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Abstract. Optimization problems over rearrangement classes arise in various ar-
eas such as mathematics, fluid mechanics, biology, and finance. When the gener-
ator of the rearrangement class is two-valued, they reduce to shape optimization
and free boundary problems which can exhibit intriguing symmetry breaking phe-
nomena. A robust framework is required for computable analysis of these prob-
lems. In this paper, as a first step towards such a robust framework, we provide
oracle Turing machines that compute the distribution function, decreasing rear-
rangement, and linear rearrangement optimizers, with respect to functions that
are continuous and have no significant flat zones. This assumption on the refer-
ence function is necessary, as otherwise, the aforementioned operations may not
be computable. We prove that the results can be computed to within any degree
of accuracy, conforming to the framework of Type-II Theory of Effectivity.

Keywords: Computable Analysis · Rearrangements of functions · Optimization.

1 Introduction

The aim of the current paper is to lay the foundation for computability and complex-
ity analysis of optimization problems over rearrangement classes, in the framework of
Type-II Theory of Effectivity (TTE) [18].

The theory of rearrangements of functions may be traced back to 1899, when it
was introduced as a framework for the study of a problem in hydrostatics [17]. In the
following decades, even though it attracted attention from some of the most prominent
mathematicians of the twentieth century, it remained a peripheral tool in mathematical
analysis, until it re-emerged in the 1970s in the work of Benjamin [1]. Specifically, a
problem in fluid mechanics related to steady vortices was formulated by Benjamin as
an optimization problem over a rearrangement class.

In response, G. R. Burton laid out a theory for optimization of convex function-
als over rearrangement classes [3,5]. Although PDE-constrained rearrangement opti-
mization problems have their origins in fluid mechanics, the abstract formulation of
these problems has shown greater potential, and Burton’s theory has been used in the

? This is a preprint of the paper [13]. The final authenticated version is available online at
https://doi.org/10.1007/978-3-030-14812-6 11

www.nottingham.edu.cn/en/science-engineering/staffprofile/amin-farjudian.aspx
https://doi.org/10.1007/978-3-030-14812-6_11


2 A. Farjudian

study of PDE-constrained rearrangement optimization problems in several areas, e. g.,
finance [12], free boundary problems [8], non-local problems [11], population biol-
ogy [10], and eigenvalue problems [9], to name a few. Of special interest is the case
when the generator of the rearrangement class is a two-valued function. Rearrangement
optimization problems with two-valued generators form some important examples of
shape optimization and free boundary problems.

In virtually all but exceptional cases, analytic solutions do not exist for these prob-
lems. Even when existence of (not necessarily analytic) solutions is guaranteed by the
theory, there are no rigorous computational frameworks for computability and com-
plexity analysis of the solutions. Apart from rare cases, even qualitative accounts of the
optimal shapes are missing from the literature. In summary, assuming the existence of a
solution is guaranteed, in the majority of cases, the answers to the following questions
are still unknown:

(1) Is the optimal solution computable?
(2) Does there exist a Type-II Turing machine, which takes the input parameters of the

problem, and returns the optimal solution? Note that this is the uniform version of
Question (1).

(3) What are the robustness properties of the optimal solutions?

The following question arises in the related shape optimization problems:

(4) If symmetry breaking occurs, how does it occur? If symmetry is preserved for the
n-dimensional ball B, but breaks for the given reference domain Ω, and if we obtain
Ω from B through a smooth deformation, at what point does symmetry break?

1.1 Contributions of the paper

On the computational side of PDE-constrained rearrangement optimization problems,
only sporadic attempts have been made, with the main focus on numerical algorithms
based on floating-point arithmetic [7,14,11,10]. The current paper is meant to serve
as a starting point towards answering questions of the type just listed. We aim to lay
the foundation for a computational framework that allows us to study rearrangement
optimization problems in a validated setting.

Specifically, we provide oracle Turing machines that compute the distribution func-
tion, decreasing rearrangement, and linear rearrangement optimizers, with respect to
functions that are continuous and have no significant flat zones. This assumption on the
reference function is necessary, as otherwise, the aforementioned operations may not be
computable. Furthermore, the reference functions are solutions of the constraint partial
differential equations (PDEs), which, in virtually all applications, satisfy the assump-
tion on continuity and flat zones. For this reason, many of the results in the literature
on rearrangement optimization problems—including Burton’s seminal papers[3,5]—
are formulated with respect to this assumption.

We prove that the results can be computed to within any degree of accuracy, con-
forming to the framework of Type-II Theory of Effectivity.

