

Optimizing energy efficiency of CNN-based

object detection with dynamic voltage and

frequency scaling

Jiang Weixiong, Yu Heng, Zhang Jiale, Wu Jiaxuan, Luo Shaobo, Ha Yajun

Faculty of Science and Engineering, University of Nottingham Ningbo

China, 199 Taikang East Road, Ningbo, 315100, Zhejiang, China.

First published 2020

This work is made available under the terms of the Creative Commons

Attribution 4.0 International License:

http://creativecommons.org/licenses/by/4.0

The work is licenced to the University of Nottingham Ningbo China
under the Global University Publication Licence:
https://www.nottingham.edu.cn/en/library/documents/research-
support/global-university-publications-licence-2.0.pdf

http://creativecommons.org/licenses/by/4.0

Optimizing Energy Efficiency of CNN-Based Object Detection with Dynamic
Voltage and Frequency Scaling

Jiang Weixiong1,2,3, Yu Heng4, Zhang Jiale1,2,3, Wu Jiaxuan1,2,3, Luo Shaobo5, Ha Yajun1,2,3

(1 School of Information Science and Technology, ShanghaiTech University,
Shanghai 201210, China)

(2 Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences,
Shanghai 200050, China)

(3 University of Chinese Academy of Sciences, Beijing 100049, China)
(4 University of Nottingham Ningbo China, Ningbo 315100, China)

(5 Universite Paris-Est, Paris 93162, France)

Abstract: On the one hand, accelerating convolution neural networks (CNNs) on FPGAs requires
ever increasing high energy efficiency in the edge computing paradigm. On the other hand,
unlike normal digital algorithms, CNNs maintain their high robustness even with limited timing
errors. By taking the advantages of this unique feature, we propose to use dynamic voltage and
frequency scaling (DVFS) to further optimize the energy efficiency for CNNs. First, we develop
a DVFS framework on FPGAs. Second, we apply the DVFS to SkyNet, a state-of-the-art neural
network targeting on object detection. Third, we analyze the impact of DVFS on CNNs in
terms of performance, power, energy efficiency and accuracy. Compared to the state-of-the-art,
experimental results show that we achieved 38% improvement in energy efficiency without any
loss in accuracy. Results also show that we can achieve 47% improvement in energy efficiency if
we allow 0.11% relaxation in accuracy.

Key words: CNN; Object Detection; FPGA; DVFS
DOI: 10.1088/1674-4926/30/1/014003 PACC: 7220J;7340Q

1. Introduction

FPGA has become a promising platform for edge computing in recent years, given its energy efficiency
compared to GPU and flexibility compared to ASICs [1]. There are many previous works such as [2–13]

that present various methods on optimizing architecture or design flow. However, none of them specifically
optimize energy efficiency. Dynamic Voltage and Frequency Scaling (DVFS) has been extensively applied as
a system-level methodology to optimize the system execution. Through judiciously scaling up or down the
execution voltage and speed of the processing units, DVFS effectively achieves throughput maximization,
temperature management, application quality maximization, and energy minimization. Although the delay
of the combinational logic will increase as the voltage decreases, which may bring a certain chance of error
during operation, the CNN itself is robust to errors [14–17]. Even if a small number of neurons get wrong
values in the process of inference, it does not affect the final accuracy. In this context, combining CNN
and DVFS is an ideal method to extrude the potential of FPGAs to optimize either performance or energy
efficiency.

To add the DVFS support to CNN accelerators, a flexible DVFS platform is needed. Previous works have
been focusing on adding the DVFS support to commercial FPGAs, but their solutions for DVFS have various
limitations. For example, the DVFS module consumes too much logic resources and thus affects timing and
power [18]. The scaling resolution is not high enough, or the scaling time is too long [19]. To solve these
issues, we develop a novel DVFS framework with high resolution and flexibility as well as low area overhead

-1

1

and scaling time to implement a DVFS system quickly. Our main innovative technical contributions are as
follows:

• We propose a framework for fine-grained DVFS on state-of-the-art FPGA devices.

• We combine the framework with SDSoC and then apply it to SkyNet, a lightweight CNN for object
detection.

• We analyze the impact of DVFS on performance, power, energy efficiency, and accuracy.

• We achieve 54% improvement in performance, 38% improvement in energy efficiency, and 106% im-
provement in unified energy efficiency (UEE) without any loss in accuracy compared to the original
SkyNet. If we relax the requirement on the accuracy, we can achieve 56% improvement in performance,
47% improvement in energy efficiency, and 121% improvement in UEE at the cost of 0.11 decrease in
IoU.

• We develop a DVFS policy basing on the measured metrics targeting on real-time applications in
realistic scenarios. With this DVFS policy, the average power has been reduced by 30% compared to
the original design.

Section II presents the related works on CNN and DVFS. Section III defines a power optimization
problem in the scenario of edge computing. Section IV introduces the DVFS framework as well as the DVFS
policy for energy efficiency optimization. Section V describes how to combine the DVFS framework with
SDSoC and the architecture of the system after applying DVFS to CNN accelerators. Section VI gives the
experimental results and analyzes the impact of DVFS on the original CNN accelerator. It also presents the
experimental results of the DVFS policy. Finally, Section VII concludes the paper.

2. Related Work

2.1. CNN

For edge applications, there are many previous works on optimizing the architecture of the FPGA-
based CNN accelerator. [4] presents an RTL-level CNN compiler that automatically generates customized
FPGA hardware for the inference tasks of various CNNs, in order to enable high-level fast prototyping of
CNNs from software to FPGA. A programmable and flexible CNN accelerator architecture together with
a data quantization strategy and compilation tool is introduced in [8]. Authors in [6] present an efficient
hardware accelerator design of deep residual learning algorithms. In [5], the authors quantitatively analyze
and optimize the design objectives of the CNN accelerator based on multiple design variables. In [7], an
architecture named Tile-Grained Pipeline Architecture (TGPA) for low latency CNN inference is proposed.
[20] proposes a layer conscious memory management framework for FPGA-based CNN hardware accelerators.

Recently, software-hardware co-design gains more and more attention. [21] proposes REQ-YOLO, a
resource-aware, systematic weight quantization framework for object detection, considering both algorithm
and hardware resource aspects in object detection. [22] and [23] raise a novel and practical bi-directional co-
design approach, including a bottom-up DNN model design strategy together with a top-down flow for DNN
accelerator design. It enables a joint optimization of both DNN models and their deployment configurations
on FPGAs. Also, [23] builds an automatic co-design flow, including an Auto-DNN engine to perform a
hardware-oriented DNN model search, as well as an Auto-HLS engine to generate synthesizable C code of
the FPGA accelerator for explored DNNs. However, all of the works mentioned above ignore specific energy
efficiency optimization.

