

1

Worst-input Mutation Approach to Web Services Vulnerability Testing

based on SOAP Messages

Jinfu Chen
1,2 +

, Huanhuan Wang
 1
, Dave Towey

 3
, Chengying Mao

 2,4
, Rubing Huang

 1,5
, Yongzhao Zhan

 1

1 (School of Computer Science and Telecommunication Engineering, Jiangsu University,

Zhenjiang, 212013, China)

2(Faculty of Information and Communication Technologies, Swinburne University of Technology,

Hawthorn, Victoria 3122, Australia)

3 (School of Computer Science, The University of Nottingham Ningbo China, Ningbo, 315100, China)

4 (School of Software and Communication Engineering, Jiangxi University of Finance and Economics,

Nanchang, 330013, China)

5 (School of Computer Science and Technology, Huazhong University of Science and Technology,

Wuhan, 430074, China)

+Corresponding email: jinfuchen@ujs.edu.cn

Abstract—The growing popularity and application of Web services have led to an increase in attention to the

vulnerability of software based on these services. Vulnerability testing examines the trustworthiness, and

reduces the security risks of software systems, however such testing of Web services has become increasing

challenging due to the cross-platform and heterogeneous characteristics of their deployment. This paper

proposes a worst-input mutation approach for testing Web service vulnerability based on SOAP (Simple Object

Access Protocol) messages. Based on characteristics of the SOAP messages, the proposed approach uses the

farthest neighbor concept to guide generation of the test suite. The test case generation algorithm is presented,

and a prototype Web service vulnerability testing tool described. The tool was applied to the testing of Web

services on the Internet, with experimental results indicating that the proposed approach, which found more

vulnerability faults than other related approaches, is both practical and effective.

Keywords-Web service vulnerability; SOAP message; Test case generation; Mutation operator; Security testing

I. INTRODUCTION

Due to the rapid development and wide application of the Internet, use of the service-oriented architecture

(SOA) for distributed Web systems has been increasing. Although Web services are the typical form of SOA,

and have been the focus of widespread attention and application, their quality and reliability problems

represent significant obstacles to further development. Furthermore, due to some Web service characteristics,

traditional software testing approaches are not easily applied. Some factors that contribute to the difficulty

in application include: (1) different development and application environments (which increases the testing

difficulty before the Web services are deployed); (2) the characteristics of Web service distribution,

discovery, and dynamic bindings, as well as the uncertain and invisible processes; and (3) the need for a

service interface for the Web service design and implementation when applying automatic testing methods

and techniques.

Although the testing of Web service robustness has already been examined [1-4], and a number of tools

proposed, several difficulties and shortcomings remain, including: (1) a need for significant intervention in

the testing process; (2) that only simple performance and access testing have been performed; and (3) that

the approaches used in SOAP (Simple Object Access Protocol) message mutations are not optimal, with

most studies to date being based on Web Services Definition Language (WSDL) specifications and

Extensible Markup Language (XML) documents, and few using SOAP messages. A Web service, whose

structure and source codes are not visible to the client, is located on the service provider's site, making

research into its vulnerability challenging. Web service vulnerability refers to flaws in the service which

threaten the security of the computer system, for example, memory leaks, buffer overflows and

cross-boundary access (where memory variables access areas outside their defined scope). Some types of

Web service vulnerability faults might not be effectively revealed by traditional approaches, including

memory security faults, which are often triggered by illegal parameter values; and arithmetic security faults,

which are often caused by parameter interaction such as dividing by zero, and out-of-range operand values.

2

To address the issue of testing Web service vulnerability, we propose an approach based on SOAP

message mutation and the worst-input technique. The worst-input mutation method, which uses

characteristics of SOAP messages, is presented in detail in this paper. The corresponding automatic test case

generation algorithm, namely the test case generation based on the farthest neighbor (TCFN), is also

discussed. The method involves partitioning the input domain into sub-domains according to the number

and type of SOAP message parameters in the TCFN, and then selecting the candidate test case whose

distance is farthest from all executed test cases and applying it to test the Web service. Finally, a prototype

Web service vulnerability testing tool is implemented and applied to a number of real Web services, with

experimental results showing that the proposed approaches are both effective and practical.

The main contributions of this paper are as follows:

 We propose a set of mutation operators which can automatically mutate Web service SOAP messages

based on security rules and message parameter types.

 Using the farthest neighbor concept, we propose a worst-input mutation method to test Web service

vulnerability, and present test case generation algorithms based on the number and type of SOAP

message parameters.

 We implement the proposed approach in a Web service vulnerability testing system (WSVTS) tool,

which we further evaluate through comparison with other Web service testing approaches. The

results show that in most cases the proposed approach can detect more faults.

The remainder of the paper is organized as follows: some related Web service testing work is discussed in

Section II. The mutation operators and security rules are presented in Section III. The details of the proposed

approach are presented in Section IV, with some experiments to evaluate it reported on in Section V. The

future work and conclusion are given in Section VI.

II. RELATED WORK

Currently, research into Web service vulnerability testing remains limited, with studies focusing mainly

on functionality testing [2,5,6], reliability analysis [3], data perturbation [7-9], and Web service rule

mutation [10-12].

