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Recent changes in the assessment and management of risks has had the effect that greater importance has
been placed on relationships between individuals and within groups to inform decision making. In this
paper, we provide the theoretical underpinning for an expected utility approach to decision-making. The
approach, which is presented using established evidence support logic (TESLA™), integrating the expected
utilities in the forming of group decisions. The rationale and basis are described and illustrated through a
hypothetical decision context of options for the disposal of animal carcasses that accumulate during dis-
ease outbreaks. The approach forms the basis for exploring the richness of risk-based decisions, and repre-

senting individual beliefs about the sufficiency of evidence they may advance in support of hypotheses.
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1. Introduction

Regulatory decision-making is undergoing a revolution in the
UK. Proposals for modernising regulation within Government in
the 1990s (Cabinet Office, 1999) are being delivered through pro-
grammes that focus on ‘better’ and ‘risk-based’ regulation (Hutter,
2005; Pollard et al., 2002). The premise is that a step change can be
delivered, with the regulation of risks to occupational and public
safety, to the safety of the food chain and to the environment
becoming smarter, more focused on high risks, and decisions being
more open to external scrutiny and challenge (Davies et al., 2010).
In addition, we observe a renewed emphasis on the use of scientific
evidence in government decision-making. These initiatives test our
understanding of the technical, political and psychological features
of decision-making on risk, particularly in the regulatory and pol-
icy development contexts.

Previously, UK Government departments and their agencies
have published risk frameworks that set out the technocratic pro-
cesses of risk management and options appraisal (see Strategy
Unit, 2002). These spell out how sufficient, dependent and neces-
sary a number of sources of evidence are for providing a solid basis
for decision making. However, such decisions involve the consider-
ation of factors well beyond the nature of adverse consequences,
their probabilities, and the uncertainties in these conventional
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dimensions. Risk managers need to consider the costs of risk man-
agement, associated social issues, performance of technology
(where it plays a part), and governance arrangements critical to
ensuring that risks are actively managed by organisations (Pollard
et al., 2002). These attributes are reflected in the risk management
‘frameworks’ promoted by governments, regulators, business sec-
tors and individual organisations. Yet, in practice, decisions are
made by individuals within organisational contexts. For risk-based
regulation, these are complex decisions requiring:

(i) clear problem definition (scoping) that identifies the risk
under study within the context of the legal statute;

(ii) the gathering of evidence by multiple parties (professional
advisors, researchers, the general public, operators, front line
regulatory staff, regulatory policy staff);

(iii) the structuring of arguments in support of a case, including
the assembly of individual lines of evidence with their dis-
crete strengths, and the overall weight of evidence;

(iv) the ‘brokering’ of evidence and risk assessments between
parties, including between consultants and their clients,
internally within organisations, between the regulated and
the regulator, and between regulators and policy officials
with individuals valuing the benefit and cost in addition to
the reputation, trustworthiness and persuasiveness of the
provider (Chiu, Leung, & Lam, 2009); and

(v) peer review of risk assessments and the supporting evidence
in conjunction with defensible, robust decisions to be made
on risk management, together with the defence of these
decisions in the courts, if necessary (Defra, 2011).
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In practice, the conventional manner of establishing a risk-man-
agement framework is likely to take too long to gather sufficient
information to inform decisions for the growing number of new
imminent risks. As such, expert-elicitation panels have become a
common route to produce an evidence-based framework. This ap-
proach can achieve results with relative speed and has become
invaluable for practitioners of modern risk-based regulation. Ex-
pert-elicitation and the interpretation of information are subject
to value judgements (regarding the sufficiency of supporting evi-
dence), which are rarely transparent to the end user. As such, there
remains a view that these frameworks fail to fully capture the
nuances and complexities of decision-making (OXERA, 2000; Petts,
Gray, Delbridge, & Pollard, 2003), for example, the influence that
individual preferences (or expected utilities) will have on judg-
ments made regarding the sufficiency, dependency and necessity
of supporting evidence. This influence is difficult to identify and
indeed to measure, however, the impact of such influences are
unclear and a model can help to determine how important these
influences are in decision making. Previously, Chiu and colleagues
(2009) have presented a formal quantitative model for recommen-
dations within a customer/supplier relationship, demonstrating
the impact of trust and reputation; however, this model does not
specifically consider the belief and uncertainty that an individual
may have in recommendations.