[24] proposes an energy proportional framework with adaptive voltage and frequency scaling and applied
it to binary neural networks (BNN) for classification. However, BNN has very limited precision and is
almost unavailable in practical applications. What’s more, [24] lacks exploration of actual scenes in an edge

-2

2

computing context. In this paper, we combine our fine-grained DVFS framework with CNN based object
detection accelerators to perform specific optimization on energy efficiency. Besides, we define two kinds
of actual scenarios in edge computing and perform specific optimization. To demonstrate the effectiveness
of DVFS, we choose SkyNet [25] as a case study. SkyNet won the championship in Design and Automation
Conference-System Design Contest 2019(DAC-SDC2019), a low power object detection challenge in images
captured by unmanned aerial vehicles (UAVs). SkyNet delivers 0.716 IoU and 25.05 FPS on an Ultra96
FPGA. The reason why we choose SkyNet as a case study is that SkyNet represents the highest level of
CNN implementation on FPGAs considering performance and energy efficiency. We want to develop a DVFS
based method to further tap its potential and achieve better improvement in both performance and energy
efficiency.

2.2. DVFS

DVFS has been proven to be a popular and efficient system-level methodology to optimize system
execution metrics, such as throughput, power, energy, temperature, reliability, and QoS. For example, [26]

proposes to adjust the frequency in response to application behavior changes, to optimize energy efficiency
for general-purpose CPU systems. Authors in [27] empirically reveal that on a commercial smartphone
platform, energy consumption strongly correlates its CPU frequency, and exhibits an optimal operating
frequency for energy minimization. Huang et al. [28] propose to maximize throughput and prevent system
overheating by carefully interleaving the hot and cool tasks and adjusting the task execution frequencies.
QoS maximization through efficient DVFS can be found in [29,30]. By leveraging task adaptability, the
output quality can be dynamically adjusted under temperature constraints, and judiciously applying DVFS
can maximize the quality. To enhance system reliability, the authors propose to carefully tune the frequency
of CPUs to control temperature overflow to minimize the thermal cycling that stresses chips [31]. While the
evaluation of DVFS efficacy on those works is largely based on simulations, a realistic platform like ours
that enables quick system synthesis and DVFS algorithm evaluation are highly desirable.

There have been existing works combining CNN and DVFS on ASICs, CPU, or GPU. [12] develops a
principled approach and a data-driven analytical model with DVFS to optimize the granularity of threads
during CNN software synthesis. [32] proposes a low-power CNN-based face recognition system for user
authentication in smart devices with DVFS. [33] uses a performance-power analytical model fitted on a
parameterized implementation of a CNN accelerator in a 28-nm FDSOI technology to explore large design
space and to obtain the Pareto points that maximize the effectiveness of DVFS in the sub-space of throughput
and energy efficiency. Our work is the first one to combine CNN-based object detection with DVFS on FPGA
to our best knowledge.

On the hardware aspect, many DVFS supported logic and systems have been developed. Widely adopted
frequency scaling approaches include phase-locked-loop [34] and delay-locked-loop [35]. Brynjolfson and Zilic
propose a clock management scheme named DPCP on FPGA platforms [36]. To produce dynamically scaled
frequency, state-of-the-art FPGA platforms (Xilinx 7 Series or later) adopt a hybrid Mixed-Mode Clock
Manager (MMCM)+PLL architecture. Authors in [37] propose performance scaling on Virtex-7, where
DFS is realized by employing an external programmable oscillator controlled by a Picoblaze processor. In
addition to works on traditional FPGAs, there exist other works that implement system-level optimization
on ZYNQ using DVFS. [38] raises a method for accurate power control and monitoring on ZYNQ device, [39]

investigates the viability of physical power gating FPGA devices that incorporate a hardened processor in
a different power domain, but they only implemented several computing units such as fp32mult, IIR, DCT,
etc., rather than an accelerator. In order to solve these problems, we propose a DVFS framework with high
scaling range and resolution as well as low scaling time in this paper. What’s more, we combine the DVFS
framework with high-level synthesis tool, SDSoC, making it possible to build a system with DVFS support
in a complete software development flow.

-3

3

Board

Quad A53

MIO

S_AXI_HP0

M_AXI_HPM0

I2C

DVS module

M_AXI_HPM1

S_AXI_HP1

PLDFS module

clk1

clk0

Power
Management

IC

Power
Management

IC

SkyNet
Accelerator

Figure 1: System architecture of CNN accelerator

3. Problem Definition

Edge computing refers to an open platform that integrates network, computing, storage, and applica-
tion core capabilities on the side close to the data source, providing near-end services. The edge computing
platform’s power supply conditions are far less than the cloud computing platform, which put higher re-
quirements on the energy efficiency ratio of edge computing devices. For the object detection task in edge
computing scenario, there are generally two cases. The first application scenario pursues the least amount
of energy required to process each frame of data. For example, in a home security scenario, only when the
sensor detects a moving object, the camera will take a picture and wake up the edge computing platform to
process the data. Otherwise, the edge computing platform can work in a sleep state. In the second applica-
tion scenario, data is generated at a fixed rate, and the goal is to minimize the average power consumption
throughout the work period. For instance, in autonomous driving, the camera produces images at a fixed
rate, and the edge computing platform has to be running at all times. In this paper, we want to develop
a DVFS method that significantly improve the energy efficiency of object detection on FPGA-based edge
computing platform.

4. DVFS Framework

Fig.1 shows the system architecture of our DVFS framework, where DVS module is implemented by a
power management IC (PMIC) that is responsible for controlling and monitoring the switching regulators.
The switching regulators are connected to different components on the FPGA, such as PS, PL, IO ports,
and BRAM. The DFS module is a clock generator that generates clock signals for the accelerators on the
programmable logic. Our platform provides the capability of dynamic frequency and voltage scaling with
high resolution, wide range, and low scaling time. Users can scale frequency from 20MHz to 400MHz at a
step size of 1MHz in 3µ s and scale voltage from 650mV to 850mV at the step size of 10mV in 2ms. Besides,
power monitoring APIs for various power rails on FPGA are also provided in our framework. The proposed
DVS framework is coarse-grained because modern FPGAs do not support multiple voltages in different
domains. The power supply of all the slices is connected together. Therefore it is impossible to implement
the module-level DVS method on current FPGA devices up till now. In this section, we will introduce how
the DVS and DFS are implemented in hardware and then discuss how to access them in Linux OS. The
framework supports a series of Zynq 7000 and Zynq UltraScale+ series FPGA boards including ZC702,
ZC706, ZCU102, etc at the moment. To be specific, we use ZCU104 as an example in this paper.

