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Abstract—The growing popularity and application of Web services have led to an increase in attention to the 

vulnerability of software based on these services. Vulnerability testing examines the trustworthiness, and 

reduces the security risks of software systems, however such testing of Web services has become increasing 

challenging due to the cross-platform and heterogeneous characteristics of their deployment. This paper 

proposes a worst-input mutation approach for testing Web service vulnerability based on SOAP (Simple Object 

Access Protocol) messages. Based on characteristics of the SOAP messages, the proposed approach uses the 

farthest neighbor concept to guide generation of the test suite. The test case generation algorithm is presented, 

and a prototype Web service vulnerability testing tool described. The tool was applied to the testing of Web 

services on the Internet, with experimental results indicating that the proposed approach, which found more 

vulnerability faults than other related approaches, is both practical and effective.  
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I.   INTRODUCTION 

Due to the rapid development and wide application of the Internet, use of the service-oriented architecture 

(SOA) for distributed Web systems has been increasing. Although Web services are the typical form of SOA, 

and have been the focus of widespread attention and application, their quality and reliability problems 

represent significant obstacles to further development. Furthermore, due to some Web service characteristics, 

traditional software testing approaches are not easily applied. Some factors that contribute to the difficulty 

in application include: (1) different development and application environments (which increases the testing 

difficulty before the Web services are deployed); (2) the characteristics of Web service distribution, 

discovery, and dynamic bindings, as well as the uncertain and invisible processes; and (3) the need for a 

service interface for the Web service design and implementation when applying automatic testing methods 

and techniques. 

Although the testing of Web service robustness has already been examined [1-4], and a number of tools 

proposed, several difficulties and shortcomings remain, including: (1) a need for significant intervention in 

the testing process; (2) that only simple performance and access testing have been performed; and (3) that 

the approaches used in SOAP (Simple Object Access Protocol) message mutations are not optimal, with 

most studies to date being based on Web Services Definition Language (WSDL) specifications and 

Extensible Markup Language (XML) documents, and few using SOAP messages. A Web service, whose 

structure and source codes are not visible to the client, is located on the service provider's site, making 

research into its vulnerability challenging. Web service vulnerability refers to flaws in the service which 

threaten the security of the computer system, for example, memory leaks, buffer overflows and 

cross-boundary access (where memory variables access areas outside their defined scope). Some types of 

Web service vulnerability faults might not be effectively revealed by traditional approaches, including 

memory security faults, which are often triggered by illegal parameter values; and arithmetic security faults, 

which are often caused by parameter interaction such as dividing by zero, and out-of-range operand values.  
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To address the issue of testing Web service vulnerability, we propose an approach based on SOAP 

message mutation and the worst-input technique. The worst-input mutation method, which uses 

characteristics of SOAP messages, is presented in detail in this paper. The corresponding automatic test case 

generation algorithm, namely the test case generation based on the farthest neighbor (TCFN), is also 

discussed. The method involves partitioning the input domain into sub-domains according to the number 

and type of SOAP message parameters in the TCFN, and then selecting the candidate test case whose 

distance is farthest from all executed test cases and applying it to test the Web service. Finally, a prototype 

Web service vulnerability testing tool is implemented and applied to a number of real Web services, with 

experimental results showing that the proposed approaches are both effective and practical. 

The main contributions of this paper are as follows: 

 We propose a set of mutation operators which can automatically mutate Web service SOAP messages 

based on security rules and message parameter types.  

 Using the farthest neighbor concept, we propose a worst-input mutation method to test Web service 

vulnerability, and present test case generation algorithms based on the number and type of SOAP 

message parameters. 

 We implement the proposed approach in a Web service vulnerability testing system (WSVTS) tool, 

which we further evaluate through comparison with other Web service testing approaches. The 

results show that in most cases the proposed approach can detect more faults. 

The remainder of the paper is organized as follows: some related Web service testing work is discussed in 

Section II. The mutation operators and security rules are presented in Section III. The details of the proposed 

approach are presented in Section IV, with some experiments to evaluate it reported on in Section V. The 

future work and conclusion are given in Section VI.  

II.   RELATED WORK 

Currently, research into Web service vulnerability testing remains limited, with studies focusing mainly 

on functionality testing [2,5,6], reliability analysis [3], data perturbation [7-9], and Web service rule 

mutation [10-12]. 