Remark 1. It should be noted that the existence of linear rearrangement optimizers is
a fundamental result in the theory of rearrangements of functions (Lemma 1 (iv)). Our
aim here is to investigate its computability.
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1.2 Our approach

Throughout the paper, we make sure that the arguments adhere to Type-II Theory of
Effectivity, as presented in [18]. Yet, instead of using the concepts and notations of [18],
we work directly with the discretizations of the domains and maps involved. We hope
that this makes the content accessible to a broader audience, as we believe that this
direct approach allows us to express our algorithms in a way that is more intuitive.

1.3 Structure of the paper

– In Sect. 2, we present the background concepts and results from the theory of re-
arrangements, together with some basic notations that we will be adopting for the
remainder of the paper.

– Sect. 3 contains our main results regarding computable analysis of the distribution
function and the decreasing rearrangements.

– In Sect. 4, we present our main results regarding linear rearrangement optimization.
– Sect. 5 discusses some generalizations of the main results to other domains and

dimensions.
– We conclude the paper in Sect. 6, where we also discuss some future work on

computable analysis of rearrangement optimization problems.

2 Preliminaries

The material in this section includes some basic concepts and results from the theory
of rearrangements of functions. We will also establish some notations that we will be
adopting throughout the paper.

2.1 Rearrangement theory

Let (Ω, Σ, µ) be a measure space, in which Ω is a non-empty set, Σ is a σ-algebra on Ω,
and µ is a positive measure on Ω satisfying µ(Ω) < ∞.

Definition 1 (distribution function λ f ). For a real measurable f : Ω → R, the distri-
bution function λ f : R→ R is defined by: ∀s ∈ R : λ f (s) B µ

(
f −1[s,∞)

)
.

Definition 2 (rearrangement classRΩ( f0)). Let (Ω0, Σ0, µ0) and (Ω, Σ, µ) be two mea-
sure spaces, such that µ0(Ω0) = µ(Ω).

(a) We say that f0 : Ω0 → R and f : Ω → R are rearrangements of each other if and
only if ∀s ∈ R : µ0

(
f −1
0 [s,∞)

)
= µ

(
f −1[s,∞)

)
.

(b) The rearrangement class RΩ( f0) generated by f0 is defined as follows:

RΩ( f0) B { f : Ω→ R | f is a rearrangement of f0}.

Whenever (Ω0, Σ0, µ0) = (Ω, Σ, µ), we may simply write R( f0). If both f0 and Ω are
clear from the context, we may just use the symbol R to denote the rearrangement
class.
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For any Lebesgue-measurable Ω ⊆ Rn and f : Ω→ R, we let ‖ f ‖p denote the usual Lp

norm:

‖ f ‖p B


(∫
Ω
| f (x) |p dx

) 1
p , if p ∈ [1,∞),

ess sup{| f (x) | | x ∈ Ω}, if p = ∞.

For every p ≥ 1, we let q denote its conjugate exponent satisfying 1/p + 1/q = 1 when
p > 1, and q = ∞ when p = 1.

Henceforth, we make the following assumptions:

– Ω denotes a bounded, open, and connected domain in Rn;
– Σ denotes the Lebesgue σ-algebra over Ω, with µ denoting the Lebesgue mea-

sure. Indeed, for simplicity, we denote the n-dimensional Lebesgue measure of any
Lebesgue-measurable E ⊆ Rn by | E |.

– Ω0 denotes the open interval (0, |Ω |).

Definition 3 ( f∆, f∆: non-increasing and non-decreasing rearrangements). For a
real measurable f : Ω→ R:

(i) The (essentially unique) non-increasing rearrangement f ∆ of f is defined onΩ0 by
f ∆(s) B sup{α ∈ R | λ f (α) ≥ s}. In case f can be extended to Ω, with an essential
infimum a and an essential supremum b, we extend f ∆ to Ω0 by letting f ∆(0) B b
and f ∆(|Ω |) B a.

(ii) The (essentially unique) non-decreasing rearrangement f∆ of f is defined on Ω0
by f∆(s) B f ∆(|Ω | − s).

Definition 4 (significant flat zones). A measurable function f : Ω→ R is said to have
no significant flat zones on Ω if ∀c ∈ R : | f −1(c) | = 0.

The following is very easy to establish:

Proposition 1. (i) If f is continuous, then λ f has no significant flat zones.
(ii) If f has no significant flat zones, then f ∆ is decreasing, and f∆ is increasing.

(iii) If f is continuous and has no significant flat zones, then f ∆ and λ f are both con-
tinuous, decreasing, and are the inverses of each other.