4.1. Dynamic Frequency Scaling

The Zynq 7000 and Zynq UltraScale+ series FPGA mainly has two kinds of clock sources, FCLK on
the PS and MMCM on the PL. The FCLK has the advantage of low area overhead and existing driver in
Linux. However, it can only provide limited frequency points. Therefore, we choose MMCM as the clock
generator in our design since it is armed with a larger range and higher resolution. As shown in Fig.2, the

-4

4

33 MHz
Reference

Clock
D = 1

M = 32

PFD, CP,
LF, VCO

O0 = 4

O1 = 6

O2 = 8

O3 = 16

O4 = 32

O6 = 2

O5 = 1

Gasket

CLBs

Memory Interface

66 MHz Interface

33 MHz Interface

not used

not used

Figure 2: MMCM

 MMCM

O[6:0]

D

M

CLKIN

CLKOUT[6:0]

rst

Register
Map

M

D

O[6:0]

rst

AXI
Lite
AXI
Lite

Figure 3: Dynamically reconfiguring MMCM using AXI4-Lite interface

3

IRPS5401

ADR:0x14

MIO

PL PCA9548

I2C 1-to-8

IRPS5401

ADR:0x13

JP

PS

MPSoC

I2C

Fig. 4. Power monitoring system topology on ZCU104

Instrument (TI) UCD92x, ZCU100 and ZCU102 use the TI
INA226, and ZCU104 uses the Infineon IRPS5401. All of
the mentioned PMICs follow the same power management
protocol, thus our DFS platform is compatible for a rich variety
of FPGA boards with minimal changes.

1 #define clk_addr
2 void set_frequency(int F)
3 {
4 clk = mmap(clk_addr);
5 if ((F >= 20) && (F < 500))
6 {
7 D = 5;
8 O = 5;
9 M = F / 4.0;

10 }
11 clk.write(D);
12 clk.write(O);
13 clk.write(M);
14 }

As shown in Fig. 4, there are two IRPS5401s on the ZCU104
board, both of which are connected to PCA9548, which is an
I2C 1-to-8 bus switch external to the device. Then PCA9548
is connected to PS I2C controller via MIO. IRPS5401 can
control and monitor up to ten voltage rails on board, including
VCC12 and VCCINT. The former is the power input and the
latter is PL side supply voltage. This gives us the possibility
to scale the accelerator’s voltage and frequency and monitor
the power consumption of each power rail in real time.

There are two alternatives to communicate with the PMIC
internally, as both the PL and the PS banks have access to
the PMIC. The hardware method is to implement an AXI I2C
controller in PL, while the software method connects the MIO
pins directly to the PS. We choose the second method in that
software method does not have any area overhead and can
take advantage of the mature I2C driver embedded in the linux
kernel.

1 #include <i2c-dev.h>
2 void set_voltage(int voltage)
3 {
4 i2c_write(POWER_GOOD_OFF);
5 i2c_write(POWER_GOOD_ON);
6 i2c_write(VOUT_UV_FAULT_LIMIT);

7 i2c_write(VOUT_UV_WARN_LIMIT);
8 i2c_write(VOUT_MARGIN_LOW);
9 i2c_write(VOUT_COMMAND);

10 i2c_write(VOUT_MARGIN_HIGH);
11 i2c_write(VOUT_OV_WARN_LIMIT);
12 i2c_write(VOUT_MAX);
13 }

IV. SYSTEM ARCHITECTURE

Fig. 8 shows the topology details of the convolutional FINN
BNN as used in this work which has a model size of 187
Kbytes. Fig. 7 shows the BNN hardware and the Elongate IP
architecture in the Zynq Ultrascale ZC9 device used in the
ZCU102 board. This board (as the Zynq ZC702) contains a
PMBUS (Power Manager BUS) power control and monitoring
system that enables the reading of power and current values
using the ARM CPUs. It also enables the ARM CPUs to write
new voltage values to the power regulators. Both of these
features have been used extensively to measure power and
to change the voltage level at which the device operates. The
large number of resources available in this device makes it
possible to scale the logic from the original design in [2] that
targets a Zynq 7045 device. The new BNN processor contains
4 independent compute units with.

a total of 832 PEs and 1488 SIMDs in the zcu102 Zynq
Ultrascale board and a single compute unit, 91 PEs and
176 SIMDs in the zc702 Zynq board. In the Zynq Ultra-
scale configuration nominal classification performance reaches
89500 FPS with a clock frequency of 200 Mhz while the
zynq configuration obtains 1700 FPS at 100 MHz. The next
sections will discuss how this performance can be extended
and made energy proportional with the Elongate framework.
Energy efficiency is measured by monitoring the PL power in
both devices at 37800 FPS/Watt in the zc9 compared with 3260
FPS/Watt in the Z7020. Fig. 7 shows that a single compute unit
(BNNZU0) has been instrumented with the Elongate detectors
and it communicates with the Elongate control logic shown
before in Fig. 5. This means that this compute unit sets the
operating point for itself and for the other 3 compute units.
The timing analysis data obtained during Elongate integration
is used to choose the compute unit with the longest critical
paths for instrumentation.

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Power Scaling

In this section we focus on the power of the FPGA fabric
(i.e., PL) that is supplied by the VCCINT power rail. Other
power rails include VCCAUX that powers the clock managers
and the IOs among other blocks and the VCCBRAM use
with the BlockRAMs. The power drawn from these additional
power rails is considerably lower than VCCINT. In addition,
the processing side of the device where the ARM processor
resides is not included in the calculations. There is a large
body of research of power and energy optimization on CPUs
via sleep and wake-up states, etc which are outside the scope
of this paper. A feasible solution will make sure that during

Figure 4: Pseudocode of the driver for dynamic frequency scaling

input clock is firstly multiplied and then divided by VCO in MMCM. The VCO output is further divided
to generate different frequencies for different components. The output frequency can be calculated by the
following equation,

FOUT = FCLKIN ×
M

D × O
(1)

where M, D, and O can be configured through dynamic scaling port available in the MMCM blocks and new
frequencies are generated at run-time. As shown in Fig.3, the configuration information and the reset signal
are sent to the MMCM via an AXI4-Lite interface and then saved in the register map. MMCM retrieves the
configuration from the register map and resets to desired frequency accordingly.