Takase & Tajima [2] proposed an approach to the functional testing of Web services by first extracting the 

SOAP message using the WSDL converter, and then exchanging messages using the SOAP message 

binding framework. A disadvantage of this approach, however, is that it only bundled some of the input 

parameters to obtain the return value for a single message, rather than bundling multiple interdependent 

functions. If the combined services could be processed on the physical machine at the same time, then the 

process could be more efficient. Sun et al. [5,6] have proposed a metamorphic relations-based approach to 

testing Web services in the context of SOA without the need for oracles. An alternative approach based on 

fault injection was proposed by Wu et al. [3], but the working mode of SOAP documents could not be tested; 

multiple mistakes could not be injected at the network layer; and the fault injection messages could not be 

authenticated. An approach based on data communication perturbation was proposed by Almeida & Vergilio 

[7], where the perturbation operators were designed according to characteristics of the SOAP message. 

Experiments were conducted using their proposed mutation operators and SMAT-WS [7] tools, but it was 

found that the designed mutation operators were not sufficient for comprehensive testing. Fuzzy approaches 

to generating perturbation test cases have also been studied [8, 9], but to date, an appropriately feasible test 

case generation algorithm has still not yet been presented.  

Web service data value perturbation and rule mutation are the focus of the current paper. An approach to 

test-case generation based on data value perturbation was proposed by Offutt & Xu [10], where request 

messages were modified by mutation operations resulting from data value perturbation, RPC (Remote 

Procedure Call) communication perturbation, and data communication perturbation. However, only some 

special values such as maximum and minimum, and valid decimal, were considered in the mutation process. 

Their data value and communication perturbation approach [10] was modified by de Melo & Silveira [11], 

who also extended the mutations [12] introduced previously [1, 7], using an invalid test case value in the 

data value perturbation, and introducing two strategies (all and choice) and four mutation operators for RPC 

communication in the data communication perturbation. The test coverage for the RPC and document 

communication was also increased, but the overall mutation testing approach was not completely 

comprehensive, nor was a test case generation algorithm proposed.  
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We previously proposed a combinatorial mutation approach for testing the interactive faults of Web 

services [13]. The proposed approach defines the corresponding combinatorial strategies based on SOAP 

message mutation and combinatorial testing, allowing multiple mutants to be injected at one time to help 

uncover interactive faults. However, if the tested Web services have only one service method or one method 

parameter, then the combinatorial mutation approach cannot offer its full potential advantage. In order to test 

different kinds of Web services, we propose a worst-input mutation method based on the farthest neighbor 

concept, which, as a complementary approach to combinatorial mutation, can also enhance the effectiveness 

of Web service vulnerability detection.  

III.    MUTATION OPERATORS AND SECURITY RULES 

The appropriate design of mutation operators is critical for mutation testing based on SOAP messages, 

and for it to be successful, the object and the purpose of mutation should be explicitly clear. SOAP is a 

message protocol based on an XML document, which forms the basis of the mutation object. A formal 

description for the XML modeling of a SOAP message was given by Novak & Zamulin [14]. Offutt & Xu 

[10] extended the regular tree grammar (RTG) model to <E, N, D, P, A, ns>, but no specific parameter type 

information or classification were provided for the general characteristics of the XML document. Based on 

these models, we have improved and extended the RTG to an eRTG (extended regular tree grammar), which 

is a 6-tuple <E, N, DT, P, A, ns>, where: E is a finite set of elements; N is a finite set of non-terminals; DT is 

a finite set of data types defined as {int, string, bool, numerical, char, object}; P is a finite set of production 

rules; ns is the starting non-terminal; and A is a 2-tuple <n, type> with n as the number of parameters, and 

type as the parameter type, one of {rec, cir, cur}, where: rec is the rectangular input domain, cir is the 

circular input domain, and cur is the curved input domain. Given a set of all element instances N, a mutation 

operator is r = f(n1, n2, ..., ni), where f is a function, i1, each n1, n2, ..., ni∈N and has an arbitrary data type, 

and r outputs the mutated n1,...,ni with the same data type as the input n1,...,ni. 

Although a set of interference operators had been introduced previously [15, 16], the uncertainty and 

randomness of an initial object led to data redundancy and low efficiency after mutation. We have therefore 

designed a total of 15 mutation operators for SOAP parameter types combined with Web services features, 

as shown in Table I. 

Table I.  Mutation operators of web service vulnerability testing based on the SOAP message  

ID. Operator Brief description Cases / Examples 

01 SVB Set the Value of n to be Blank Change value n to ― ― 

02 SVN Set the Value of n to be Null Change value n to null 

03 IPO 
Insert Parameter Operator into 

the value assigned to a node n    
Insert absolute value symbol into the value assigned to node n 

04 DNS 
Delete a Node n and its child 

nodes from the SOAP message 
Delete root nodes and child nodes from the SOAP message 