Takase & Tajima [2] proposed an approach to the functional testing of Web services by first extracting the

SOAP message using the WSDL converter, and then exchanging messages using the SOAP message

binding framework. A disadvantage of this approach, however, is that it only bundled some of the input

parameters to obtain the return value for a single message, rather than bundling multiple interdependent

functions. If the combined services could be processed on the physical machine at the same time, then the

process could be more efficient. Sun et al. [5,6] have proposed a metamorphic relations-based approach to

testing Web services in the context of SOA without the need for oracles. An alternative approach based on

fault injection was proposed by Wu et al. [3], but the working mode of SOAP documents could not be tested;

multiple mistakes could not be injected at the network layer; and the fault injection messages could not be

authenticated. An approach based on data communication perturbation was proposed by Almeida & Vergilio

[7], where the perturbation operators were designed according to characteristics of the SOAP message.

Experiments were conducted using their proposed mutation operators and SMAT-WS [7] tools, but it was

found that the designed mutation operators were not sufficient for comprehensive testing. Fuzzy approaches

to generating perturbation test cases have also been studied [8, 9], but to date, an appropriately feasible test

case generation algorithm has still not yet been presented.

Web service data value perturbation and rule mutation are the focus of the current paper. An approach to

test-case generation based on data value perturbation was proposed by Offutt & Xu [10], where request

messages were modified by mutation operations resulting from data value perturbation, RPC (Remote

Procedure Call) communication perturbation, and data communication perturbation. However, only some

special values such as maximum and minimum, and valid decimal, were considered in the mutation process.

Their data value and communication perturbation approach [10] was modified by de Melo & Silveira [11],

who also extended the mutations [12] introduced previously [1, 7], using an invalid test case value in the

data value perturbation, and introducing two strategies (all and choice) and four mutation operators for RPC

communication in the data communication perturbation. The test coverage for the RPC and document

communication was also increased, but the overall mutation testing approach was not completely

comprehensive, nor was a test case generation algorithm proposed.

3

We previously proposed a combinatorial mutation approach for testing the interactive faults of Web

services [13]. The proposed approach defines the corresponding combinatorial strategies based on SOAP

message mutation and combinatorial testing, allowing multiple mutants to be injected at one time to help

uncover interactive faults. However, if the tested Web services have only one service method or one method

parameter, then the combinatorial mutation approach cannot offer its full potential advantage. In order to test

different kinds of Web services, we propose a worst-input mutation method based on the farthest neighbor

concept, which, as a complementary approach to combinatorial mutation, can also enhance the effectiveness

of Web service vulnerability detection.

III. MUTATION OPERATORS AND SECURITY RULES

The appropriate design of mutation operators is critical for mutation testing based on SOAP messages,

and for it to be successful, the object and the purpose of mutation should be explicitly clear. SOAP is a

message protocol based on an XML document, which forms the basis of the mutation object. A formal

description for the XML modeling of a SOAP message was given by Novak & Zamulin [14]. Offutt & Xu

[10] extended the regular tree grammar (RTG) model to <E, N, D, P, A, ns>, but no specific parameter type

information or classification were provided for the general characteristics of the XML document. Based on

these models, we have improved and extended the RTG to an eRTG (extended regular tree grammar), which

is a 6-tuple <E, N, DT, P, A, ns>, where: E is a finite set of elements; N is a finite set of non-terminals; DT is

a finite set of data types defined as {int, string, bool, numerical, char, object}; P is a finite set of production

rules; ns is the starting non-terminal; and A is a 2-tuple <n, type> with n as the number of parameters, and

type as the parameter type, one of {rec, cir, cur}, where: rec is the rectangular input domain, cir is the

circular input domain, and cur is the curved input domain. Given a set of all element instances N, a mutation

operator is r = f(n1, n2, ..., ni), where f is a function, i1, each n1, n2, ..., ni∈N and has an arbitrary data type,

and r outputs the mutated n1,...,ni with the same data type as the input n1,...,ni.

Although a set of interference operators had been introduced previously [15, 16], the uncertainty and

randomness of an initial object led to data redundancy and low efficiency after mutation. We have therefore

designed a total of 15 mutation operators for SOAP parameter types combined with Web services features,

as shown in Table I.

Table I. Mutation operators of web service vulnerability testing based on the SOAP message

ID. Operator Brief description Cases / Examples

01 SVB Set the Value of n to be Blank Change value n to ― ―

02 SVN Set the Value of n to be Null Change value n to null

03 IPO
Insert Parameter Operator into

the value assigned to a node n
Insert absolute value symbol into the value assigned to node n

04 DNS
Delete a Node n and its child

nodes from the SOAP message
Delete root nodes and child nodes from the SOAP message

05 FVS Format the Value of String ―%n %n……(256)‖,‖%s %s(1024)‖et al.

06 IIV Integer Irregular Value 0,+/-(1,28-1,28,28+1,216,216+1,216-1,232,232+1,232-1,264, 264+1)

07 FIV Float Irregular Value
0, 1, -1, +/-(the max float point +/-1), +/-(the min float point

+/-1),5E-324,1.7E+308,pi,e

08 CIV Char Irregular Value 'A','Z',:Null,'a','z',' ', '','../','{','(','[',’\n’,’\0’,’\s’,’\d’

09 EOV
Exchange the Order of Values

assigned to nodes
Exchange the order of the values assigned to n1, n2

10 EON
Exchange the

Order of Nodes
Exchange the order of n1, n2

11 RSV Random String Value
Escape character string‖\e\n\r\d\x\s‖,

"\xff\xfe\x00\x01\x42\xb5\nnnn\h9cc..."

