listed in table 2.  It can be seen that for this numerical example, the 

solution obtained by GRG is very close to the optimal solution. The relative deviation from op-

timality is only 0.04% (
347.58 347.45

100%
347.58

− ⋅ ). 

 

Table 1: Parameters of the Numerical Example 

Item ai pi cai chi pdi Co αi βi σi 

1 0.028 5.03 2.46 0.19 1.23 34.3 28.53 0.1532 0.06 

2 0.061 9.37 5.67 0.20 2.84 48.9 23.62 0.2273 0.07 

3 0.025 5.10 2.70 0.26 1.35 35.6 25.59 0.2089 0.06 

4 0.060 11.48 6.11 0.16 3.06 47.9 22.40 0.2143 0.04 

5 0.036 6.74 3.53 0.30 1.77 33.9 15.62 0.2955 0.03 

6 0.033 5.97 3.41 0.27 1.71 39.1 10.50 0.3104 0.03 

W=0.608(m2),  cs=5.0(pounds/m2/unit time), Li =1, Ui =12, Tei =7(days) 
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Table 2: Solution of the Numerical Example 

 Solution by GRG Optimal Solution 

Item qi si ri Ti qi si ri Ti 

1 83 3 0 2.68 81 2 0 2.78 

2 78 2 0 3.17 78 2 0 3.17 

3 77 3 0 2.61 77 3 0 2.61 

4 88 3 0 3.35 88 3 0 3.35 

5 64 3 0 3.17 64 3 0 3.17 

6 50 1 0 5.19 56 2 0 4.68 

Objective 347.45 347.58 

6.  Larger Problem Instances 
Although numerical examples are helpful in understanding the model and testing the perform-

ance of the solution procedure, it is necessary to test the algorithm over larger problem instances. 

For this purpose, we created four benchmark problem instances using the parameters in table 3. 

The problem size ranges from 18 to 64 products. Those datasets can be downloaded from web-

site: http://www.cs.nott.ac.uk/~gxk/research. Here we provide the computational results of the 

modified GRG algorithm, shown in table 4. It can be seen that the modified GRG algorithm used

 

Table 3: Parameters of Problem Instances 

Parameters Values Parameters Values 

n 18/32/49/64 Li 1 

αi U(10, 30) Ui 12 

βi U(0.15, 0.3) pdi 0.5cai 

σi U(0.03, 0.1) cs 5.0 pounds/m2/day 

ai U(0.01,0.09) m2 Co U(30, 50) pounds 

cai N(100ai, 0.4) pounds Tei 7 days 

pi N(1.8cai, 0.4) pounds W 2.5* minSpace 

chi U(0.1,0.3) pounds   

U(a, b): Uniform Distribution   N(c, d): Normal Distribution 
minSpace: the minimal space requirement to satisfy products’ the number of facings lower bounds 

 

in this paper is quite robust on the five tested problem instances. With the problem instance 

BORIN94/6 and FRESH2, all of ten runs consistently returned the same solution although each 

run started from different, random initial solutions. For the other three instances, the difference 
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between the best solution and worst solution among the ten runs are very small and the standard 

deviations are less than 1, a very small value compared with the objective values. Note that all 

the solutions obtained by the algorithm satisfy the integer constraints and are therefore feasible 

solutions.  

 

Table 4: The Computational Results of the GRG Algorithm on Five Problem Instances 

 BORIN94/6 FRESH2 FRESH3 FRESH4 FRESH5 

n 6 18 32 49 64 

av. obj. 347.45 1129.60 2056.46 3163.98 4387.16 

best obj. 347.45 1129.60 2057.15 3164.59 4387.73 

worst obj. 347.45 1129.60 2055.17 3163.33 4386.66 

std. dev 0.00 0.00 0.97 0.51 0.43 

av. cpu 3.2 73.6 74.3 179.2 209.7 

av. obj.: the average objective value over 10 runs 
best obj.: the best objective value over 10 runs 
worst obj: the worst objective value over 10 runs 
std. dev.: absolute standard deviation of 10 results obtained by GRG 
av. cpu: average cpu time consumed by GRG (in seconds) 

7.  Conclusions 
A single-period inventory and shelf space allocation model has been proposed for fresh produce. 

The demand is assumed to be deterministic and conforms to a multiplicative form of the dis-

played stock-level and items’ freshness conditions. The items’ freshness condition is assumed to 

drop exponentially over time but could still capture some demand. The model is consistent with 

deteriorating inventory models reported in literature, in which an exponential decay in the inven-

tory is assumed. Unlike other researches, the proposed model considers the integer nature of the 

solution. Five benchmark problem instances were generated for the fresh produce inventory con-

trol and shelf space allocation problem. A modified GRG algorithm was used to search for good 

quality solutions and their computational results were reported. The algorithm used in this paper 

ensures the integrality of the decision variables.  
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Appendix 

Denote 
1

(1 )( ) [ ]i it
i iy t e Kσ βµ − −= + . Divide range [t1i, Ti] into k identical ranges by point x0= t1i, x1, 

x2,…, xk= Ti. We have: 

1

1

(1 )
2

1
0 1 1

([ ] )

( ) 1
        [ ( ( ) ( )) ( ) ... ( )]

2

i
i i

i

T t
i hi i it

hi i i
k k

HC c e K dt

c T t
y x y x y x y x

k

σ βµ − −

−

= +

−≈ + + + +
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