05 FVS Format the Value of String ―%n %n……(256)‖,‖%s %s(1024)‖et al. 

06 IIV Integer Irregular Value 0,+/-(1,28-1,28,28+1,216,216+1,216-1,232,232+1,232-1,264, 264+1) 

07 FIV Float Irregular Value 
0, 1, -1, +/-(the max float point +/-1), +/-(the min float point 

+/-1),5E-324,1.7E+308,pi,e 

08 CIV Char Irregular Value 'A','Z',:Null,'a','z',' ', '','../','{','(','[',’\n’,’\0’,’\s’,’\d’ 

09 EOV 
Exchange the Order of Values 

assigned to nodes   
Exchange the order of the values assigned to n1, n2 

10 EON 
Exchange the  

Order of Nodes 
Exchange the order of n1, n2 

11 RSV Random String Value 
Escape character string‖\e\n\r\d\x\s‖, 

"\xff\xfe\x00\x01\x42\xb5\nnnn\h9cc..." 

12 LSV Long String Value 
Generate String(int n) such 

as:―AAA……(256)‖,‖AAA……(1024)‖,‖AAA…(15000)‖ 

13 UVF 
Url and the Value of File 

directory string 

"http://dddddddeeeeerrttttt"; "//sytem32//Notepad.exe", 

H:\ABC\killvirus.exe‖,‖D:\AA.exeexe‖\ 

14 SSI SQL String Injection ―a or 1=1‖, ―delete‖,―drop table users‖,―sql attempt5--‖ 

15 PFB Parameter Flip Bit Use ReverseBit() to flip the value assigned to a node n  

We defined a security rule for testing the vulnerability of Web services based on the proposed mutation 

operators as follows: the vulnerability of Web services is Vws= G(r), where r = f(n1, n2, ..., ni) is the 
mutation operator for the tested Web service; G(r) represents the vulnerability which is triggered by r; and 
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ni∈N are the Web service input parameters. When the tested Web services accept the input parameters, if 

any exceptions are triggered by the mutation operators, then the tested Web service is deemed to have some 

vulnerability flaws.  

It is usual to encapsulate data in a SOAP protocol format, and a SOAP message can be expressed as two 

parts: input parameters and security control rules. Based on the SOAP message input parameters, a 

worst-input mutation approach to SOAP message mutation testing is proposed and presented in the 

following section.  

IV.    WORST-INPUT MUTATION APPROACH 

With regular mutation [7], the mutant can be obtained through a small modification of the legitimate input. 

Taking the opposite perspective, we identify the farthest neighbor sequence from the legitimate input as the 

test data to generate test cases according to the SOAP message types. Effective test cases should have the 

greatest possible test coverage, typical representation for triggering faults, and low redundancy. The farthest 

neighbor idea is similar to the concept of adaptive random testing (ART) [17], which is based on various 

empirical observations showing that many program faults result in failures manifesting in contiguous areas 

of the input domain. Therefore suggesting that, if previously executed test cases have not revealed a failure, 

new test cases should be as far away from the already executed non-failure causing test cases as possible. 

Intuitively speaking, the farthest test cases have higher probability of detecting Web service security 

exceptions. Hence, we investigate some farthest algorithms to detect the security exceptions of Web services 

based on related ART algorithms and mutation. 
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Figure 1.  Flow chart of test case generation using the farthest neighbor algorithm 

The input domain is partitioned into sub-domains according to the number and type of SOAP message 

parameters. A corresponding test case generation algorithm is then selected, and test cases conforming to the 

requirements of each sub-domain are then randomly generated. The candidate test case whose distance is 

farthest away from all executed test cases is then selected and applied to test the Web service. Here we 

propose the TCFN algorithm (Algorithm 1) based on the presented eRTG model. The TCFN algorithm 

consists of six sub-algorithms: BRA (bit reversal); ResStr (string reversal); NFDT (next furthest distance 

test); CFTD (circle furthest distance test); a weighted Ming distance [18]; and a multidimensional variation 

inverse probability distribution. BRA or ResStr are used when the SOAP message has only one parameter; 

NFTD or CFTD are used when there are two; and the weighted Ming distance or inverse probability 

distribution algorithms are used when there are more than two parameters. As can be seen in the TCFN flow 

chart (Figure 1), the SOAP message is obtained by parsing the WSDL file of the Web services being tested. 

Using an XML analysis technique, the number and type of SOAP message parameters are extracted, based 
on which, different algorithms are then called to generate the test cases. 
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Algorithm 1: TCFN  

Input: the input domain D (Xmin, Ymin) (Xmax, Ymax) of the SOAP message parameter. 

Output: the set of test cases S={e1,e2,...,en}. 