TESLA™ (Quintessa, UK), a commercial platform for evidence
support logic, is a decision-support tool that addresses issues of
transparency within expert elicitation panel decisions, thereby
providing unique insights that are not normally included in con-
ventional decision-support tools. TESLA™ can be used to describe
and simulate complex systems. Environmental decision contexts,
complex by their very nature, have been previously tackled by
authors who have used evidence-support logic to negotiate, opti-
mise the effectiveness of, and recently, model decisions.

In this paper, we propose the theoretical basis for a model that
integrates: (a) the structuring of evidence that supports a group
decision (represented here by the adoption of evidence-support lo-
gic); (b) the benefits of a decision outcome (represented by ex-
pected utility theory); and (c) that demonstrates the relevance of
other influences in group decision making to practitioners, provid-
ing a model that increases the transparency of decision making
influences. Representation of the combined approach is made here
using TESLA™,

2. Methods
2.1. Selection of a model platform

TESLA™ offers the user a means of improving the transparency
of regulatory decisions, by recording the structure and sufficiency
of the evidence that supports a risk decision. It has been success-
fully used in the context of safety cases for nuclear waste manage-
ment (Egan & Bowden, 2004; Seo et al., 2004) and is also proposed
for building stakeholder confidence in the long term geological
storage of carbon dioxide (Benbow, Metcalfe, & Egan, 2006; Egan,
undated). Lines of evidence are represented by a structured cascade
of logical ‘parent’ and ‘child’ hypotheses, each with its own support-
ing evidence. User inputs are combined to determine how ‘suffi-
cient’, ‘dependent’ and ‘necessary’ each child hypotheses is for
supporting its corresponding parent. TESLA™ does not account for
the influence that personal preferences have on value judgements.

2.2. Integrating expected utility theory in evidence-support logic

Expected Utility Theory (EUT) can be incorporated within
evidence-support logic to explore the integrity of TELSA™. This

provides an indication of how subjective value-judgements bias
the sufficiency of supporting evidence and the structure of the
resulting framework.

The evidence-support logic, embodied within TESLA™, is an
information propagation approach developed from Interval
Probability Theory (IPT) (Cui & Blockley, 1990; Feller, 1971; Hall,
Blockley, & Davis, 1998a). It has been applied in several fields of
risk-based decision-making to allow experts to characterise lines
of evidence by expressing what they believe with regard to child
hypotheses actively supporting, overlapping, or conflicting when
considering a corresponding parent hypothesis (for examples, see
Foley, Ball, Hurst, Davis, & Blockley, 1997; Hall, Blockley, & Davis,
1998b).

Expert belief is expressed by a triple (p, u, q), where p denotes
the probability that an individual child hypothesis supports a
corresponding parent hypothesis, g denotes the probability that
it refutes the hypothesis, and u denotes the residual uncertainty
attached to this belief. These values range between 0 <p, g <1
and —1 < u < 1; where u = Twould denote a state of absolute igno-
rance, and u < 0 would denote a state of conflicting beliefs within
the evidence.

Evidence-support logic has a simple algorithm to aggregate
multiple beliefs about evidence. For example, if n beliefs about n
child hypotheses are aggregated to form a belief about a single par-
ent hypothesis, each belief for each child hypothesis will be
expressed as (p;, U;, q;), i = 1,...,n. Each child hypothesis would then
have p; and g; values from 0 to 1 and u; value of —1 to 1 assigned to
denote how much belief ‘for’ (p;) and ‘against’ (¢;) and how much
uncertainty (u;) is related to the corresponding parent hypothesis’
belief. Greater values of sufficiency will result in evidence being
more influential, whilst greater values of dependency result in per-
tinent child hypotheses having a shared influence. The presence of
a necessary child hypothesis determines whether beliefs assigned
to child hypotheses can be aggregated to form a belief for the cor-
responding parent hypothesis.