Fig.4 shows the driver for DFS. The clock generator is mapped to a device firstly so that it can be
accessed in Linux userspace, then M, D, and O are calculated according to the target frequency. The clock
input of the MMCM is connected to the FCLK on the PS, and the FCLK is set to 100MHz. As shown in
Eq.1, the M can be the fractional number that is a multiple of 0.25. Thus we can divide the target frequency
by 4.0. As shown in Eq.1, the output frequency is FCLKIN× M ÷ D ÷ O = 100 ×F÷ 4.0 ÷5 ÷5 = F(MHz)
and the resolution is 1MHz. Benefit from high bandwidth and low latency on-chip bus between the PS and
the PL, it takes only 3us for each frequency scaling operation.

4.2. Dynamic Voltage Scaling

The Power Management Bus (PMBus) is an open standard power-management protocol, which is com-
patible with the I2C protocol at the physical level. This flexible and highly versatile standard allows for

-5

5

FPGA

Power Management IC

Switching Regulator 0.85V

Switching Regulator 1.8V

Switching Regulator 1.2V

I2C

12V

Figure 5: Power Management Framework on FPGA

IRPS5401

ADR:0x14

MIO

PL PCA9548

I2C 1-to-8

IRPS5401

ADR:0x13

JP

PS

MPSoC

I2C

Figure 6: Power monitoring system topology on ZCU104

communication between devices based on both analog and digital technologies and provides true interop-
erability, which will reduce design complexity and shorten the time to market for power system designers.
The-state-of-the-arts FPGA boards usually adopt power regulators and a PMBus-compliant system con-
troller to supply core and auxiliary voltages as shown in Fig.5. For instance, ZC702 and ZC706 use the
Texas Instrument (TI) UCD92x, ZCU100 and ZCU102 use the TI INA226, and ZCU104 uses the Infineon
IRPS5401. All of the PMICs mentioned follow the same power management protocol, thus our DVS frame-
work is compatible with a wide variety of FPGA boards with minimal changes. The power management
IC(PMIC) gets configuration information from the FPGA through the I2C bus and controls the output
voltage of each switching regulator. In the meantime, the PMIC monitors the voltage and the current of
each switching regulator and reports the information back to the FPGA through the I2C bus.

As shown in Fig.6, there are two IRPS5401s on the ZCU104 board, both of which are connected to
PCA9548, which is an I2C 1-to-8 bus switch external to the device. Then PCA9548 is connected to the
PS I2C controller via MIO. IRPS5401 can control and monitor up to ten voltage rails on board, including
VCC12 and VCCINT. The former is the power input of the whole board and the latter is the PL side supply
voltage. This gives us the possibility to scale the accelerator’s voltage and frequency in real-time. Besides,
IRPS5401 can also monitor the power consumption of each power rail and feedback the information through
PMBus. There are two alternatives to communicate with the PMIC internally, as both the PL and the PS
banks have access to the PMIC. The hardware method is to implement an AXI I2C controller in PL, while
the software method connects the MIO pins directly to the PS. We choose the software method because it
not only does not have any area overhead but also can take advantage of the mature I2C driver embedded
in the Linux kernel.

Fig.7 demonstrates the driver for DVS. Since the PMBus protocol is compatible with the I2C protocol
at the physical level, we can leverage the integrated I2C driver in Linux to communicate with the PMIC.
The output voltage can be modified by writing PMBus commands to the PMIC in a fixed order according
to the PMBus protocol. Because of the low speed of I2C and more commands to transfer, the voltage scaling
takes about 2ms each time. On the other hand, the power consumption can also be accessed in Linux in a
similar way in which the PMIC is configured.

In summary, at the hardware level, the proposed DVFS framework takes advantage of the MMCM
module on modern FPGAs, as well as the PMBus compliant power supply system. In the software level, we

-6

6

3

FPGA

Power Management IC

Switching Regulator 0.85V

Switching Regulator 1.8V

Switching Regulator 1.2V

I2C

12V

Fig. 3. Power Management Framework on FPGA

IRPS5401

ADR:0x14

MIO

PL PCA9548

I2C 1-to-8

IRPS5401

ADR:0x13

JP

PS

MPSoC

I2C

Fig. 4. Power monitoring system topology on ZCU104

IRPS5401 can control and monitor up to ten voltage rails
on board, including VCC12 and VCCINT. The former is the
power input and the latter is PL side supply voltage. This
gives us the possibility to scale the accelerator’s voltage and
frequency and monitor the power consumption of each power
rail in real time.

There are two alternatives to communicate with the PMIC
internally, as both the PL and the PS banks have access to
the PMIC. The hardware method is to implement an AXI I2C
controller in PL, while the software method connects the MIO
pins directly to the PS. We choose the second method in that
software method does not have any area overhead and can
take advantage of the mature I2C driver embedded in the linux
kernel.

1 #include <i2c-dev.h>
2 void set_voltage(int voltage)
3 {
4 i2c_write(POWER_GOOD_OFF);
5 i2c_write(POWER_GOOD_ON);
6 i2c_write(VOUT_UV_FAULT_LIMIT);
7 i2c_write(VOUT_UV_WARN_LIMIT);
8 i2c_write(VOUT_MARGIN_LOW);
9 i2c_write(VOUT_COMMAND);

10 i2c_write(VOUT_MARGIN_HIGH);
11 i2c_write(VOUT_OV_WARN_LIMIT);
12 i2c_write(VOUT_MAX);
13 }

IV. SYSTEM ARCHITECTURE

Fig. 8 shows the topology details of the convolutional FINN
BNN as used in this work which has a model size of 187
Kbytes. Fig. 7 shows the BNN hardware and the Elongate IP
architecture in the Zynq Ultrascale ZC9 device used in the
ZCU102 board. This board (as the Zynq ZC702) contains a

Fig. 5. Total energy change with voltage and frequency respectively.