12 LSV Long String Value
Generate String(int n) such

as:―AAA……(256)‖,‖AAA……(1024)‖,‖AAA…(15000)‖

13 UVF
Url and the Value of File

directory string

"http://dddddddeeeeerrttttt"; "//sytem32//Notepad.exe",

H:\ABC\killvirus.exe‖,‖D:\AA.exeexe‖\

14 SSI SQL String Injection ―a or 1=1‖, ―delete‖,―drop table users‖,―sql attempt5--‖

15 PFB Parameter Flip Bit Use ReverseBit() to flip the value assigned to a node n

We defined a security rule for testing the vulnerability of Web services based on the proposed mutation

operators as follows: the vulnerability of Web services is Vws= G(r), where r = f(n1, n2, ..., ni) is the
mutation operator for the tested Web service; G(r) represents the vulnerability which is triggered by r; and

4

ni∈N are the Web service input parameters. When the tested Web services accept the input parameters, if

any exceptions are triggered by the mutation operators, then the tested Web service is deemed to have some

vulnerability flaws.

It is usual to encapsulate data in a SOAP protocol format, and a SOAP message can be expressed as two

parts: input parameters and security control rules. Based on the SOAP message input parameters, a

worst-input mutation approach to SOAP message mutation testing is proposed and presented in the

following section.

IV. WORST-INPUT MUTATION APPROACH

With regular mutation [7], the mutant can be obtained through a small modification of the legitimate input.

Taking the opposite perspective, we identify the farthest neighbor sequence from the legitimate input as the

test data to generate test cases according to the SOAP message types. Effective test cases should have the

greatest possible test coverage, typical representation for triggering faults, and low redundancy. The farthest

neighbor idea is similar to the concept of adaptive random testing (ART) [17], which is based on various

empirical observations showing that many program faults result in failures manifesting in contiguous areas

of the input domain. Therefore suggesting that, if previously executed test cases have not revealed a failure,

new test cases should be as far away from the already executed non-failure causing test cases as possible.

Intuitively speaking, the farthest test cases have higher probability of detecting Web service security

exceptions. Hence, we investigate some farthest algorithms to detect the security exceptions of Web services

based on related ART algorithms and mutation.

1

N

Generate test cases

Y

Call ResStr
algorithm

Web Services

Parse WSDL to get
SOAP message

Extract the
number of SOAP

parameters

>=3

Weighted Mings or
Inverse probability

function

2

Is type char ? Judge input type

The number of SOAP
parameters

Call BRA
algorithm

Call NFDT
algorithm

Call CFDT
algorithm

Derivation
function

rec cir cur

Figure 1. Flow chart of test case generation using the farthest neighbor algorithm

The input domain is partitioned into sub-domains according to the number and type of SOAP message

parameters. A corresponding test case generation algorithm is then selected, and test cases conforming to the

requirements of each sub-domain are then randomly generated. The candidate test case whose distance is

farthest away from all executed test cases is then selected and applied to test the Web service. Here we

propose the TCFN algorithm (Algorithm 1) based on the presented eRTG model. The TCFN algorithm

consists of six sub-algorithms: BRA (bit reversal); ResStr (string reversal); NFDT (next furthest distance

test); CFTD (circle furthest distance test); a weighted Ming distance [18]; and a multidimensional variation

inverse probability distribution. BRA or ResStr are used when the SOAP message has only one parameter;

NFTD or CFTD are used when there are two; and the weighted Ming distance or inverse probability

distribution algorithms are used when there are more than two parameters. As can be seen in the TCFN flow

chart (Figure 1), the SOAP message is obtained by parsing the WSDL file of the Web services being tested.

Using an XML analysis technique, the number and type of SOAP message parameters are extracted, based
on which, different algorithms are then called to generate the test cases.

5

Algorithm 1: TCFN

Input: the input domain D (Xmin, Ymin) (Xmax, Ymax) of the SOAP message parameter.

Output: the set of test cases S={e1,e2,...,en}.

(1) if (n==1) then

(2) { if (DT is numerical)

(3) call BRA algorithm and related mutation operators;

(4) if (DT is string) then

(5) call ResStr algorithm and related mutation operators;

(6) }

(7) else

(8) if (n==2) then

(9) { divide the type of the input region according to parameter’s value;

(10) if (type==rec) then

(11) call the NFDT Algorithm;

(12) else

(13) if (type==cir) then

(14) call the CFDT Algorithm;

(15) else

(16) if (type==cur) then

(17) generate the max-value and the min-value of the same interval of the function according to

input region distribution function and related mutation operators;

(18) }

(19) else

(20) if (n >=3) then

(21) {

(22) call the inverse probability distribution or weighted Ming distance algorithms based on

parameter features;

(23) }

(24) output the set of test cases S={e1,e2,...,en}.

The input region is divided into subregions based on the number and type of message parameters, and

then the appropriate algorithm is selected to generate test cases to test the Web service. The main

sub-algorithms of the TCFN algorithm are as follows:

(1) BRA Algorithm
When the input parameter data type is Integer (int), the BRA algorithm and related mutation operators are

used to generate the farthest test cases. The BRA algorithm flips all bits (from 0 to 1, and 1 to 0).

(2) ResStr Algorithm
The ResStr algorithm calculates the length of the string, reverses it, and uses the CIV mutation operator

to increase or decrease the length of the reversed string. The Web service SOAP message can be mutated

using the reversed string, after which the response information of the client is examined to determine the

vulnerability.