We will consider linear rearrangement optimization against functions that have no
significant flat zones. This condition guarantees uniqueness of solutions, and provides
a convenient optimality condition, as summarized in the following lemma:

Lemma 1. Assume that f0 ∈ Lp(Ω0), and let R B RΩ( f0) be its rearrangement class
over Ω. Then:

(i) R ⊆ Lp(Ω).
(ii) ∀ f ∈ R : ‖ f ‖p = ‖ f0 ‖p.

(iii) The weak closure of R in Lp(Ω), denoted by R, is weakly compact and convex.
(iv) For every h ∈ Lq(Ω), the linear functional Lh : Lp(Ω)→ R defined by:

Lh( f ) B
∫
Ω

f (x)h(x) dx (1)

has a maximizer f̂ over R.
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(v) If f̂ is the unique maximizer of the linear functional Lh over R, then it is the unique
maximizer of Lh over all of R. Moreover, f̂ = ψ̂(h), almost everywhere in Ω, for
some non-decreasing function ψ̂.

(vi) For any h ∈ Lq(Ω) with no significant flat zones, there exists a non-decreasing
function ψ̂ such that ψ̂(h) ∈ R, and f̂ B ψ̂(h) is the unique maximizer of the linear
functional Lh defined in (1) over R. Furthermore:

ψ̂ = f ∆0 ◦ λh. (2)

(vii) Items (iv), (v), and (vi) remain valid if one replaces ‘maximizer’ with ‘minimizer’,
and ‘non-decreasing function ψ̂’ with ‘non-increasing function ψ̌’, in which case,
equation (2) becomes ψ̌ = f0∆ ◦ λh.

Proof. See [3] and [4]. ut

We will also refer to the following results related to non-increasing rearrangements
from the literature:

Lemma 2. Assume that 1 ≤ p < ∞. Then:

(i) For any given f ∈ Lp(Ω), there exists a measure-preserving map ρ : Ω→ [0, |Ω |]
such that f = f ∆ ◦ ρ.

(ii) ∀ f , g ∈ Lp(Ω) : ‖ f ∆ − g∆ ‖p ≤ ‖ f − g ‖p.

Proof. (i) See [4, Lemma 2.4].
(ii) See [6], or [4, Lemma 2.7]. ut

2.2 Further definitions and notations

The set of dyadic numbers will be denoted by D, i. e., D B {p/2n | p ∈ Z, n ∈ N}. For
any n, k ∈ N, let Mn

k be the meshgrid with granularity k over [0, 1]n whose vertices are:{( p1

2k ,
p2

2k , . . . ,
pn

2k

)
p1, p2, . . . , pn ∈ {0, 1, . . . , 2k}

}
.

By an element (or a cell) in a meshgrid Mn
k , we mean a compact box of the form:[

p1

2k ,
p1 + 1

2k

]
×

[
p2

2k ,
p2 + 1

2k

]
× · · · ×

[
pn

2k ,
pn + 1

2k

]
, p1, p2, . . . , pn ∈ {0, 1, . . . , 2k − 1}.

Clearly, every meshgrid Mn
k is the union of 2kn such cells, and for each such box S :

∀x, y ∈ S : ‖ x − y ‖∞ ≤ 2−k,

in which ‖ . ‖∞ is the sup norm on Rn. When n is clear from the context, we may just
write Mk.

A box
∏n

i=1[ai, bi] with rational vertices will be represented by the following ele-
ment of Q2n:

(a1, b1, a2, b2, . . . , an, bn) .

For any set T , we denote the set of finite subsets of T as Pfin (T ). For instance, a finite
set of two-dimensional rational boxes is an element of Pfin

(
Q4

)
.
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Definition 5 (simple step function). Let q > 0 be a rational number. A function
f : [0, q] → R is said to be a simple step function if for some n ∈ N, there is a set
{x0, x1, . . . , xn, y1, . . . , yn} ⊆ Q such that:

(a) 0 = x0 < x1 < · · · < xn = q.
(b) f (0) = y1 and ∀x ∈ (xi−1, xi] : f (x) = yi for 1 ≤ i ≤ n.

We denote the closure and interior of a set A by A and A◦, respectively. The char-
acteristic function of a subset A of a reference set Y will be denoted as χA, which is
defined as:

∀y ∈ Y : χA(y) B

 0, if y < A,

1, if y ∈ A.

Another concept that we will refer to quite frequently is that of a modulus of conti-
nuity of a function:

Definition 6 (modulus of continuity). Let (X, dX) and (Y, dY ) be two metric spaces,
and assume that f : X → Y is continuous. Then, a function φ : N → N is said to be a
modulus function for f (on X) iff:

∀n ∈ N,∀x, y ∈ X : dX(x, y) ≤ 2−φ(n) ⇒ dY ( f (x), f (y)) ≤ 2−n. (3)

A fundamental property of computable real functions is that they are continuous,
and over compact domains, they have a recursive modulus of continuity:

Theorem 1. Let f : [0, 1]n → R be computable. Then, f is continuous, and has a
recursive modulus of continuity.