PMBUS (Power Manager BUS) power control and monitoring
system that enables the reading of power and current values
using the ARM CPUs. It also enables the ARM CPUs to write
new voltage values to the power regulators. Both of these
features have been used extensively to measure power and
to change the voltage level at which the device operates. The
large number of resources available in this device makes it
possible to scale the logic from the original design in [2] that
targets a Zynq 7045 device. The new BNN processor contains
4 independent compute units with.

a total of 832 PEs and 1488 SIMDs in the zcu102 Zynq
Ultrascale board and a single compute unit, 91 PEs and
176 SIMDs in the zc702 Zynq board. In the Zynq Ultra-
scale configuration nominal classification performance reaches
89500 FPS with a clock frequency of 200 Mhz while the
zynq configuration obtains 1700 FPS at 100 MHz. The next
sections will discuss how this performance can be extended
and made energy proportional with the Elongate framework.
Energy efficiency is measured by monitoring the PL power in
both devices at 37800 FPS/Watt in the zc9 compared with 3260
FPS/Watt in the Z7020. Fig. 7 shows that a single compute unit
(BNNZU0) has been instrumented with the Elongate detectors
and it communicates with the Elongate control logic shown
before in Fig. 5. This means that this compute unit sets the
operating point for itself and for the other 3 compute units.
The timing analysis data obtained during Elongate integration
is used to choose the compute unit with the longest critical
paths for instrumentation.

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Power Scaling

In this section we focus on the power of the FPGA fabric
(i.e., PL) that is supplied by the VCCINT power rail. Other
power rails include VCCAUX that powers the clock managers
and the IOs among other blocks and the VCCBRAM use
with the BlockRAMs. The power drawn from these additional
power rails is considerably lower than VCCINT. In addition,
the processing side of the device where the ARM processor

Figure 7: Pseudocode of the driver for dynamic voltage scaling

tA tI

tT

PA

PI@UA

FA

Fmin

UA

tA ts/2 tI ts/2

tT

PA

PI@UA
Pmin

PSPS

FA

Fmin

UA

Umin

(a)

tA tI

tT

PA

PI@UA

FA

Fmin

UA

tA ts/2 tI ts/2

tT

PA

PI@UA
Pmin

PSPS

FA

Fmin

UA

Umin

(b)

Figure 8: (a) Timing diagram illustrating the DVFS policy with enough time to perform DVS. (b) Timing
diagram illustrating the DVFS policy without enough time to perform DVS.

adapt the provided memory map and I2C drivers in Linux to control the DVFS module, making it easier
to use. We take ZCU104 as an example in this paper, however, the DVFS framework can be easily ported
to Zynq 7000 devices or even non-Zynq FPGA devices as long as the board is equipped with a configurable
PMIC. For the non-Zynq FPGA devices, we can inherit the drivers for Zynq devices if a MicroBlaze, a
RISC Harvard architecture soft processor provided by Xilinx, is adapted as the DVFS module controller
and running Linux on it.

4.3. DVFS Policy

For practical applications like real-time object detection, there is a constant frame rate of images obtained
from a camera. In this context, it is reasonable to let the processing frame rate of the accelerator being
consistent with the frame rate of the camera to save power consumption. If the peak processing frame rate
of the accelerator is higher than that of the camera, there are two strategies, namely ”long active, short idle”
and ”short active, long idle,” to meet the performance requirements. The former is to set the accelerator to
low frequency thus it takes a long time for the accelerator to process one frame and thus the idle time is
short, while the latter is to set the accelerator to a high frequency and thus has a shorter active time.

To maximize energy savings, we can scale both the voltage and the frequency to a minimum when
the accelerator is idle. And this makes it impossible to analyze which solution is the optimal one in the
qualitative method. To quantitatively illustrate the problem, we define ET , tT , tS , tI, TA, PS , PI, PA, and PM,
where E stands for energy, P stands for power, t stands for time, T stands for total, S stands for scaling,
I stands for idle, A stands for Active and M stands for mean. Their relationship is shown in the following
equations:

tT = tI + tS + tA (2)

ET = tI × PI + tS × PS + tA × PA (3)

PM = ET/tT (4)

Fig.8 shows the detailed steps of our DVFS policy. The two sub-figures show the voltage, frequency,
and power consumption varies with time differently under different tT . In each period, the accelerator first

-7

7

runs at FA and UA and then scales to the minimum supported frequency Fmin and the minimum supported
voltage Umin to save static power once the computation is finished. According to our DVFS framework,
frequency scaling takes 3us while voltage scaling takes 2ms. This means that when the tT is long enough,
both frequency scaling and voltage scaling are performed. In this occasion, the chip’s power consumption
first drops to power-idle-at-active-voltage (PI@UA) when frequency scaling is performed and then gradually
decreases to Pmin as the voltage gradually decreases to Umin. The power when the voltage is scaling (PS) is
given by the average of Pmin and PI@UA. However, if the tT is short, only the frequency can be adjusted as
shown in the right sub-figure. Our goal is to find a voltage/frequency combination that has a minimum of
PM with our DVFS policy.

5. Design Flow

5.1. System Architecture

Fig.1 shows the topology details of the system. It is implemented on the latest Zynq UltraScale+ device
that integrates processing system (PS) and programmable logic (PL). The PS is a Quad-Core A53 processor
running at 1.2GHz. It provides three M_AXI buses and six S_AXI buses for high throughput data transfer
between the PL and the PS. What’s more, the PS is also embedded with common interfaces for various
peripherals, such as I2C, USB, Ethernet, Display Port, etc. The I2C interface is connected to the power
management IC on the FPGA board via MIO. Two high-performance M_AXIs are enabled in this design,
one of them is connected to the DFS module, and the other one is connected to the SkyNet accelerator.
The PS is running Linux OS and is responsible for loading images and sends control signals such as target
frequency of the DFS module and the configuration parameters for the SkyNet accelerator. All the clock
signals related to the SkyNet accelerator are under the DFS module/clk1 domain including the accelerator’s
clock input as well as that of M_AXI_HPM1, S_AXI_HP0, S_AXI_HP1. All the input feature maps
and weights are transferred through S_AXI_HP0 and all the output feature maps are transferred through
S_AXI_HP1. The frequency and the voltage can only be modified during the iteration interval of the
hardware calls.

5.2. SDSoC Support

To build an ARM + FPGA system with DVFS support in the traditional design flow, designers should
first add the DVFS module in PL, then prepare the drivers for controlling DVFS module in Linux. After the
DVFS function is ready, the accelerators are added to the system and connected with the DVFS modules,
which is quite exhausting. What’s more, preparing testbench that is able to cover a sufficient number of test
cases is also time-consuming. To solve this problem, we combine the DVFS framework with Xilinx’s latest
tool for developing ARM + FPGA system in C/C++/OpenCL, SDSoC, to further enhance the efficiency
of system development.