(1)   if  (n==1)  then 

(2)       { if ( DT is numerical ) 

(3)          call BRA algorithm and related mutation operators; 

(4)        if (DT is string) then 

(5)          call ResStr algorithm and related mutation operators; 

(6)       } 

(7)   else 

(8)   if  (n==2)   then 

(9)      { divide the type of the input region according to parameter’s value; 

(10)        if  (type==rec)   then 

(11)            call the NFDT Algorithm; 

(12)         else 

(13)        if  (type==cir)   then 

(14)            call the CFDT Algorithm; 

(15)         else 

(16)        if  (type==cur)   then 

(17)            generate the max-value and the min-value of the same interval of the function according to  

input region distribution function and related mutation operators; 

(18)      } 

(19)  else 

(20)    if ( n >=3 )   then 

(21)       {   

(22)         call the inverse probability distribution or weighted Ming distance algorithms based on 

parameter features; 

(23)  } 

(24)  output the set of test cases S={e1,e2,...,en}. 
 

The input region is divided into subregions based on the number and type of message parameters, and 

then the appropriate algorithm is selected to generate test cases to test the Web service. The main 

sub-algorithms of the TCFN algorithm are as follows: 

(1) BRA Algorithm 
When the input parameter data type is Integer (int), the BRA algorithm and related mutation operators are 

used to generate the farthest test cases. The BRA algorithm flips all bits (from 0 to 1, and 1 to 0).  

(2) ResStr Algorithm 
The ResStr algorithm calculates the length of the string, reverses it, and uses the CIV mutation operator 

to increase or decrease the length of the reversed string. The Web service SOAP message can be mutated 

using the reversed string, after which the response information of the client is examined to determine the 

vulnerability. 

(3) NFDT Algorithm 
The NFDT algorithm is based on the adaptive random testing (ART) family of algorithms [19]. The test 

cases are divided into sets E (Executed) and C (Candidate), both of which are initially empty, but as testing 

progresses, E contains n executed test cases {el, e2, e3,...,en}, and C contains k random candidate test cases 

{cl, c2, c3,...,ck}. ART research suggests that changes in the Candidate set size have little impact on the 

speed of detecting the first failure when k≥10, so as with previous studies, we set k to 10 in this 

experiment [19]. At the start of testing, when E is empty, a test case e is generated randomly, executed, and 

then appended to E. The next test case, cj, can be selected from C by calculating the distance between each 

element of C, and the executed test case e, and then selecting that element (cj) which has the greatest 

distance. The NFDT algorithm is shown in Algorithm 2.  

Algorithm 2: NFDT 

Input: the input domain D (Xmin,Ymin)(Xmax,Ymax) of the SOAP message parameter. 

Output: the set of test cases S={e1,e2,......,en} 
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(1)  input the region D of soap message {(Xmin, Ymin) (Xmax, Ymax)} 

(2)  set E={}, C={}.  

(3)  randomly generate the first test case e(x, y) by using related mutation strategies and operators, and     

divide D into T and L by e’ x-value.  

(4)  select T{(i, j),(s,t)}from D,(eT),DD-T; 

(5)  while (D != NULL) do 

(6)   {  if（T!=L） 

(7)            { if ( (x-i)≥(s-x)) 
(8)               the next test case is generated from T{(i, j),(x, t)}, then D=D∪{(i,j),(x,t)}; 

(9)             else 

(10)              the next test case is generated from L{(x, j),(s, t)},then D=D∪{(x,j),(s,t)}; 

(11)           } 

(12)       else 

(13)             select a field T or L randomly; 

(14)     select a big field Tˊ∈D, and randomly generate k test cases {c1,c2,....,ck} by using related    

mutation strategies and operators, C=C∪{c1,c2,...,ck}.  

(15)        sort the set of x value from small to large;           

(16)     find a test case e∈E, find Cj by using improved binary search method , whose x-axis is nearer to e 

(17)     calculate the distance 2 2d x y    ; 

(18)   calculate all the distances
ix between e and all the test cases behind Cj; 

(19)      for each Ci from Cj to Ck do 

(20)         {  if (d
ix ) 

(21)                d=dnew 

(22)            else 

(23)                stop calculating according to 2 2d x x y      ; 

(24)    } 

(25)      for each Ci from C1 to Cj do 

(26)        {  if (
id x  ) 

(27)                d=dnew 

(28)           else 

(29)               stop calculating according to 2 2d x x y      ; 

(30)        } 

(31)     search the max value d corresponding test case Cj as the next test case, Cj→e and E=E∪e, the     

two fields divided by Cj are joined in D; 

(32)      DD-T ; 

(33)  } 

(34)  return the set of test cases S={e1,e2,...,en}. 
The original binary search algorithm [20] is improved in step 13 to increase the search efficiency and to 

verify its effectiveness. Since the input region is finite set, as the number of test cases grows, so too does 

their density in the corresponding input region – the distance between a new test case and the nearest 

executed test case becomes much smaller. The candidate test cases can be considered when the distance 

between test cases (d ) is relatively large. A ratio parameter is then defined on the basis of the binary search 

algorithm as follows: an array [N] is an ordered integer array whose values range from small to large, and 

the sub-array from array [L] to array [H] is one sub-array of the ordered array, and the element array [mid] 

is the value which is the nearest to target value x. The mid is then selected. Hence, the ratio parameter 

formula is R=(x-array[L])/(array[H]-array[L]), then the formula 

(x-array[L])/(array[H]-array[L])=(mid-L)/(H-L) can be deduced,  and mid can be obtained using 

mid=L+R*(H-L). 