Proof. See, e. g., [15, Theorem 2.13]. ut

3 Distribution function and non-increasing rearrangement

In this section, we discuss computable analysis of the distribution function λu of a given
u : [0, 1]n → R, and its non-increasing rearrangement u∆. For every d ∈ R, define
Au(d) B {x ∈ [0, 1]n | u(x) > d}, and Bu(d) B {x ∈ [0, 1]n | u(x) < d}. In [15, Theorems
5.14 and 5.15], it has been shown that:

– u is computable iff the classes of sets Au(d) and Bu(d) (when d ranges over D) are
uniformly recursively open.

– u is recursively approximable iff the classes of sets Au(d) and Bu(d) (when d ranges
over D) are uniformly recursively Gδ.

In both cases, by uniform, we mean uniform in d.
Important as they are, these results do not address the question of computability

of λu. In fact, it is not difficult to see that:

Proposition 2. If u has a significant flat zone, then λu is not computable.
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Algorithm 1 Pseudocode for DistFunQ
Input: Received on four channels:

c ∈ Q: height of the level set;
k ∈ N: accuracy;
u ∈ C([0, 1]2): target function, queried through oracle Ou;
φu : N→ N: a modulus of continuity of u.

Output: Approximation of {x ∈ [0, 1]2 | u(x) ≥ c} to within 2−k accuracy.
n← 0
error← 1 + 2−k // anything larger than 2−k would do
while error ≥ 2−k do

Query φu with n + 1
Create meshgrid Mφu(n+1)

for S ∈ Mφu(n+1) do
Sσ ← centroid of S
uS ← Ou(Sσ, n + 1) // uS is assigned the reply to query (Sσ, n + 1) sent to Ou

end for
A← {S ∈ Mφu(n+1) | uS > c + 2−n}

B← {S ∈ Mφu(n+1) | uS < c − 2−n}

C ← {S ∈ Mφu(n+1) | c − 2−n ≤ uS ≤ c + 2−n}

error← ΣS∈C | S |
n← n + 1

end while
return A

Proof. Let us assume that u has a significant flat zone with value c. Then λu is not
continuous at c. By Theorem 1, λu is not computable. ut

Here, we consider the case where u and one of its moduli of continuity are provided,
respectively, as oracles Ou and φu—hence, their computability is not assumed—but we
have to demand u not to have any significant flat zones. For simplicity, we focus on the
case n = 2, though the results may be generalized in a straightforward way to any finite
dimension.

First, we consider the machine DistFunQ, which operates under Algorithm 1. This
machine takes a height c ∈ Q together with an accuracy parameter k ∈ N, and then,
through querying the oracles Ou and φu, provides an approximation of {x ∈ [0, 1]2 |

u(x) ≥ c} to within 2−k accuracy. This can then be used to obtain a rational approxima-
tion of λu(c) to within 2−k accuracy. The way the oracle Ou operates is as expected:

– On any input query ((x, y),m) ∈ (Q ∩ [0, 1])2 × N received on its input channel, Ou

outputs a rational û B Ou((x, y),m) ∈ Q such that | û − u(x, y) | ≤ 2−m.

The correctness of the algorithm for rational input values hinges on the following:

Lemma 3. Assume that u : Ω → R is continuous with no significant flat zones, where
Ω ⊆ Rn is a bounded domain. Then:

∀c ∈ R,∀ε > 0,∃δ > 0 : | {x ∈ Ω | | u(x) − c | < δ} | < ε. (4)

Proof. Assume that c and ε are given. As u is continuous with no significant flat
zones, the level set uc B {x ∈ Ω | u(x) = c} is closed and has Lebesgue measure zero.
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Hence, there exists an open set O ⊆ Rn such that |O | < ε and uc ⊆ O. The function
v(x) B | u(x) − c | is continuous over the compact domainΩ\O. Hence, it attains its min-
imum at some point (say) x0, for which, we have v(x0) , 0. The value δ B | u(x0) − c |
satisfies (4). ut

Theorem 2. Assume that u : [0, 1]2 → R is a continuous function with no significant
flat zones, and let φu : N → N be a modulus of continuity for u. Then, the machine
DistFunQ, operating under Algorithm 1, halts on any input c ∈ Q and k ∈ N, and
returns a finite set A of two-dimensional rational boxes, such that:

– ∪A ⊆ αc B {x ∈ Ω | u(x) ≥ c}, and |αc \ ∪A | ≤ 2−k.
– q B | ∪A | ∈ Q and satisfies: | q − λu(c) | ≤ 2−k.