If (pa, ua, ga) denotes the aggregated belief for child hypothesis
A. Then p4 can be computed as follows:

n n n
Pa= Y Wipi— Y _ pymin(w;p, wip;)+ > pyMin(wip;, wip;, wipy)
i-1 ij=1 ijk=1
i<j i<j<k

+ot (1) g amin(wipy,... Wap,) (M
Therefore, if S={i,j,...},
(1 D) I wap,
acs

———+D
min(wap,)
aesS

Ps =

where w; is the weighting of the ith line of evidence and D is the
dependency between the evidence p;,p;,...,pn. Then g4 can be com-
puted similar to (1).

n n n
Gp=> Wigi— Y _ pyMin(Wiq;, Wiq;) + Y Py Min(wig;, wg;, wig)

i-1 ij—1 ijk=1

i<j i<j<k
ot ()" g amin(wigy, ... Wad,) 2)
where,
(1 D) J] Waq,
P~ miniwg,) P
acs

Once we have the values of p, and g4, u4 can be determined by
means of ps + ga + ua = 1. For example, when n = 2 and beliefs 1 and
2 are independent, we have,
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3)

{PA = W1Pq + WP, — Max(wypy, Wap,) Min(wipy, wap,)
44 = W1y + Wag, — Max(wiqy, Wag,) Min(wi gy, waq,)

2.3. Incorporating expected utility

Expected utility theory is widely adopted for addressing risk
and uncertainty in economics (Hey & Orme, 1994; Starmer, 2000)
and has applications in regulatory decision-making (Li, Pollard,
Kendall, Soane, & Davies 2009). It can be traced back to the work
of Daniel Bernoulli (1738) and has been further promoted through
the ‘theory of games and economic behaviour’ (Von Neumann &
Morgenstern, 1994). The underlying principle is that the deci-
sion-maker has prior knowledge of the probabilities of all activities
occurring and can assign a value representing a sum of money or
similar against each alternative. This assumes that the decision-
maker has a complete, reflexive, transitive, and continuous evalu-
ation over monetary outcomes, or in other words, s/he possesses
a von Neumann-Morgenstern utility function.

Expected utility over a set of outcomes can be expressed as,

UKX) = u(x)px) (4)
i=1

where X is the utility of all the set of possible outcomes; x is the util-
ity of an outcome; p is the probability of X as p = (p(x1),p(x2),.. .,
p(xn)); p(x;) is the probabilities of outcome x; € X (i=1,...,n) occur-
ring with finite elements x € X for which p(x) > 0, and that p(x;) > 0
foralli=1...,nand Y} ,p(x;) = 1 (all probabilities must add up to 1).

Expected utility theory may also be applied for considering
costs and benefits in risk-based regulation, where the public (or
environmental) health is a benefit arising from preventative risk
management decisions. If we consider a scenario of decision mak-
ing under risk (for example, the disposal of nuclear waste; Pape,
1997) where there is a risk of an environmental hazard being rea-
lised, the hazard may lead to a loss of utility (e.g. wealth, ecosys-
tem function, environmental quality), wy — w4 (expressed for
illustrative purposes by a monetary value); where wy denotes
the value of the hazard not being realised and w, the reduced value
of the hazard being realised. In the case where the utility is purely
financial, the decision maker can quantify the cost (loss of utility)
of a hazard being realised (wy — w,) and envisage the value of
making an investment to manage the risk. The challenge that prac-
titioners face, however, is the ability to optimise the amount of
money (C) that they invest along with the extent to which they
are able to minimise the risk of the hazard being realised (often
referred to in regulatory circles as ‘optimisation’). For this, let y
denote the possibility of a hazard being realised. We assume the
existence of a state-independent utility function of the regulator
u(w) defined over payoffs, thus:

U,€) = yu(wa =€) + (1 = pu(wy - €) ()

Notice that U(y,C) represents the expected utility of the regula-
tor and that y is a function of C. For illustrative purposes, we as-
sume that when the decision maker is risk-neutral, the condition
of optimal expenditure against risk is:

Y =1/(Wy — Wa) (6)

Under (6), a risk is reduced to the extent that further invest-
ment would be disproportionate to the benefits received. Note that
the optimal expenditure is independent of individual utility in (6).
If the parameters of wy, w, and y(C) are from unique sources and
remain the same among all stakeholders, (6) then holds for differ-
ent risk-neutral decision makers. Arrow and Lind (1970) indicated
that decision makers should behave in a risk-neutral fashion when
public welfare is concerned. For this, it is possible for the decision

to be unanimous within a group of stakeholders. However, if the
stakeholders are not all risk-neutral or cost and benefit are not
evenly shared, (6) will not hold.

By incorporating expected-utility theory within evidence-sup-
port logic we provide a greater level of transparency that facilitates
optimisation being achieved. The output from TESLA™ provides a
decision maker with an informed, evidence-based, decision that
they can use to decide the level of resource to invest in managing
the risk. However, before this can happen, experts (or a group of
experts) must come together to map out the cascades of parent
and child hypotheses that form different lines of supporting evi-
dence. Then experts must determine how sufficient, dependent
and necessary each child hypothesis is for answering its corre-
sponding parent. Sufficiency, in this context, becomes the expert’s
best guess and is, of course, a value-based judgement. However, in
group decisions, risk and benefit may be unevenly shared and the
decision makers may have their own utilities towards risk and
uncertainty.

2.4. Application to group decision-making

When multiple agents are involved in group decision making,
there is also a need to determine the group decision based on indi-
vidual utilities and evidence-support logic. If there are m agents
faced with n alternatives {x1,x,,...,X,} each agent will have a von
Neumann-Morgenstern utility and a monetary cost-benefit esti-
mation for all alternatives. Here, the von Neumann-Morgenstern
utility is not necessarily the evaluation of his/her own individual
benefit; rather the value of the decision expressed in terms of pub-
lic health or environmental benefit (though monetised here for
illustrative purposes). If Uj(x;) denotes agent i's expected utility of
an alternative x; where i={1,...,m} and j = {1,.. ,n}, for each agent
we are able to establish a set of beliefs, each of which denotes the
comparison between two different alternatives. Therefore agent i’s
belief can be represented by the triple (pj,,u},q}) which denotes
the belief where j,k=1,...,n and j # k. For all n alternatives, every
agent has a complete set of beliefs that contains 1n(n — 1) items,
each of which denotes a comparison between two different alter-
natives. For example, when n = 2, there is only one belief with re-
spect to the hypothesis that ‘alternative x; is preferred to
alternative x;. When n = 3, each agent has three beliefs. Each agent
assigns a set of values (between 0 and 1) to each belief, which de-
notes how much sufficiency the agent assigns each belief. The rela-
tionship between individual beliefs and their utilities of
alternatives can be expressed as:

p}k - qjl'k = Ul (Xj) DU' (xk)
1

where D; = Max‘{Ul-(x1l ),.. ..‘Ui(xn)} - Min{Ui(xl),‘. . .,Ui(xn)}. ‘
Note that pj, +uj +qj, =1 and 0 < pj,,q;, <1, pj, and gj, can

be uniquely determined by the following, when:

Ui(x;) — Ui(xy)

—(1-u) < <1-—u,
( ]k) Di jk
. 1-ul (xi)—
pl, = e ) Ui "
P T Uig)-Uity)
Qi = 3 2D;
When,
Ui(x;) — Ui(xi) -
1y
Di < ( u] )7
p':k =0
L ®)
Gy =1-—uy
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When,

Ui(xj) — Ui(x

AL B (1 -
Py =1-uj
o ! 9)
qjk =0

Egs. (7)-(9) are conditional functions; the value of the belief, p;
and g, are dependent on where the utility functions, M lie,
in relation to the uncertainty, u; M B