(3) NFDT Algorithm
The NFDT algorithm is based on the adaptive random testing (ART) family of algorithms [19]. The test

cases are divided into sets E (Executed) and C (Candidate), both of which are initially empty, but as testing

progresses, E contains n executed test cases {el, e2, e3,...,en}, and C contains k random candidate test cases

{cl, c2, c3,...,ck}. ART research suggests that changes in the Candidate set size have little impact on the

speed of detecting the first failure when k≥10, so as with previous studies, we set k to 10 in this

experiment [19]. At the start of testing, when E is empty, a test case e is generated randomly, executed, and

then appended to E. The next test case, cj, can be selected from C by calculating the distance between each

element of C, and the executed test case e, and then selecting that element (cj) which has the greatest

distance. The NFDT algorithm is shown in Algorithm 2.

Algorithm 2: NFDT

Input: the input domain D (Xmin,Ymin)(Xmax,Ymax) of the SOAP message parameter.

Output: the set of test cases S={e1,e2,......,en}

6

(1) input the region D of soap message {(Xmin, Ymin) (Xmax, Ymax)}

(2) set E={}, C={}.

(3) randomly generate the first test case e(x, y) by using related mutation strategies and operators, and

divide D into T and L by e’ x-value.

(4) select T{(i, j),(s,t)}from D,(eT),DD-T;

(5) while (D != NULL) do

(6) { if（T!=L）

(7) { if ((x-i)≥(s-x))
(8) the next test case is generated from T{(i, j),(x, t)}, then D=D∪{(i,j),(x,t)};

(9) else

(10) the next test case is generated from L{(x, j),(s, t)},then D=D∪{(x,j),(s,t)};

(11) }

(12) else

(13) select a field T or L randomly;

(14) select a big field Tˊ∈D, and randomly generate k test cases {c1,c2,....,ck} by using related

mutation strategies and operators, C=C∪{c1,c2,...,ck}.

(15) sort the set of x value from small to large;

(16) find a test case e∈E, find Cj by using improved binary search method , whose x-axis is nearer to e

(17) calculate the distance 2 2d x y    ;

(18) calculate all the distances
ix between e and all the test cases behind Cj;

(19) for each Ci from Cj to Ck do

(20) { if (d
ix)

(21) d=dnew

(22) else

(23) stop calculating according to 2 2d x x y      ;

(24) }

(25) for each Ci from C1 to Cj do

(26) { if (
id x )

(27) d=dnew

(28) else

(29) stop calculating according to 2 2d x x y      ;

(30) }

(31) search the max value d corresponding test case Cj as the next test case, Cj→e and E=E∪e, the

two fields divided by Cj are joined in D;

(32) DD-T ;

(33) }

(34) return the set of test cases S={e1,e2,...,en}.
The original binary search algorithm [20] is improved in step 13 to increase the search efficiency and to

verify its effectiveness. Since the input region is finite set, as the number of test cases grows, so too does

their density in the corresponding input region – the distance between a new test case and the nearest

executed test case becomes much smaller. The candidate test cases can be considered when the distance

between test cases (d) is relatively large. A ratio parameter is then defined on the basis of the binary search

algorithm as follows: an array [N] is an ordered integer array whose values range from small to large, and

the sub-array from array [L] to array [H] is one sub-array of the ordered array, and the element array [mid]

is the value which is the nearest to target value x. The mid is then selected. Hence, the ratio parameter

formula is R=(x-array[L])/(array[H]-array[L]), then the formula

(x-array[L])/(array[H]-array[L])=(mid-L)/(H-L) can be deduced, and mid can be obtained using

mid=L+R*(H-L).

The difference between the NFDT algorithm and the typical FSCS (Fixed Size Candidates Set) ART

algorithm is that the next test case is determined based on the position of test cases previously executed by

the NFDT algorithm. The input domain is divided into two areas based on the previously executed test

cases, thereby reducing the search space and number of distance calculations. The improved binary search

algorithm can help to identify the candidate test case closest to previously executed test cases. According

to the distance between the closest and executed test cases, a decision is made as to whether or not distance
calculations will be made for all the candidate test cases, thus potentially reducing the total number of

distance calculations performed, similar to the filtering technique used by Chan et al [21].

7

(4) CFDT Algorithm
The CFDT algorithm uses the restricted adaptive random testing technique [22] to select the next test

case, using an exclusion region radius. Generally speaking, the selected test cases have better detection

capability for finding the security exceptions of Web services than general test cases. There are two reasons

for this. Firstly, the selected test cases are always away from previously executed test cases that have been

generated outside the exclusion region: more distant test cases can more easily find security exceptions

than normal test cases [16]. Secondly, the selected test cases have been mutated based on mutation

operators designed to detect special security exceptions.

Two parameters, A and P, are defined to measure the SOAP input domain, when it is a circle or an

ellipse. A and P represent the area and perimeter of an ellipse, =πA ab , (3() / 2)P a b ab   , respectively

[23,24] (a and b are the radii of the ellipse; when a = b, the ellipse is a circle). S is the set of test cases to be

tested; C is the set of test cases randomly generated; and N is the number of test cases in S. The first test

case is randomly generated, and the subsequent ones are generated using an iterative approach [22]. A

parameter R = A / (2n) is used to determine the size of the exclusion region. Each test case in S is set as

the center of a region, with R as the radius of the circular exclusion region. The first generated test case not

falling in an excluded region is then selected as the next test case. An adjustment parameter r is introduced

to compensate for the effects of overlapping zones and portions of zones lying outside the input domain. R

is set as / (2)Ar n . The CFDT algorithm is shown in Algorithm 3.