The difference between the NFDT algorithm and the typical FSCS (Fixed Size Candidates Set) ART 

algorithm is that the next test case is determined based on the position of test cases previously executed by 

the NFDT algorithm. The input domain is divided into two areas based on the previously executed test 

cases, thereby reducing the search space and number of distance calculations. The improved binary search 

algorithm can help to identify the candidate test case closest to previously executed test cases. According 

to the distance between the closest and executed test cases, a decision is made as to whether or not distance 
calculations will be made for all the candidate test cases, thus potentially reducing the total number of 

distance calculations performed, similar to the filtering technique used by Chan et al [21]. 
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(4) CFDT Algorithm 
The CFDT algorithm uses the restricted adaptive random testing technique [22] to select the next test 

case, using an exclusion region radius. Generally speaking, the selected test cases have better detection 

capability for finding the security exceptions of Web services than general test cases. There are two reasons 

for this. Firstly, the selected test cases are always away from previously executed test cases that have been 

generated outside the exclusion region: more distant test cases can more easily find security exceptions 

than normal test cases [16]. Secondly, the selected test cases have been mutated based on mutation 

operators designed to detect special security exceptions. 

Two parameters, A and P, are defined to measure the SOAP input domain, when it is a circle or an 

ellipse. A and P represent the area and perimeter of an ellipse, =πA ab , (3( ) / 2 )P a b ab   , respectively 

[23,24] (a and b are the radii of the ellipse; when a = b, the ellipse is a circle). S is the set of test cases to be 

tested; C is the set of test cases randomly generated; and N is the number of test cases in S. The first test 

case is randomly generated, and the subsequent ones are generated using an iterative approach [22]. A 

parameter R = A / (2n )  is used to determine the size of the exclusion region. Each test case in S is set as 

the center of a region, with R as the radius of the circular exclusion region. The first generated test case not 

falling in an excluded region is then selected as the next test case. An adjustment parameter r is introduced 

to compensate for the effects of overlapping zones and portions of zones lying outside the input domain. R 

is set as / (2 )Ar n . The CFDT algorithm is shown in Algorithm 3.  

Algorithm 3: CFDT  

Input: the circle center e1(x, y) and radius R of SOAP message input region 

Output: the set of test cases S= {e1,e2,...,en} 

(1)  set S={},C={}, n=0, r=1;   

(2)  randomly generate e1 by using related mutation strategies and operators and S=S∪e1; 

(3)  while ( R !=0 )  do 

(4)   {  find an exclusion circle (ei (i=1,2,3....), / (2 )R A n ), randomly generate k test cases {c1,   

c2, …., ck} and then {c1, c2, ..., ck}(ei, / (2 )R A n ) C=C∪{c1,c2,...,ck}; 

(5)      sort the k test cases according to x-value from small to large, calculate all distances di, and then  

find the test case ei whose distance is the largest and S=S∪ei, n=n+1; 

(6)      set r to adjust the exclusion region; 

(7)   } 

(8)  return the set of test cases S={e1, e2,..., en}. 

(5) Weighted Ming distance 
If the number of SOAP parameters (n) is three or more, then the inputs are regarded as the n-tuple data 

set (T), with each t=(x1, x2, …, xn), t∈T being a single input from T. When a test case (e) is generated 

randomly, a new coordinate system is defined based on it, with each previously executed point (test case) 

translated appropriately. Without loss of generality, the following explanation of this method is in 2D, but 

the method applies to higher dimensions: Lines L1 and L2 are perpendicular axes through the point e, 

dividing the area that includes all points within the neighborhood of e into four sub-areas M, N, S and O. 

The four sub-areas are marked as the neighborhood areas of point e. Lines L1 and L2 are also seen as the 

boundaries between the four areas, with the corners formed by the lines being called neighborhood angles. 