Each agent can be assigned a welght (w;) range from O to 1 that
denotes her/his power in the group decision. This acts as the suffi-
ciency of belief in the process of aggregation of multiple beliefs.
Multiple agents’ beliefs can then be aggregated. The aggregated be-
liefs denote a group preference over all alternatives. This can be
illustrated using a hypothetical example, in this case the decision
over disposal options of animal carcasses produced during exotic
disease outbreaks, which we have previously described the inter-
national policy context and implications of these types of decision
and the benefits of having an established hierarchy of options for
carcass disposal (Delgado et al., 2010).

3. Results and discussion

With exotic animal disease, the policy officials (in any country)
must consider the differential merits of various carcass disposal
options and the ensuing implications for public health, animal
health and welfare and environmental protection. Consider a
grossly simplified and hypothetical case whereby policy advice is
informed by a stakeholder group on whether to restrict (or not)
certain disposal methods. We assume that five agent representa-
tives are involved: (1) a policy official; (2) a government regulator;
(3) an environmental expert; (4) an industrial representative; and
(5) a public interest representative. For ease of illustration, three
alternatives (A, A, A3) are considered: A, the on-farm burial of
carcasses; A,, burial in permitted, constructed landfills; and As,
controlled incineration. A; poses hazards to animal and human
health and a high potential for groundwater contamination from
pathogens and nutrients. A, reduces this risk but retains a long
term risk to groundwater and poses a significant odour nuisance,
especially during the operational phase. A; reduces animal health,
public health and environmental risks to the minimum, but has the
disadvantages of higher construction and maintenance costs. The
benefit each agent perceives from each of the options in this illus-
trative example can be represented by either expected utilities (not
shown here) or monetised values (Table 1).

There are three hypothesises: Hy: alternative A; is preferred to
A»; Hy: alternative A; is preferred to As; Hs: alternative A, is pre-
ferred to As. With respect to these hypothesises, each agent i has
three beliefs (p},, u};,q},). (i3, Uis, Gi3) and (phs, s, Ghs). Accord-
ing to (7), the values of the beliefs can be calculated for each
hypothesis (Tables 2-4).

By assigning each agent a weight of 0.2, the aggregated belief,
can be computed by means of (1) and (2). TESLA™ provides a
graphical interface on which to present these outcomes as shown
in Fig. 1 (Egan, undated; http://www.quintessa-online.com/TE-
SLA/ESLGuide.pdf).

The aggregated beliefs are computed as: (pf,,u4,,q4,) = (0.16,
0.22,0.62); (p4s, s, @%) = (0.39,0.2,0.41); and  (ply, s, %) =
(0.18,0.14,0.68). These beliefs infer that alternatives A, and As;
are preferred to alternative A;, and alternative A; is slightly pre-
ferred to alternative A. Ratio plots, in which both individual beliefs
and the aggregated beliefs are illustrated, can be produced for each
hypothesis (Figs. 2-4), where the horizontal axis indicates the per-
centage uncertainty in the evidence, and the vertical axis indicates

Table 1

The perceived benefits for agents 1-5 (monetarised) for three alternative scenarios for
carcass disposal, where A; is the on-farm burial of carcasses; A, is the burial in
permitted, constructed landfills; and As is controlled incineration.

A A, As
Agent 1 0 50 100
Agent 2 0 50 40
Agent 3 —-100 60 100
Agent 4 0 £2000 —£10,000
Agent 5 —-100 —80 100
Table 2
The individual beliefs on H, (alternative A, is preferred
to Az).
Belief Values
0}y uly.q12) (0.15, 0.2, 0.65)
(pIZa u1zsq1 ) (0,0.3,0.7)
(P35 ud.43) (0,02, 0.8)
(0}, uty.q%,) (0.42, 0, 0.58)
(P2, U3, 03,) (0.25, 0.4, 0.35)
Table 3
The individual beliefs on H, (alternative A; is preferred
to As).
Belief Values
(pls,uds, q33) (0.15, 0.2, 0.65)
(33, 35,035) (0.5,0.2,0.3)
(33,33, G35) (0.3,0.2, 0.5)
(p33.U33.43) (1,0,0)
(P33, U33.43) (0, 0.4, 0.6)
Table 4
The individual beliefs on Hs (alternative A, is preferred
to As).
Belief Values
(P13, Ui3.413) (0,0, 1)
(P13, 33, q73) (0,0.3,0.7)
(p13.uds.43s) (0,0,1)
(1’13 uls,qis) (0.92, 0, 0.08)
(P33, U33.435) (0,04, 0.6)