Algorithm 3: CFDT

Input: the circle center e1(x, y) and radius R of SOAP message input region

Output: the set of test cases S= {e1,e2,...,en}

(1) set S={},C={}, n=0, r=1;

(2) randomly generate e1 by using related mutation strategies and operators and S=S∪e1;

(3) while (R !=0) do

(4) { find an exclusion circle (ei (i=1,2,3....), / (2)R A n), randomly generate k test cases {c1,

c2, …., ck} and then {c1, c2, ..., ck}(ei, / (2)R A n) C=C∪{c1,c2,...,ck};

(5) sort the k test cases according to x-value from small to large, calculate all distances di, and then

find the test case ei whose distance is the largest and S=S∪ei, n=n+1;

(6) set r to adjust the exclusion region;

(7) }

(8) return the set of test cases S={e1, e2,..., en}.

(5) Weighted Ming distance
If the number of SOAP parameters (n) is three or more, then the inputs are regarded as the n-tuple data

set (T), with each t=(x1, x2, …, xn), t∈T being a single input from T. When a test case (e) is generated

randomly, a new coordinate system is defined based on it, with each previously executed point (test case)

translated appropriately. Without loss of generality, the following explanation of this method is in 2D, but

the method applies to higher dimensions: Lines L1 and L2 are perpendicular axes through the point e,

dividing the area that includes all points within the neighborhood of e into four sub-areas M, N, S and O.

The four sub-areas are marked as the neighborhood areas of point e. Lines L1 and L2 are also seen as the

boundaries between the four areas, with the corners formed by the lines being called neighborhood angles.

Across from each neighborhood angle a diagonal is formed, enclosing the neighborhood area. Any points

in the neighborhood area should be filtered using related algorithms [18]. Based on the neighborhood areas

and some rules [18][25], the weighted Ming distance (WD) between a point t and e is defined as
n n

2 1/2
i i i i

i=1 i=1

WD=(|x -y | w) / w  , where wi represents the corresponding weight for every input parameter to

define the contribution of different parameter. The formula can measure the distance between different

inputs. Given a current test case (e), the Furthest Neighbor (FN) formula is used to select the next test case,

and is defined as () { | : (,) (,)}FN e r T t T WD e r WD t r     . The formula guarantees that the distance

between the current and next test case is always greater than or equal to the distance between the next test

case and any test case of T.

(6) Inverse probability distribution
If the n-tuple parameters are from a continuous input space and the inverse probability distribution

function for the input space can be obtained, then it can be used to guide generation of some

8

unconventional test cases to detect security exceptions. Generally speaking, unconventional inputs can

effectively trigger the security exceptions for Web services. The input distribution function is usually a

probability density function, whose output ranges from 0 to 1, where 0 means that it is impossible to select

inputs from the input domain, and 1 means that the inputs from the input domain are 100% available. The

main steps needed to get the inverse probability distribution function are as follows [26].

Step 1: Describe the probability of each input (an ordered n-tuple) as a value in the n+1
th

 dimension;

Step 2: Determine the hyper-plane which is defined by setting the n+1 dimension value to a constant,

1/K, where K is the cardinality of the input space;

Step 3: Reflect the input distribution through this hyper plane;

Step 4: If any of the resulting values in the n+1
th

 dimension are negative, translate the graph by a vector

of magnitude C, so that all the values in the n+1 dimension are non-negative;

Step 5: Normalize the resulting graph in n+1 space, dividing each value by the total volume. At the end

of this step, the value in n+1 space associated with each n-tuple is the probability of selection in the

inverse probability distribution function.

The SOAP message is obtained by parsing the WSDL file of the Web services being tested, and is then

transformed into a DOM tree. Based on the number and type of SOAP parameters, the appropriate TCFN

algorithm is called to generate test cases. The complexity of the TCFN algorithm is mainly determined by

the BRA algorithm, ResStr, NFDT, CFDT, weighted Ming distance and inverse probability distribution

algorithms. In the BRA algorithm, flipping all bits (from 0 to 1, and 1 to 0) is time consuming. If the bit

length of the integer is n, then the complexity of BRA algorithm is O(n). In the ResStr algorithm,

traversing the entire string is time consuming. If the length of the string is n, then the complexity of ResStr

algorithm is O(n). In the NFDT algorithm, a set of test case candidates randomly generated in the input

domain is maintained. Each time a new test case is required, the candidate test case that is farthest from all

previously executed test cases is selected. The runtime of the NFDT algorithm when generating n test cases

is in the order of O(n2). The main time cost of the CFDT algorithm is the large number of distance

calculations which are performed when new test cases are selected. The runtime of the CFDT algorithm

when generating n test cases is in the order of O(n2·logn). The time complexity of both weighted Ming

distance algorithm and inverse probability distribution algorithm is respectively O(n2). The total time

complexity of the TCFN algorithm is therefore O(n)+O(n)+O(n2)+O(n2)+O(n2)+O(n2·logn) = O(n2·logn).

V. EXPERIMENT AND ANALYSIS

A. Experimental implementation

To investigate and evaluate the proposed TCFN algorithm, a Web service vulnerability testing system

(WSVTS) was implemented. The WSVTS framework is shown in Figure 2. WSVTS obtains the interface

information by parsing the uniform resource locator (URL) of the Web service, and gets the SOAP

message by parsing the WSDL document.