Across from each neighborhood angle a diagonal is formed, enclosing the neighborhood area. Any points 

in the neighborhood area should be filtered using related algorithms [18]. Based on the neighborhood areas 

and some rules [18][25], the weighted Ming distance (WD) between a point t and e is defined as 
n n

2 1/2
i i i i

i=1 i=1

WD=( |x -y | w ) / w  , where wi represents the corresponding weight for every input parameter to 

define the contribution of different parameter. The formula can measure the distance between different 

inputs. Given a current test case (e), the Furthest Neighbor (FN) formula is used to select the next test case, 

and is defined as ( ) { | : ( , ) ( , )}FN e r T t T WD e r WD t r     . The formula guarantees that the distance 

between the current and next test case is always greater than or equal to the distance between the next test 

case and any test case of T.  

(6) Inverse probability distribution 
If the n-tuple parameters are from a continuous input space and the inverse probability distribution 

function for the input space can be obtained, then it can be used to guide generation of some 
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unconventional test cases to detect security exceptions. Generally speaking, unconventional inputs can 

effectively trigger the security exceptions for Web services. The input distribution function is usually a 

probability density function, whose output ranges from 0 to 1, where 0 means that it is impossible to select 

inputs from the input domain, and 1 means that the inputs from the input domain are 100% available. The 

main steps needed to get the inverse probability distribution function are as follows [26]. 

Step 1: Describe the probability of each input (an ordered n-tuple) as a value in the n+1
th

 dimension; 

Step 2: Determine the hyper-plane which is defined by setting the n+1 dimension value to a constant, 

1/K, where K is the cardinality of the input space;  

Step 3: Reflect the input distribution through this hyper plane; 

Step 4: If any of the resulting values in the n+1
th

 dimension are negative, translate the graph by a vector 

of magnitude C, so that all the values in the n+1 dimension are non-negative; 

Step 5: Normalize the resulting graph in n+1 space, dividing each value by the total volume. At the end 

of this step, the value in n+1 space associated with each n-tuple is the probability of selection in the  

inverse probability distribution function. 

The SOAP message is obtained by parsing the WSDL file of the Web services being tested, and is then 

transformed into a DOM tree. Based on the number and type of SOAP parameters, the appropriate TCFN 

algorithm is called to generate test cases. The complexity of the TCFN algorithm is mainly determined by 

the BRA algorithm, ResStr, NFDT, CFDT, weighted Ming distance and inverse probability distribution 

algorithms. In the BRA algorithm, flipping all bits (from 0 to 1, and 1 to 0) is time consuming. If the bit 

length of the integer is n, then the complexity of BRA algorithm is O(n). In the ResStr algorithm, 

traversing the entire string is time consuming. If the length of the string is n, then the complexity of ResStr 

algorithm is O(n). In the NFDT algorithm, a set of test case candidates randomly generated in the input 

domain is maintained. Each time a new test case is required, the candidate test case that is farthest from all 

previously executed test cases is selected. The runtime of the NFDT algorithm when generating n test cases 

is in the order of O(n2). The main time cost of the CFDT algorithm is the large number of distance 

calculations which are performed when new test cases are selected. The runtime of the CFDT algorithm 

when generating n test cases is in the order of O(n2·logn). The time complexity of both weighted Ming 

distance algorithm and inverse probability distribution algorithm is respectively O(n2). The total time 

complexity of the TCFN algorithm is therefore O(n)+O(n)+O(n2)+O(n2)+O(n2)+O(n2·logn) = O(n2·logn). 

V.   EXPERIMENT AND ANALYSIS 

A. Experimental implementation 

To investigate and evaluate the proposed TCFN algorithm, a Web service vulnerability testing system 

(WSVTS) was implemented. The WSVTS framework is shown in Figure 2. WSVTS obtains the interface 

information by parsing the uniform resource locator (URL) of the Web service, and gets the SOAP 

message by parsing the WSDL document.  

Test case 

generator

SOAP message 
generator

mutation 
generator

Testing 
Controller

Testing ResultTesting Report
Vulnerability 

analyzer

Web 

Services

Web 

Services

W
eb

 S
erv

er
 

WSDL

Client Driver

BRA CFDTNFDTResStr

TCFN Algorithm

M
u
tatio

n
 O

p
erato

rs
 

Other algorithms

...

 

Figure 2.  The WSVTS framework 

WSVTS was implemented in Visual C# on the Microsoft.NET platform, and contains four main function 

modules: (a) the SOAP message generator; (b) the SOAP message mutation generator; (c) the test case 

generator; and (d) the Web service vulnerability analyzer. The details of these major modules are presented 
in the following.  
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1) SOAP message generator 

The input to the SOAP message generator is a WSDL file of the Web service being tested, and consists 

of the response message data type, the transmission protocol and the Web service address information. The 

output is a Web service SOAP message. 

2)  SOAP message mutation generator 

Based on mutation operators designed for different fault types, the mutation module mutates the SOAP 

message parameter type and value. The parameter type and number are obtained from the SOAP message 

generator, and the test cases are obtained from the test case generator.  