The starting point of an SDSoC-based design is an SDSoC hardware platform, where all the hardware
components such as DDR and DVFS modules are defined. Then the boot loaders and target operating
systems are built to bring-up the hardware platform. After that, the drivers for the DVS and the DFS module
are embedded in the operating system. The bootloaders, target operating system, and the drivers together
are called SDSoC software platform, and the hardware platform and software platform together are called
SDSoC platform. With this platform, users can develop an embedded system with hardware accelerators in
a total software design flow. The user’s C/C++/OpenCL code will be translated into Verilog/VHDL code
and package the Verilog/VHDL into IPs by SDSoC compiler. After that, SDSoC will connect the accelerator
to the PS and the DFS module automatically and then generate the bitstream. Using this platform, we can
focus on the accelerator design rather than paying attention to the DVFS module.

-8

8

Table 1: Resource utilization of the system
Resource LUT LUTRAM FF BRAM DSP
SkyNet Total 54639 1984 65196 209 333
Accelerator 49934 921 57101 209 333
AXI Bus 4691 1062 8030 0 0
System Reset 14 1 65 0 0
SkyNet DVFS Total 56902 2084 66781 209 333
Accelerator 49910 921 56095 209 333
AXI Bus 5799 1161 9127 0 0
DFS Module 1164 0 1492 0 0
System Reset 29 2 67 0 0
Total 230400 101760 460800 312 1728

 0

 10

 20

 30

 40

 50

 200 220 240 260 280 300 320 340 360 380 400

F
P

S
(f

ra
m

e/
s)

F(MHz)

F-FPS

Figure 9: Total time change with with frequency respectively.

6. Experimental Results and Analysis

6.1. Experimental Setup

The SkyNet is written in High-Level Synthesis (HLS) C++ and then synthesized in SDSoC 2019.1. The
Quad Cortex-A53 cores in ZCU104 is running Ubuntu18.04 modified by Xilinx. We test the system using
the sample dataset of DAC-SDC2019 that is composed of 1000 images and corresponding ground truth. We
record the total time and energy consumption for processing all the images and calculated the average IoU
under different voltage & frequency combinations. We sweep the VCCINT from 680mV to 840mV at the
step size of 20mV and sweep the frequency from 200MHz to 400MHz at the step size of 1MHz. Table.1 gives
the resource consumption of the original SkyNet and SkyNet with DVFS.

6.2. Performance Analysis

Fig.9 shows the relationship between the frequency and the achieved frames per second (FPS). The figure
shows that the highest performance of SkyNet in Zynq Ultrascale+ is at 371MHz with 38.3FPS and that
the achieved FPS performs a linear relation with frequency as expected.

6.3. Power Analysis

To better illustrate the impact of DVFS on power consumption, in this section, we focus on the power
of the PL that is supplied by the VCCINT power rail. Other power rails include VCCAUX which charges
the clock managers, IOs among the other blocks and VCCBRAM used by BRAMs. The power drawn from

-9

9

 680

 720

 760

 800

 840

U(mV)

 200
 240

 280
 320

 360
 400

F(MHz)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

P(W)

U-F-P

 1.2
 1.4
 1.6
 1.8
 2
 2.2
 2.4
 2.6
 2.8
 3
 3.2
 3.4

Figure 10: PL side power change with voltage and frequency respectively.

 680
 700

 720
 740

 760
 780

 800
 820

 840

U(mV)

 200

 250

 300

 350

 400
F(MHz)

 300

 350

 400

 450

 500

E(J)

U-F-E

U(mV)

F(MHz)

E(J)

 300

 350

 400

 450

 500

 550

Figure 11: Total energy changes with voltage and frequency respectively.

these additional power rails is considerably lower than VCCINT. Also, the PS of the device where the ARM
processor resides is not included in the calculations in that scaling VCCINT does not affect the power of
the ARM processor.

Fig.10 shows the measured power in function of the clock frequency and the voltage when the SkyNet
accelerator operates on ZCU104. The highest frequency at which the accelerator can operate increases with
the voltage of the PL. For instance, if VCCINT is set to 680mV, the highest frequency of the accelerator is
360MHz, above which the system is unstable. Whether the calculation result is correct or not is not considered
here, and the impact of DVFS on accuracy will be discussed later. As expected, power has a linear relation
with frequency and that the configurations of voltage scaled reduce power significantly since voltage affects
both dynamic and static power. The minimum power measured is 1.42 Watts at 200MHz/680mV for the
Ultrascale+ device. Therefore, these experiments confirm that significant performance and power margins
are available that can be exploited by the DVFS framework.

6.4. Energy Analysis

In the previous section, we only considered the power of the PL part to make the result look more
obvious, but considering the actual edge computing scenario, we should also take the power consumption
of CPU into account. For example, when the data arrives, the CPU wakes up and processes the images,
and then the CPU immediately enters the sleep state. Although the power of the PL side goes up as the

-10

10

 0

 0.2

 0.4

 0.6

 0.8

 1

 360 365 370 375 380 385 390 395 400

Io
U

F(MHz)

F-IoU at 840mV

file using 1:2

Figure 12: IoU changes with frequency at 840mV.

 680

 720

 760

 800

 840

U(mV)

 200
 240

 280
 320

 360
 400

F(MHz)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

IoU

U-F-IoU

U(mV)

F(MHz)

IoU

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

Figure 13: Average of IoU changes with voltage and frequency respectively.

frequency increases, it is also considered that the time for processing each picture as the frequency increases
is also reduced. In such a scenario, the computational time reduction caused by the frequency increase may
bring energy savings in the CPU part.

Fig.11 gives the relationship between the total energy consumption for processing all the 1000 images
in the sample dataset and voltage/frequency obtained by our DVFS framework. As shown in Fig.11, at
each voltage point, the total energy consumption goes down as the frequency increases. The reason is that
when the accelerator’s frequency runs at a low frequency, the dynamic power decreases but the static power
remains. What’s more, although the PS side’s power consumption decreases as the operating frequency of
accelerator decreases because the data throughput is reduced, the difference can be neglected compared to
the total power of the PS. At the meantime, at each frequency point, the energy consumption performs
a linear relationship with voltage. The highest energy consumption is 518.8J achieved at 200MHz/840mV
while the least energy consumption is 354.1J achieved at 371MHz/840mV. About 32% of energy can be
saved with our DVFS framework. It should be noted that all the data mentioned above is given under strict
constraint that the result should be 100% correct. In the next section, we will relax the constrain and discuss
the impact of DVFS on accuracy.