Test case

generator

SOAP message
generator

mutation
generator

Testing
Controller

Testing ResultTesting Report
Vulnerability

analyzer

Web

Services

Web

Services

W
eb

 S
erv

er

WSDL

Client Driver

BRA CFDTNFDTResStr

TCFN Algorithm

M
u
tatio

n
 O

p
erato

rs

Other algorithms

...

Figure 2. The WSVTS framework

WSVTS was implemented in Visual C# on the Microsoft.NET platform, and contains four main function

modules: (a) the SOAP message generator; (b) the SOAP message mutation generator; (c) the test case

generator; and (d) the Web service vulnerability analyzer. The details of these major modules are presented
in the following.

9

1) SOAP message generator

The input to the SOAP message generator is a WSDL file of the Web service being tested, and consists

of the response message data type, the transmission protocol and the Web service address information. The

output is a Web service SOAP message.

2) SOAP message mutation generator

Based on mutation operators designed for different fault types, the mutation module mutates the SOAP

message parameter type and value. The parameter type and number are obtained from the SOAP message

generator, and the test cases are obtained from the test case generator.

3) Test case generator

The test case generator provides a convenient interface for the tester to input test cases, and can also use

different algorithms based on the SOAP message parameter number, as analyzed by the SOAP message

generator.

4) Vulnerability analyzer

The vulnerability analyzer generates a vulnerability report after testing the Web services. It analyzes the

Web service vulnerability based on the security specifications, and reports the number of security

exceptions and faults found.

As can be seen in the WSVTS flow chart (Figure 3), the SOAP message is obtained by parsing the

WSDL file of the Web services being tested. Then, using an XML analysis technique, the number and type

of SOAP message parameters are extracted, based on which, the appropriate TCFN algorithm is called to

generate test cases. The Web services are tested based on the testing controller and client driver, using the

generated test cases. Finally, the vulnerability testing report is obtained based on observations of the

response messages received from the client of the Web services being tested.

Vulnerability test report

Analyze SOAP
message

Generate test
cases

Execute test
cases

 Web Services

Analyze the number

of SOAP parameters

Parse WSDL file

WSVTS
Model

TCFN

Figure 3. Flow chart of the Web service vulnerability testing system

In the experiments, in addition to several open Web services, some specifically written services were

also analyzed. The list of tested Web services is shown in Table II.

During the experimental process, the function of the IPO mutation operator was merged with that of

either the IIV or PFB mutation operator to generate test cases, according to the specific circumstances and

SOAP message types. Different mutation operators may find the same error for the same Web service, in
which case the error was counted only once. Similarly, the same fault found by different test cases

10

generated by the same perturbation operator was also only counted once. The operator efficiency (OE)

defines the efficiency of an operator in terms of finding faults, and is calculated as OE=EF/TC, where EF

is the number of faults found and TC is the total number of test cases generated by the operators. The

efficiency of the mutation operators is shown in Figure 4. Different mutation operators have different

efficiency, with the FVS operator having the highest (36.52%).

B. Experimental results and analysis

Web service vulnerabilities were found by the proposed approaches. Although the proposed mutation

operators are applicable to related approaches, the test case generation rules may differ. Also, the

continuous types of test case generation are more complex than the discrete types, and test cases for the

continuous types can be adapted to the discrete types but not vice versa. We next compare our proposed

approach with two others, SOAPUI [27] and SMAT-WS [7].

1) Comparison of WSVTS and SOAPUI

A total of 20 kinds of specially designed Web services were investigated using the two approaches based

on the SOAP message parameter type. The SOAPUI [27] is an open source Web service testing tool, and

WSVTS is a testing tool based on the approach proposed in this paper. Table III shows the experimental

results for the open source tool SOAPUI, in which the test cases are manually entered according to the

SOAP message parameter type; and Table IV shows the results for WSVTS. Based on these results, the

overall efficiency (OE) of the mutation operators generated by the two approaches are calculated to be

approximately 21.1% and 23.7%, respectively, confirming the feasibility of our proposed approach, and the

validity of the test cases generated.

Table II. The tested Web services

No. Service Name
The number of

service methods

The number of

method

parameters

Description

WS1 Stock 8 23 Searching stock information

WS2 Weatherforecast 7 19 Weather forecast service

WS3 E-Banking 9 25 Online banking service

WS4 Bookfinding 6 15 Searching book information

WS5 Domainfinding 5 13 Searching domain and IP address

WS6 Petinformation 7 16 Searching Pet information

WS7 Traintime 7 14 Searching train timetable

WS8 Planetime 5 12 Searching aircraft flight information

WS9 QQcheckonline 7 13 Searching QQ online information

WS10 Queryresults 9 22 Searching student achievement information

WS11 Producedorder 8 16 Searching production order information

WS12 Calculator 7 15 Arithmetic calculating service

WS13 Maxdivisor 5
10 Finding the greatest common divisor of two

numbers

WS14 Mod 4 8 Finding the remainder of two numbers

WS15 Reversestring 8 14 Reversing the string

WS16 Stringcopy 6 12 Copying the string

WS17 Stringlength 4 8 Obtaining the length of string

WS18 Login 5 8 User login

WS19 Vote 5 16 Getting the result of the vote

WS20 Echoinformation 6 13 Echoing personal information

11

Figure 4. Efficiency of the mutation operators

Table III. Test results of the SOAPUI tool

Mutation

operators
DNS SVN EON EOV SVB SSI LSV IIV FVS CIV RSV FIV UVF PFB Total OE

Number of test

cases generated
42 124 113 97 130 40 211 151 115 197 98 102 41 118 1579 21.1%

Faults found 8 19 11 9 38 2 28 45 42 36 31 28 7 30 334

Table IV. Test results of WSVTS tool

Mutation

operators
DNS SVN EON EOV SVB SSI LSV IIV FVS CIV RSV FIV UVF PFB Total OE

Number of test

cases generated
42 118 113 97 123 33 164 126 115 150 99 88 35 118 1421 23.7%

Faults found 10 19 11 11 38 2 28 45 42 38 31 28 11 23 337

Figure 5 gives a comparison of the efficiency of the two approaches, showing that for most operators,

the number of faults found by the WSVTS approach is higher than that found by the SOAPUI tool