3) Test case generator  

The test case generator provides a convenient interface for the tester to input test cases, and can also use 

different algorithms based on the SOAP message parameter number, as analyzed by the SOAP message 

generator. 

4)  Vulnerability analyzer 

The vulnerability analyzer generates a vulnerability report after testing the Web services. It analyzes the 

Web service vulnerability based on the security specifications, and reports the number of security 

exceptions and faults found. 

As can be seen in the WSVTS flow chart (Figure 3), the SOAP message is obtained by parsing the 

WSDL file of the Web services being tested. Then, using an XML analysis technique, the number and type 

of SOAP message parameters are extracted, based on which, the appropriate TCFN algorithm is called to 

generate test cases. The Web services are tested based on the testing controller and client driver, using the 

generated test cases. Finally, the vulnerability testing report is obtained based on observations of the 

response messages received from the client of the Web services being tested. 

Vulnerability test report

Analyze SOAP 
message 

Generate test 
cases

Execute test 
cases

 Web Services

Analyze the number 

of SOAP parameters

Parse WSDL file

WSVTS 
Model

TCFN

 

Figure 3.  Flow chart of the Web service vulnerability testing system  

In the experiments, in addition to several open Web services, some specifically written services were 

also analyzed. The list of tested Web services is shown in Table II.  

During the experimental process, the function of the IPO mutation operator was merged with that of 

either the IIV or PFB mutation operator to generate test cases, according to the specific circumstances and 

SOAP message types. Different mutation operators may find the same error for the same Web service, in 
which case the error was counted only once. Similarly, the same fault found by different test cases 
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generated by the same perturbation operator was also only counted once. The operator efficiency (OE) 

defines the efficiency of an operator in terms of finding faults, and is calculated as OE=EF/TC, where EF 

is the number of faults found and TC is the total number of test cases generated by the operators. The 

efficiency of the mutation operators is shown in Figure 4. Different mutation operators have different 

efficiency, with the FVS operator having the highest (36.52%). 

B. Experimental results and analysis 

Web service vulnerabilities were found by the proposed approaches. Although the proposed mutation 

operators are applicable to related approaches, the test case generation rules may differ. Also, the 

continuous types of test case generation are more complex than the discrete types, and test cases for the 

continuous types can be adapted to the discrete types but not vice versa. We next compare our proposed 

approach with two others, SOAPUI [27] and SMAT-WS [7]. 

1)  Comparison of WSVTS and SOAPUI  

A total of 20 kinds of specially designed Web services were investigated using the two approaches based 

on the SOAP message parameter type. The SOAPUI [27] is an open source Web service testing tool, and 

WSVTS is a testing tool based on the approach proposed in this paper. Table III shows the experimental 

results for the open source tool SOAPUI, in which the test cases are manually entered according to the 

SOAP message parameter type; and Table IV shows the results for WSVTS. Based on these results, the 

overall efficiency (OE) of the mutation operators generated by the two approaches are calculated to be 

approximately 21.1% and 23.7%, respectively, confirming the feasibility of our proposed approach, and the 

validity of the test cases generated.  

Table II. The tested Web services  

No. Service Name 
The number of  

service methods  

The number of  

method 

parameters 

Description 

WS1 Stock 8 23 Searching stock information 

WS2 Weatherforecast 7 19 Weather forecast service 

WS3 E-Banking 9 25 Online banking service 

WS4 Bookfinding 6 15 Searching book information 

WS5 Domainfinding 5 13 Searching domain and IP address 

WS6 Petinformation 7 16 Searching Pet information 

WS7 Traintime 7 14 Searching train timetable  

WS8 Planetime 5 12 Searching aircraft flight information 

WS9 QQcheckonline 7 13 Searching QQ online information 

WS10 Queryresults 9 22 Searching student achievement information 

WS11 Producedorder 8 16 Searching production order information 

WS12 Calculator 7 15 Arithmetic calculating service  

WS13 Maxdivisor 5 
10 Finding the greatest common divisor of two 

numbers 

WS14 Mod 4 8 Finding the remainder of two numbers 

WS15 Reversestring 8 14 Reversing the string 

WS16 Stringcopy 6 12 Copying the string 

WS17 Stringlength 4 8 Obtaining the length of string 

WS18 Login 5 8 User login 

WS19 Vote 5 16 Getting the result of the vote 

WS20 Echoinformation 6 13 Echoing personal information 
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Figure 4.  Efficiency of the mutation operators 

 