Proof. A careful inspection of Algorithm 1 reveals that, at every iteration of the while
loop, we have:

∪ A ⊆ αc ⊆ (∪A) ∪ (∪C) (5)

To see this, assume that S ∈ A, and Sσ is its centroid. For all y ∈ S , we have ‖ y − Sσ ‖∞ <
2−φu(n+1), which, by (3), entails that u(y) ≥ u(Sσ) − 2−(n+1). As the oracle Ou has been
queried with accuracy n+1, we have u(Sσ) ≥ uS −2−(n+1). Therefore u(y) ≥ uS −2−n > c.
This proves that S ⊆ αc, hence ∪A ⊆ αc. A similar argument shows that ∀S ∈ B : ∀y ∈
S : u(y) < c, which proves that αc ⊆ (∪A) ∪ (∪C).

From (5), we obtain:

| ∪A | ≤ |αc | ≤ | ∪A | + | ∪C |. (6)

Now, at the n-th iteration of the while loop, we have:

∀x ∈ ∪C : | u(x) − c | ≤ 2−n + 2−(n+1) < 2−(n−1). (7)

According to (4), for the given c ∈ Q and k ∈ N, there exists an n0 ∈ N such that:

∀n ≥ n0 : | {x ∈ Ω | | u(x) − c | < 2−(n−1)} | < 2−k. (8)

From (8) and (7), we infer that at iterations n > n0, we have | ∪C | < 2−k. But | ∪C | is
exactly the value of error in Algorithm 1, and the output of the algorithm is A. This,
together with (6), proves the result. ut

Although Theorem 2 is sufficient for our purposes, we discuss the general case
where c ∈ R for completeness. As rational numbers are finitely representable, in Algo-
rithm 1, the value of c is provided to the machine DistFunQ in one transaction. When
c ∈ R, the value should be provided to the respective machine DistFunR (Algorithm 2)
through an oracle Oc, which, on any given input n ∈ N, supplies DistFunR with a ratio-
nal cn ∈ Q satisfying:

| c − cn | ≤ 2−n. (9)

Theorem 3. Assume that u : [0, 1]2 → R is a continuous function with no significant
flat zones, and let φu : N → N be a modulus of continuity for u. Then, the machine
DistFunR, operating under Algorithm 2, halts on any input c ∈ R and k ∈ N, and
returns a finite set A of two-dimensional rational boxes, such that:
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Algorithm 2 Pseudocode for DistFunR
Input: Corresponding to the four channels:

c ∈ R: height of the level set, queried through oracle Oc;
k ∈ N: accuracy;
u ∈ C([0, 1]2): target function, queried through oracle Ou;
φu : N→ N: a modulus of continuity of u.

Output: Approximation of {x ∈ [0, 1]2 | u(x) ≥ c} to within 2−k accuracy.
n← 0
error← 1 + 2−k // anything larger than 2−k would do
while error ≥ 2−k do

cn ← Oc(n) // Note that | cn − c | < 2−n

An ← DistFunQ(cn − 2−n, n, u, φu)
A′n ← DistFunQ(cn + 2−n, n, u, φu)
error← |∪An | − | ∪A′n | + 2−(n−1)

n← n + 1
end while
return An

– ∪A ⊆ αc B {x ∈ Ω | u(x) ≥ c}, and |αc \ ∪A | ≤ 2−k.
– q B | ∪A | ∈ Q and satisfies: | q − λu(c) | ≤ 2−k.

Proof. By (9) we have ∀n : cn − 2−n ≤ c ≤ cn + 2−n. As λu is decreasing (Prop. 1), we
have:

λu(cn + 2−n) < λu(c) < λu(cn − 2−n). (10)

Let us define qn B | ∪An | and q′n B | ∪A′n |. By Theorem 2, we have: | qn − λu(cn − 2−n) | ≤ 2−n,

| q′n − λu(cn + 2−n) | ≤ 2−n.
(11)

From (10) and (11), we get:

q′n − 2−n ≤ λu(c) ≤ qn + 2−n,

which explains why error is defined as the value of qn − q′n + 2−(n−1).
Note that λu is continuous (Prop. 1). Therefore:

lim
n→∞

λu(cn − 2−n) = lim
n→∞

λu(cn + 2−n) = λu(c).