(exceptions being the EON, FVS, RSV, and PFB operators). The UVF operator appears particularly

efficient. The faults found consist of some common vulnerability faults such as memory leak, buffer

overflow, cross-boundary access, and arithmetic security faults including dividing by zero and out-of-range

operand values. Thus, the designed operators and our approach are confirmed to be very effective.

Figure 5. Comparison of the WSVTS and SOAPUI efficiencies

12

2) Comparison of SMAT-WS, WSVTS, and SOAPUI

Research on SOAP message mutation testing is still not common. The experimental results of SOAP

message perturbation reported by Almeida & Vergilio [7] is reproduced here in Table V. Their proposed

mutation operators are different from ours because of the different Web services, therefore we compare the

approaches based on the overall efficiency of the mutation operators: the overall effectiveness of the test

cases generated by the SMAT-WS testing tool is 15.7%. A comparison of all three methods is shown in

Figure 6.

Table V. SMAT-WS test results [7]

Mutation operators I N BE IN VI S B U ML Total OE

Number of test cases

generated
54 54 363 43 45 54 162 54 108 937 15.7%

Faults found 16 21 24 2 8 19 27 16 15 148

Mutation Operators: Incomplete (I), Null (N), Boundary Extension (BE), Inversion (IN), Value Inversion (VI), Space(S),

Unauthorized (U), Mod_Len(ML), Boundary(B)

0

50

100

150

200

250

300

350

400

0 200 400 600 800 1000 1200 1400 1600 1800

the number of test cases

fa
ul

ts
 f

ou
nd

SMAT-WS SOAPUI WSVTS

Figure 6. Comparison of the SMAT-WS, SOAPUI, and WSVTS tools

The experimental results in Figure 6 show that SMAT-WS finds more faults at the earlier stage of testing,

but that the rate of faults found by WSVTS increases fastest, supporting the validity of this approach. The

fault-finding abilities of the SMAT-WS and SOAPUI approaches are similar within a certain range.

Although the three approaches (SMAT-WS, SOAPUI and WSVTS) are all based on SOAP message

mutation, the corresponding proposed mutation operators are different because the Web services tested

with SMAT-WS are different from those tested by SOAPUI and WSVTS. In general, the number of test

cases generated is different because of the different mutation operators applied to different situations as

well as the number of faults.

Compared with the other methods, the advantages of the WSVTS tool include that the mutation

operators expand according to the characteristics of the SOAP message in the experiment – in other words,

the testing is more comprehensive; and the algorithm is automatically called to generate test cases

according to the number of parameters and the SOAP message type. The targeted faults consist of buffer

overflow faults, cross-boundary access faults and arithmetic security faults.

VI. CONCLUSIONS

Research on Web service vulnerability testing remains limited, partly due to their cross-platform and

differing characteristics. In this paper we have presented mutation operators designed for SOAP messages,

and a mutation testing algorithm for the automated generation of test cases.

By designing appropriate SOAP message mutation operators, the security of the Web services can be

tested from the client side, and vulnerability faults can be identified from the user perspective. In most cases,

compared with the classic farthest neighbor algorithm, the proposed TCFN algorithm reduces the number of

distance calculations. Compared with the pure random testing, the proposed TCFN algorithm can detect

more faults with fewer test cases. Because specifically tailored test cases can be generated, the efficiency

and quality of test case generation can be improved. Furthermore, the test cases can also be generated

13

automatically, using legal and illegal input parameters and mutation operators. The effectiveness of the

proposed approach has been shown to be higher than that of other available approaches. The efficiency of

the proposed mutation operators is higher than other approaches such as SMAT-WS. In addition, the

approach can detect more vulnerability faults than other approaches with the same test cases.

In the future, we would like to continue research in the following areas: firstly, we will do more

experiments to verify the reliability of the proposed approaches. Secondly, we will research how to further

reduce the redundant test cases after mutating. Thirdly, the automatic process of test case generation and

mutation also need to be further improved to enhance the testing efficiency.

ACKNOWLEDGMENTS

We would like to thank T. Y. Chen for his insightful discussion and suggestions. This work is partly

supported by the National Natural Science Foundation of China (NSFC) under Grant No. 61202110 and

Natural Science Foundation of Jiangsu Province under Grant No. BK2012284.

REFERENCES

[1] S. Hanna, M. Munro, An approach for wsdl-based automated robustness testing of web services. The 16th International

Conference on Information Systems Development (ICISD’2009), Springer, 2009, pp.1093-1104.

[2] T. Takase, K. Tajima, Efficient Web Service Message Exchange by SOAP Bounding Framework. The 11th IEEE

International Enterprise Distributed Object Computing (EDOC’2007), IEEE Computer Society, 2007, pp.63-72.

[3] L.Wu, X.K. Li, H. Wang. Research on the Reliability Testing of Web Service Based on Fault Injection Technology.