6.5. Accuracy Analysis

All the results presented so far have used the neural network at full accuracy, that is 71.9% Intersection
over Union (IoU) on the whole sample dataset. As previously mentioned, it is possible to relax this constraint
and let errors affect the user logic. As shown in Fig.12, there is a threshold frequency at 371MHz, above
which there may be errors in the final results and the accuracy will change. However, the IoU does not go

-11

11

 680

 720

 760

 800

 840

U(mV)

 200
 240

 280
 320

 360
 400 F(MHz)

 0

 2

 4

 6

 8

 10

U
E

E
 (

fr
am

e/
s/

J)

U-F-UEE

U(mV)

F(MHz)

U
E

E
 (

fr
am

e/
s/

J)

 0
 1
 2
 3
 4
 5
 6
 7
 8

Figure 14: UEE changes with voltage and frequency respectively.

from 71.9% sharply to zero, but goes through four different stages, namely jitter period, slow decent period,
quick decent period and zero period. In the first period, the IoU jitter around 71.9% within +1/-1% until
382MHz. In the second period, the IoU goes down gradually from 383MHz to 386MHz (70.8% to 68.5%).
Only until the quick decent period (387MHz to 388MHz), we can see a sharp decrease in IoU. We regard the
region where the IoU is below 10% as the zero period. This means that a further increase in performance is
possible if we relax the IoU requirement to the jitter period and quick decent period.

It is foreseeable that the threshold frequency is related to voltage and Fig.13 shows the IoU varies
concerning both voltage and frequency. The first error comes at 285MHz when VCCINT is set to 680mV
and the threshold frequency comes later in an approximately linear relationship with the voltage. What’s
more, the jitter period, slow decent period and quick decent period narrow as the voltage goes up (285MHz-
301MHz-304MHz at 680mV vs. 371MHz-382MHz-386MHz at 840mV).

Through the above analysis, we can draw a conclusion that, CNNs are robust to errors. Even if errors
are generated by the accelerator during operation, it have a very limited effect on the final result when the
number of errors is small. Through this feature, we can sacrifice accuracy and performance to some extent.

6.6. Comprehensive Evaluation Metric

Previous works usually compare performance, energy efficiency and the achieved accuracy respectively.
However, these three metrics are not completely independent but can be transformed into each other through
various means. For instance, network compression and quantization can be the method to balance between
accuracy and performance. Our DVFS framework is a method to trade-off between energy efficiency and
performance as well as accuracy. Therefore, a comprehensive evaluation metric that takes performance,
energy efficiency and accuracy into account is necessary to evaluate a system design. In this paper, the
performance is given by the achieved FPS, energy efficiency is given by the energy consumption for each
frame and the accuracy is given by IoU. Under this context, we proposed a rough metric called unified
energy efficiency (UEE):

UEE =
Per f ormance × Accuracy

Energy
(5)

The UEE is given by:
UEE =

FPS × AverageIoU
TotalEnergy

(6)

There are previous works using frames per second per watt (FPS/W) as a metric. However, the watt is given
by Joule per second and thus FPS/W equals to frames per Joule (FPJ), it does not take the performance
into account. As a result, in this paper, we adapt energy rather than power as the numerator.

-12

12

 680
 700

 720
 740

 760
 780

 800
 820

 840

U(mV)

 200
 220

 240
 260

 280
 300

 320
 340

 360
 380

 400
F(MHz)

 10

 10.5

 11

 11.5

 12

P(W)

U-F-PI

 10
 10.2
 10.4
 10.6
 10.8
 11
 11.2
 11.4
 11.6
 11.8

Figure 15: Idle power changes with voltage and frequency respectively.

 680
 700

 720
 740

 760
 780

 800
 820

 840

U(mV)

 200
 220

 240
 260

 280
 300

 320
 340

 360
 380

 400
F(MHz)

 10

 10.5

 11

 11.5

 12

P(W)

U-F-PM

 10
 10.2
 10.4
 10.6
 10.8
 11
 11.2
 11.4
 11.6
 11.8

Figure 16: Average power changes with voltage and frequency respectively.

Fig.14 shows UEE changes with voltage and frequency respectively. As shown in the figure, UEE first
goes up with frequency at each voltage since the accuracy remains and the performance and energy efficiency
increase and then goes down sharply as IoU drops to zero. For each frequency point under 290MHz, the
threshold frequency of 680mV, UEE decreases as voltage goes up since lower voltage has higher energy
efficiency, However, higher voltage provides higher threshold frequency and thus can get higher performance
and energy efficiency. The highest UEE, 7.71, is achieved at 840mV/379MHz and is beyond 7.22 achieved
at 840mV/370MHz which is the threshold voltage. It also shows that the DVFS can further improve UEE.

6.7. DVFS for Real-Time Application

As mentioned in the previous section, in realistic scenarios, the needed frame rate is bounded by the
camera. In this paper, we assume that the frame rate of the camera is 24FPS, the standard movie frame rate,
and try to find the lowest average power solution that meets this performance requirement with our proposed
DVFS policy. Fig.15 gives the relationship between idle power and voltage/frequency. As can be seen from
the figure, the idle power performs a linear relationship between both the voltage and the frequency. Thus
slowing down the clock, which can be regarded as a variant of clock gating technology, can be an effective
method to save idle power. Furthermore, scaling down the voltage combined with clock gating can save idle
power to the utmost. PImin is 9.81W, achieved when the frequency is scaled to 20MHz and the voltage is
scaled to 680mV.

-13

13

Table 2: Comparison with other work
Performance Energy Efficiency IoU UEE

SkyNet [25] 23.93FPS 2.02FPJ 71.91% 3.49
Candidate1 37.04FPS, 1.54× 2.79FPJ, 1.38× 71.91% 7.22, 2.06×
Candidate2 37.42FPS, 1.56× 2.97FPJ, 1.47× 71.80% 7.71, 2.21×

Fig.16 shows the achieved PM at different voltage/frequency combinations. As shown in the figure, the
minimum average power is 10.90W and is achieved at 680mV/285MHz, we get a 15% reduce in power
consumption compared to 12.86W of the original design.