the ratio of “evidence for” to the “evidence against”. In Fig. 2, all
beliefs lie below the horizontal axis, which shows a consensus that
‘A, is better than A;'.

In these examples, an equal weight was given to all agents to re-
flect their power to decide. Note that the scale of individual payoff
or monetary values does not affect the group decision. Individual
agents cannot manipulate the final decision by scaling up (or down)
their benefits. This ensures that each agent cannot influence the
group decision by more than his/her assigned weight, which pro-
vides a greater level of transparency to the model.

This work establishes the basis for integrating evidence support
logic and utility for regulatory decisions on risk. It allows, albeit
mechanistically and in practice probably for presentational and
illustrative purposes alone, an exploration of the role experts value
judgements might have on regulatory decision outcomes. Never-
theless, as Monticino and colleagues (2007) also illustrate for forest
ecosystem decisions affected by various stakeholder interests,
‘unpacking’ the flow of information between the contributors to
decisions has merit in communicating the evidential basis for com-
plex environmental decisions. A further contribution of this work,
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Fig. 1. Graphic interface of TESLA demonstrating the aggregation of individual agent’s belief in a hypothesis (illustrated here with respect to H;) using a calculated weight.
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Fig. 2. Ratio plot of evidence ratio against the percentage uncertainty in the evidence illustrating aggregated (1) and individual beliefs (2-6) with respect to H;.
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Fig. 3. Ratio plot of evidence ratio against the percentage uncertainty in the evidence illustrating aggregated (1) and individual beliefs (2-6) with respect to H,.



J. Li et al./ Expert Systems with Applications 39 (2012) 8604-8610

100

Evidence Ratio
=
w

8609

Aggregated belief
Agent 1
Agent 2
Agent 3

0.1

Agent 4
Agent 5

D N & W N -

0.01+

Ll 1 1 T 1

20 40 B0 80 100
. Uncertainty (%)
3 (-]

Fig. 4. Ratio plot of evidence ratio against the percentage uncertainty in the evidence illustrating aggregated (1) and individual beliefs (2-6) with respect to Hs.

which we seek to further explore in later work, will be in under-
standing the role of personality traits on decision outcomes as well
as the affect that different amounts of power will have on a group
decision.

4. Conclusions

We have attempted to develop the theoretical basis for a model
that seeks to represent expert judgements and the impact this has
on the impact of supporting evidence within regulatory decisions.
What emerges is a rudimentary proof of concept, which we have
illustrated, which has application to authentic regulatory decision
contexts. We have proposed a new decision support approach that
can be used to make group decisions when risk, uncertainty, and
conflicts of interest among stakeholders are involved. While this
study makes a preliminary effort to link evidence-support logic
and economic analysis, it should be recognised that it has been
conducted using important simplifying assumptions; for example,
individual utilities with respect to decision outcomes and the
independency of individual beliefs. So far we deal with group deci-
sion making as a static process. However, it is of course a dynamic
process where individual beliefs may change along with interac-
tions between experts, and where uncertainty may be reduced
through dialogue, negotiation and the introduction of new infor-
mation. Intelligent computer agents can learn in this process and
be adaptive to the dynamics. The benefit of this approach will be
the ability it will provide Government bodies and organisations
to explore the influence people in relative positions of power have
on the weight assigned to different lines of evidence. Future re-
search will focus on the dynamics of this group decision making
process.
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