In particular limn→∞ qn = limn→∞ q′n = λu(c). This, together with (11), ensure that the
aforementioned error goes below 2−k for sufficiently large n. This proves halting of the
algorithm. ut

By Prop. 1, when u is continuous and has no significant flat zones, then u∆ and
λu are inverses of each other. This, together with the fact that both functions are one-
to-one, continuous, and decreasing, provides a simple way of obtaining the decreasing
rearrangement of u from its distribution function:

Corollary 1. There exists an oracle machine InvDistFunR which, given:
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– a continuous u ∈ C([0, 1]2) with no significant flat zones and a modulus of continu-
ity φu : N→ N for u;

– a real number r ∈ [0, 1] and an accuracy k ∈ N,

returns a rational number c ∈ Q, together with a finite set of cells Ar ⊆ Mn0 , for
some meshgrid of granularity n0, such that | c − u∆(r) | ≤ 2−(k+1), ∪Ar ⊆ {x ∈ [0, 1]2 |

u(x) ≥ c}, and |ΣS∈Ar | S | − r | ≤ 2−(k+1).
Furthermore, if cr = u∆(r) and αcr B {x ∈ [0, 1]2 | u(x) ≥ cr}, then:

| ∪Ar ∆αcr | ≤ 2−k, (12)

in which ∆ denotes symmetric difference of sets defined as X ∆ Y B (X \ Y) ∪ (Y \ X).

Proof. As a modulus of continuity is provided, a lower bound a and an upper bound
b for u can be easily obtained. All that remains to do for InvDistFunR is to perform a
binary search using the machine DistFunQ of Theorem 2. ut

So far, we have only demanded the level sets of u to have measure zero. By Theo-
rem 3, these level sets become computably measure zero provided that u is computable:

Corollary 2. Assume that u : [0, 1]2 → R is a computable function with no significant
flat zones. Then for any computable c ∈ R, the level set u−1(c) is computably measure
zero.

4 Linear rearrangement optimization

Assume that, for some p ∈ [1,∞), we are given a generator f0 ∈ Lp([0, 1]) and a
function u ∈ C([0, 1]2) which has no significant flat zones. Our task is to compute the
necessarily unique f̂ ∈ R[0,1]2 ( f0) which maximizes the functional Lu as defined in (1).
Equation (2) provides the basis for the results of this section. Nonetheless, as f0 is
in Lp([0, 1])—hence might have discontinuities—we need to go through some careful
computable analysis to make sure that error estimates are accurately accounted for.

Requiring u to be continuous might seem like a strong condition, but in practice,
solutions of the PDE constraints to rearrangement optimization problems that we have
in mind invariably are ‘continuous’, i. e., the solutions lie in C(Ω), where Ω is the do-
main over which the PDE is stated. Furthermore, requiring u not to have any significant
flat zones ensures uniqueness of solutions, and again, it is a condition that is satisfied
in the vast majority of PDE-constrained rearrangement optimization problems in the
literature.

For computational purposes, the function u and one of its moduli of continuity φu

will be provided as oracles, in the same manner as in Sect. 3. As for the generator f0,
we first note that for any given p ∈ [1,∞), the set of simple step functions is dense in
Lp([0, 1]). Thus, we represent f0 ∈ Lp([0, 1]) as the limit of a Cauchy sequence of sim-
ple step functions converging to it. Using the results of Sect. 3, we obtain tight approxi-
mations of linear rearrangement maximizers for the approximant simple step functions,
and then prove that these approximations, in turn, converge to the true maximizer for
the given (potentially not finitely representable) function f0.
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Remark 2. Although we focus on maximization, corresponding results for linear rear-
rangement minimization may be obtained with straightforward tweaking of the argu-
ments and the proofs.

4.1 Simple step function generator

For some p ∈ [1,∞), assume that f ∈ Lp([0, 1]) is a simple step function, represented
by the set:

{x0, x1, . . . , xn, y1, . . . , yn} ⊆ Q,

Without loss of generality, we assume that f is non-increasing and ∀i , j : yi , y j. If
this is not the case, a simple sorting and then gluing of subintervals can ensure these
two conditions. Let f̂ be the unique maximizer of Lu over R[0,1]2 ( f ) as in Lemma 1 (vi),
and let γ B 2 max{| yi | | 1 ≤ i ≤ n}.

Now, assume that we are given an ε > 0, and our aim is to find some f̃ which
approximates f̂ to within ε accuracy. Let k ∈ N be large enough such that:

2−k <
ε p

nγp . (13)

Together with u, we provide this value k, and successive values of xi, to the machine
InvDistFunR, and for each i ∈ {1, . . . , n}, let Axi be as in Corollary 1. In particular,
if ci B λ−1

u (xi) and αci B {x ∈ [0, 1]2 | u(x) ≥ ci}, then by (12) we know that ∪Ai

approximates αci to within 2−k accuracy. Next, we define: Âx1 B ∪Ax1 ,

Âxk B ∪Axk \ ∪Axk−1 , (2 ≤ k ≤ n),

and note that Âxi ’s partition [0, 1]2. Hence, we can define a piecewise constant function
f̃ : [0, 1]2 → R as follows:

∀x ∈ [0, 1]2 : f̃ (x) B
n∑

i=1

yi χÂxi
(x).