Table III. Test results of the SOAPUI tool 

Mutation 

operators  
DNS SVN EON EOV SVB SSI LSV IIV FVS CIV RSV FIV UVF PFB Total OE 

Number of test 

cases generated 
42 124 113 97 130 40 211 151 115 197 98 102 41 118 1579 21.1% 

Faults found 8 19 11 9 38 2 28 45 42 36 31 28 7 30 334  

Table IV. Test results of WSVTS tool 

Mutation 

operators 
DNS SVN EON EOV SVB SSI LSV IIV FVS CIV RSV FIV UVF PFB Total OE 

Number of test 

cases generated 
42 118 113 97 123 33 164 126 115 150 99 88 35 118 1421 23.7% 

Faults found 10 19 11 11 38 2 28 45 42 38 31 28 11 23 337  

Figure 5 gives a comparison of the efficiency of the two approaches, showing that for most operators, 

the number of faults found by the WSVTS approach is higher than that found by the SOAPUI tool 

(exceptions being the EON, FVS, RSV, and PFB operators). The UVF operator appears particularly 

efficient. The faults found consist of some common vulnerability faults such as memory leak, buffer 

overflow, cross-boundary access, and arithmetic security faults including dividing by zero and out-of-range 

operand values. Thus, the designed operators and our approach are confirmed to be very effective.  

 

Figure 5. Comparison of the WSVTS and SOAPUI efficiencies 
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2)  Comparison of SMAT-WS, WSVTS, and SOAPUI 

Research on SOAP message mutation testing is still not common. The experimental results of SOAP 

message perturbation reported by Almeida & Vergilio [7] is reproduced here in Table V. Their proposed 

mutation operators are different from ours because of the different Web services, therefore we compare the 

approaches based on the overall efficiency of the mutation operators: the overall effectiveness of the test 

cases generated by the SMAT-WS testing tool is 15.7%. A comparison of all three methods is shown in 

Figure 6. 

Table V. SMAT-WS test results [7]  

Mutation operators I N BE IN VI S B U ML Total OE 

Number of test cases 

generated 
54 54 363 43 45 54 162 54 108 937 15.7% 

Faults found 16 21 24 2 8 19 27 16 15 148  

Mutation Operators: Incomplete (I), Null (N), Boundary Extension (BE), Inversion (IN), Value Inversion (VI), Space(S), 

Unauthorized (U), Mod_Len(ML), Boundary(B) 
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Figure 6.  Comparison of the SMAT-WS, SOAPUI, and WSVTS tools 

The experimental results in Figure 6 show that SMAT-WS finds more faults at the earlier stage of testing, 

but that the rate of faults found by WSVTS increases fastest, supporting the validity of this approach. The 

fault-finding abilities of the SMAT-WS and SOAPUI approaches are similar within a certain range. 

Although the three approaches (SMAT-WS, SOAPUI and WSVTS) are all based on SOAP message 

mutation, the corresponding proposed mutation operators are different because the Web services tested 

with SMAT-WS are different from those tested by SOAPUI and WSVTS. In general, the number of test 

cases generated is different because of the different mutation operators applied to different situations as 

well as the number of faults.  

Compared with the other methods, the advantages of the WSVTS tool include that the mutation 

operators expand according to the characteristics of the SOAP message in the experiment – in other words, 

the testing is more comprehensive; and the algorithm is automatically called to generate test cases 

according to the number of parameters and the SOAP message type. The targeted faults consist of buffer 

overflow faults, cross-boundary access faults and arithmetic security faults. 

VI.   CONCLUSIONS 

Research on Web service vulnerability testing remains limited, partly due to their cross-platform and 

differing characteristics. In this paper we have presented mutation operators designed for SOAP messages, 

and a mutation testing algorithm for the automated generation of test cases.  

By designing appropriate SOAP message mutation operators, the security of the Web services can be 

tested from the client side, and vulnerability faults can be identified from the user perspective. In most cases, 

compared with the classic farthest neighbor algorithm, the proposed TCFN algorithm reduces the number of 

distance calculations. Compared with the pure random testing, the proposed TCFN algorithm can detect 

more faults with fewer test cases. Because specifically tailored test cases can be generated, the efficiency 

and quality of test case generation can be improved. Furthermore, the test cases can also be generated 
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automatically, using legal and illegal input parameters and mutation operators. The effectiveness of the 

proposed approach has been shown to be higher than that of other available approaches. The efficiency of 

the proposed mutation operators is higher than other approaches such as SMAT-WS. In addition, the 

approach can detect more vulnerability faults than other approaches with the same test cases. 

In the future, we would like to continue research in the following areas: firstly, we will do more 

experiments to verify the reliability of the proposed approaches. Secondly, we will research how to further 

reduce the redundant test cases after mutating. Thirdly, the automatic process of test case generation and 

mutation also need to be further improved to enhance the testing efficiency. 
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