Journal of Chinese Computer System, 2007, 28(1):127-131. (in Chinese)

[4] M. Palacios, J. Garcia-Fanjul, J. Tuya, Testing in service oriented architectures with dynamic binding: a mapping study.

Information and Software Technology, 2011, 53(3): 171–189.

[5] C.A. Sun, G. Wang, B.H. Mu, H. Liu, Z.S. Wang, T. Y. Chen, A Metamorphic Relation-Based Approach to Testing Web

Services Without Oracles. International Journal of Web Services Research, 2012, 9(1): 51-73.

[6] C.A. Sun, G. Wang, B.H. Mu, H. Liu, Z.S. Wang, T. Y. Chen, Metamorphic testing for web services: framework and a

case study. The IEEE International Conference on Web Services (ICWS’2011), IEEE Computer Society, 2011, pp.

283-290.

[7] L.F. de Almeida, S.R. Vergilio, Exploring Perturbation Based Testing for Web Services. The IEEE International

Conference on Web Services (ICWS’2006), IEEE Computer Society, 2006, pp.717-726.

[8] H. C. Kim, Y. H. Choi, D. H. Lee, Efficient File Fuzz Testing Using Automated Analysis of Binary File Format. Journal

of Systems Architecture, 2011, 57(3):259-268.

[9] S. Bekrar, C. Bekrar, R. Groz, L. Mounier, Finding Software Vulnerabilities by Smart Fuzzing. Proceeding of the Fourth

IEEE International Conference on Software Testing, Verification and Validation (STVV’2011), IEEE Computer Society,

2011, pp. 427-430.

[10] J. Offutt, W. Xu, Generating Test Cases for Web Services Using Data Perturbation. ACM SIGSOFT Software

Engineering Notes, 2004, 29(5):1-10.

[11] A. C.V. de Melo, P. Silveira, Improving data perturbation testing techniques for Web Services. Information Science,

2011,181 (03):600-619.

[12] P. Silveira, A. C. V. de Melo, Exploring XML Perturbation Techniques for Web Services Testing. International

Conference on Web Engineering (ICWE’2009), Spinger LNCS, 2009, v. [5648]:355-369.

[13] J.F. Chen, Q. Li, C.Y. Mao, D. Towey, Y.Z. Zhan, H.H. Wang: A Web services vulnerability testing approach based on

combinatorial mutation and SOAP message mutation. Service Oriented Computing and Applications, 2014, 8(1):1-13.

[14] L. Novak, A. Zamulin, A formal model for XML schema. Proceedings of the 21st International Conference on Data

Engineering Workshops (ICDEW’2005), IEEE Computer Society, 2005, pp.1283-1293.

[15] W. Xu, J. Offutt, J. Luo, Testing Web Services by XML Perturbation. Proceedings of the 16th IEEE International

Symposium on Software Reliability Engineering (ISSRE’2005), IEEE Computer Society, 2005, pp.257-266.

[16] J.F. Chen, Y.S. Lu, X.D. Xie, Component Security Testing Approach by Using Interface Fault Injection. Journal of

Chinese Computer System, 2010, 31(6):1090-1096. (in Chinese)

[17] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen, W. Grieskamp, M. Harman, M. J. Harrold, and P. McMinn,

An orchestrated survey of methodologies for automated software test case generation. Journal of Systems and Software,

2013, 86(8), 1978-2001.

14

[18] C. Böhm, S. Berchtold, and D. A. Keim, Searching in high-dimensional spaces: Index structures for improving the

performance of multimedia databases. ACM Computing Surveys, 2001, 33(3): 322-373.

[19] T. Y. Chen, F.-C. Kuo, R. G. Merkel and T. H. Tse, Adaptive Random Testing: the ART of Test Case Diversity. Journal of

Systems and Software, 2010, 83(1):60-66.

[20] M. H. Alsuwaiyel, Algorithms: Design Techniques and Analysis. Publisher: World Scientific Pub Co Inc, November

1998.

[21] K. P. Chan, T. Y. Chen, and D. Towey, Adaptive Random Testing with Filtering: An Overhead Reduction Technique.

The 17th International Conference on Software Engineering and Knowledge Engineering (SEKE'05), Taipei, Taiwan,

China, IEEE Computer Society, 2005, pp. 292-299.

[22] K. P. Chan, T. Y. Chen and D. Towey, Restricted Random Testing: Adaptive Random Testing by Exclusion. International

Journal of Software Engineering and Knowledge Engineering, 2006, 16(4):553-584.

[23] T.Y. Chen, F.-C. Kuo, C.A. Sun, Impact of the Compactness of Failure Regions on the Performance of Adaptive

Random Testing. Journal of Software, 2006, 17(12):2438-2449.

[24] I.N. Bronshtein, K.A. Semendyayev, G. Musiol and H.Mühlig, Handbook of Mathematics. Publisher: Springer, 5th

edition, October 2007.

[25] B.H. Li, Z.X. Hao. Efficient Filtration and Query Algorithm of Reverse Furthest Neighbor. Journal of Chinese

Computer Systems, 2009, 30 (10): 1948-1951. (in Chinese)

[26] J. M. Voas, K. W. Miller, Predicting software's minimum-time-to-hazard and mean-time-to-hazard for rare input events.

The Sixth International Symposium on Software Reliability Engineering (ISSRE’1995), IEEE Computer Society, 1995,

pp.229-238.

[27] SoapUI, SmartBear Software, available at http://www.soapui.org (last access September 2012)