From Corollary 1, we deduce that f̃ and f̂ coincide on all of [0, 1]2 except perhaps on a
set of Lebesgue measure at most n2−k. Thus:(∫

[0,1]2
| f̃ (x) − f̂ (x) |p dx

)1/p

<
(
n2−kγp

)1/p

(by (13)) < ε.

Putting all of the above together, we obtain:

Lemma 4. There exists an oracle machine M1 which, given:

– a continuous u ∈ C([0, 1]2) with no significant flat zones, and a modulus of conti-
nuity φu : N→ N for u;

– a real number p ∈ [1,∞), and a simple step function f ∈ Lp([0, 1]);
– an accuracy parameter n ∈ N;

returns a piecewise constant function f̃ ∈ Lp([0, 1]2) such that ‖ f̃ − f̂ ‖p < 2−n, in
which f̂ is the unique maximizer of Lu over R[0,1]2 ( f ) as in Lemma 1 (vi).
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Fig. 1 An oracle machine representation of LinMax, which computes the linear rear-
rangement maximizer f̂ of Lu over R[0,1]2 ( f ).
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4.2 General case

For an arbitrary f ∈ LP([0, 1]), we consider the oracle machine LinMax of Fig. 1. On
receiving the accuracy demand k ∈ N, the machine sends k + 1 as a query to the oracle
O f , which in turn returns a simple step function fk+1 : [0, 1]→ R satisfying:

‖ fk+1 − f ‖p ≤ 2−(k+1). (14)

Subsequently, LinMax uses the machine M1 from Lemma 4, providing it with p, u,
φu, fk+1, and accuracy parameter k + 1. The machine M1, in turn, returns a piecewise
constant f̃k+1 ∈ LP([0, 1]2) which satisfies:

‖ f̃k+1 − f̂k+1 ‖p ≤ 2−(k+1). (15)

Finally, LinMax returns f̃k+1 as output.
To prove that LinMax is working correctly, we need to prove that:

‖ f̃k+1 − f̂ ‖p ≤ 2−k. (16)

By Lemma 2 (i), there exists a measure-preserving map ρ : [0, 1]2 → [0, 1] satisfying:

u = u∆ ◦ ρ, (17)

where u∆ is the decreasing rearrangement of u. As f̂ and f̂k+1 are maximizers of Lu

over R[0,1]2 ( f ) and R[0,1]2 ( fk+1), respectively, by Lemma 1 (vi), there are non-decreasing
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functions ψ1 and ψ2 such that:

f̂ = ψ1 ◦ u and f̂k+1 = ψ2 ◦ u. (18)

As ψ1 and ψ2 are non-decreasing, it is straightforward to show that:

f ∆ = ψ1 ◦ u∆ and f ∆k+1 = ψ2 ◦ u∆. (19)

From (17), (18), and (19), we deduce f̂ = f ∆ ◦ ρ and f̂k+1 = f ∆k+1 ◦ ρ, which implies
that:

‖ f̂ − f̂k+1 ‖p = ‖ f ∆ − f ∆k+1 ‖p

(by Lemma 2 (ii)) ≤ ‖ fk+1 − f ‖p
(by (14)) ≤ 2−(k+1). (20)

By combining (15) and (20), we obtain (16). Hence, we have:

Theorem 4. There exists an oracle machine LinMax which, given:

– a continuous u ∈ C([0, 1]2) with no significant flat zones, and a modulus of conti-
nuity φu : N→ N for u;

– a real number p ∈ [1,∞), and a function f ∈ Lp([0, 1]);
– an accuracy parameter k ∈ N;

returns a piecewise constant function f̃ ∈ Lp([0, 1]2) such that ‖ f̃ − f̂ ‖p ≤ 2−k, in
which f̂ is the unique maximizer of Lu over R[0,1]2 ( f ) as in Lemma 1 (vi).

Essentially, we have fleshed out the algorithm for computing f̂ which is suggested
by equation (2). If we define ψ B f ∆ ◦ λu, then we will have f̂ = ψ ◦ u. Now it should
be clear that the measure-preserving transformation ρ of (17) is just λu ◦ u. Note that
λu can be obtained by Theorem 3, and f ∆ may be approximated using the simple step
function approximations { fn | n ∈ N} of f .

5 Generalizations

To stay focused on the essence of rearrangements, we presented our results for the
simple two dimensional cube [0, 1] × [0, 1]. Generalizations to the following, however,
are straightforward:

– Linear rearrangement minimization;
– n-dimensional cube [0, 1]n, for all n ∈ N;
– Open, bounded, and connected domains Ω ⊆ Rn, for which Ω is a union of n-

dimensional cubes with rational coordinates.

Some careful error analysis, together with (say) Delaunay triangulation, may pro-
vide a further generalization to polygonal domains with rational coordinates. Indeed,
domainsΩ that can be approximated from within via rational polygonal domains, whose
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boundary vertices lie on the boundary of Ω, may also be treated, using more careful er-
ror analysis.

Going further to general domains might need substantial change in approach, es-
pecially if the approximants of the domain Ω have to cover locations out of Ω. This is
reminiscent of the finite element methods for numerical solutions of PDEs, where care
is taken to have the finite element space as a subspace of the reference Sobolev space.

6 Conclusions and future work

We have taken some steps towards computable analysis of rearrangement optimization
problems. We provided oracle Turing machines that compute the distribution function,
decreasing rearrangement, and linear rearrangement optimizers, with respect to func-
tions that are continuous and have no significant flat zones.

The next step will be the computable analysis of a complete PDE-constrained re-
arrangement optimization problem. Note that linear rearrangement optimization is one
of the two main components of some numerical methods for solving PDE-constrained
rearrangement optimization problems [7,10], the other being PDE solving. Apart from
some isolated work (e. g., [2,16]) computable analysis of PDE solving is largely an
unexplored area.

In longer term, we aim to develop validated methods for shape optimization and free
boundary problems arising as PDE-constrained rearrangement optimization problems.

References

1. Benjamin, T.B.: The alliance of practical and analytical insights into the nonlinear problems
of fluid mechanics. In: Lecture Notes in Mathematics, vol. 503, pp. 8–29. Springer (1976)

2. Brattka, V., Yoshikawa, A.: Towards computability of elliptic boundary value problems in
variational formulation. Journal of Complexity 22(6), 858–880 (2006)

3. Burton, G.R.: Rearrangements of functions, maximization of convex functionals, and vortex
rings. Math. Ann. 276(2), 225–253 (1987)

4. Burton, G.R.: Variational problems on classes of rearrangements and multiple configurations
for steady vortices. Ann. Inst. H. Poincaré Anal. Non Linéaire 6(4), 295–319 (1989)

5. Burton, G.R., McLeod, J.B.: Maximisation and minimisation on classes of rearrangements.
Proc. Roy. Soc. Edinburgh Sect. A 119(3–4), 287–300 (1991)

6. Crowe, J.A., Zweibel, J.A., Rosenbloom, P.C.: Rearrangements of functions. J. Funct. Anal.
66(3), 432–438 (1986)

7. Elcrat, A., Nicolio, O.: An iteration for steady vortices in rearrangement classes. Nonlinear
Anal. 24(3), 419–432 (1995)

8. Emamizadeh, B., Marras, M.: Rearrangement optimization problems with free boundary.
Numer. Funct. Anal. Optim. 35(4), 404–422 (2014)

9. Emamizadeh, B., Zivari-Rezapour, M.: Rearrangements and minimization of the principal
eigenvalue of a nonlinear Steklov problem. Nonlinear Anal. 74(16), 5697–5704 (2011)

10. Emamizadeh, B., Farjudian, A., Liu, Y.: Optimal harvesting strategy based on rearrange-
ments of functions. Applied Mathematics and Computation 320, 677–690 (2018)

11. Emamizadeh, B., Farjudian, A., Zivari-Rezapour, M.: Optimization related to some nonlocal
problems of Kirchhoff type. Canad. J. Math. 68(3), 521–540 (2016)



Computable Analysis of Linear Rearrangement Optimization 15

12. Emamizadeh, B., Hanai, M.A.: Rearrangements in real estate investments. Numerical Func-
tional Analysis and Optimization 30(5–6), 478–485 (2009)

13. Farjudian, A.: Computable analysis of linear rearrangement optimization. In: Gopal,
T.V., Watada, J. (eds.) Theory and Applications of Models of Computation (TAMC
2019). Lecture Notes in Computer Science, vol. 11436, pp. 172–187. Springer (2019).
https://doi.org/10.1007/978-3-030-14812-6 11

14. Kao, C.Y., Su, S.: Efficient rearrangement algorithms for shape optimization on elliptic
eigenvalue problems. J. Sci. Comput. 54(2), 492–512 (2013)

15. Ko, K.I.: Complexity Theory of Real Functions. Birkhäuser, Boston (1991)
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