6.8. Comparison with Other Work

We compare the performance, energy efficiency, accuracy as well as UEE with the original SkyNet, where
the energy efficiency is given by frames per Joule (FPJ). The original SkyNet is implemented on Ultra96,
we transfer the design to ZCU104 without any modification. We choose the data achieved at the threshold
frequency of 840mV/370MHz as the first candidate and that achieved at 840mV/379MHz as the second
candidate. As shown in Table.2, our work achieves 54% improvement in performance, 38% improvement
in energy efficiency and 106% improvement in UEE without any degradation in accuracy compared to the
original SkyNet. If we relax the requirement on accuracy, we can achieve 56% improvement in performance,
47% improvement in energy efficiency and 121% improvement in UEE at the cost of 0.11 decrease in IoU.

7. Conclusion

FPGA has been proven as a favorable platform to accelerate convolution neural network (CNN) on the
edge-computing paradigm given its high flexibility and energy efficiency. However, the energy efficiency of the
FPGA platform can be further improved with dynamic voltage and frequency scaling (DVFS). Although
an overly aggressive voltage and frequency combination can lead to errors, the high robustness of the
CNN to errors makes it possible to combine DVFS with it. In this paper, we first introduce a framework
for fine-grained DVFS on the state-of-the-art FPGA device and then apply the framework to SkyNet, a
state-of-the-art neural network targeting on object detection. Third, we analyze the impact of DVFS on
performance, power, energy efficiency and accuracy. We verify the possibility of sacrificing accuracy for
performance or energy efficiency. In order to evaluate the entire system comprehensively, we propose a new
metric, called unified energy efficiency (UEE), that takes performance, energy efficiency as well as accuracy
into account. Finally, we achieve 54% improvement in performance, 38% improvement in energy efficiency
and 106% improvement in UEE without any loss in accuracy compared to the original SkyNet. If we relax
the requirement on the accuracy, we can achieve 56% improvement in performance, 47% improvement in
energy efficiency and 121% improvement in UEE at the cost of 0.11 decrease in accuracy.

References

[1] Eriko Nurvitadhi, Ganesh Venkatesh, Jaewoong Sim, Debbie Marr, Randy Huang, Jason Ong Gee Hock,
Yeong Tat Liew, Krishnan Srivatsan, Duncan Moss, Suchit Subhaschandra, et al. Can fpgas beat
gpus in accelerating next-generation deep neural networks? In Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, pages 5–14. ACM, 2017.

[2] Paolo Mantovani, Emilio G Cota, and Kevin et al. Tien. An fpga-based infrastructure for fine-grained
dvfs analysis in high-performance embedded systems. In Proceedings of the 53rd Annual Design Au-
tomation Conference, page 157. ACM, 2016.

-14

14

[3] Lin Bai, Yiming Zhao, and Xinming Huang. A cnn accelerator on fpga using depthwise separable
convolution. IEEE Transactions on Circuits and Systems II: Express Briefs, 65(10):1415–1419, 2018.

[4] Yufei Ma, Yu Cao, Sarma Vrudhula, and Jae-sun Seo. An automatic rtl compiler for high-throughput
fpga implementation of diverse deep convolutional neural networks. In 2017 27th International Confer-
ence on Field Programmable Logic and Applications (FPL), pages 1–8. IEEE, 2017.

[5] Yufei Ma, Yu Cao, Sarma Vrudhula, and Jae-sun Seo. Optimizing loop operation and dataflow in
fpga acceleration of deep convolutional neural networks. In Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, pages 45–54. ACM, 2017.

[6] Yufei Ma, Minkyu Kim, Yu Cao, Sarma Vrudhula, and Jae-sun Seo. End-to-end scalable fpga accelerator
for deep residual networks. In 2017 IEEE International Symposium on Circuits and Systems (ISCAS),
pages 1–4. IEEE, 2017.

[7] Xuechao Wei, Yun Liang, Xiuhong Li, Cody Hao Yu, Peng Zhang, and Jason Cong. Tgpa: tile-grained
pipeline architecture for low latency cnn inference. In 2018 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pages 1–8. IEEE, 2018.

[8] Kaiyuan Guo, Lingzhi Sui, Jiantao Qiu, Jincheng Yu, Junbin Wang, Song Yao, Song Han, Yu Wang,
and Huazhong Yang. Angel-eye: A complete design flow for mapping cnn onto embedded fpga. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 37(1):35–47, 2018.

[9] Yufei Ma, Yu Cao, Sarma Vrudhula, and Jae-sun Seo. Performance modeling for cnn inference accel-
erators on fpga. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
2019.

[10] Jiantao Qiu, Jie Wang, Song Yao, Kaiyuan Guo, Boxun Li, Erjin Zhou, Jincheng Yu, Tianqi Tang,
Ningyi Xu, Sen Song, et al. Going deeper with embedded fpga platform for convolutional neural
network. In Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, pages 26–35. ACM, 2016.

[11] Xiaofan Zhang, Junsong Wang, Chao Zhu, Yonghua Lin, Jinjun Xiong, Wen-mei Hwu, and Deming
Chen. Dnnbuilder: an automated tool for building high-performance dnn hardware accelerators for
fpgas. In Proceedings of the International Conference on Computer-Aided Design, page 56. ACM,
2018.

[12] Mohammad Motamedi, Daniel Fong, and Soheil Ghiasi. Machine intelligence on resource-constrained iot
devices: The case of thread granularity optimization for cnn inference. ACM Transactions on Embedded
Computing Systems (TECS), 16(5s):151, 2017.

[13] Qingcheng Xiao, Yun Liang, Liqiang Lu, Shengen Yan, and Yu-Wing Tai. Exploring heterogeneous algo-
rithms for accelerating deep convolutional neural networks on fpgas. In 2017 54th ACM/EDAC/IEEE
Design Automation Conference (DAC), pages 1–6. IEEE, 2017.

[14] Sanghamitra Dutta, Ziqian Bai, Tze Meng Low, and Pulkit Grover. Codenet: Training large scale neural
networks in presence of soft-errors. arXiv preprint arXiv:1903.01042, 2019.

[15] Bin Nie, Devesh Tiwari, Saurabh Gupta, Evgenia Smirni, and James H Rogers. A large-scale study of
soft-errors on gpus in the field. In 2016 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pages 519–530. IEEE, 2016.

[16] Yuanchang Chen, Yizhe Zhu, Fei Qiao, Jie Han, Yuansheng Liu, and Huazhong Yang. Evaluating data
resilience in cnns from an approximate memory perspective. In Proceedings of the on Great Lakes
Symposium on VLSI 2017, pages 89–94. ACM, 2017.

-15

15

[17] Aurick Qiao, Bryon Aragam, Bingjing Zhang, and Eric P Xing. Fault tolerance in iterative-convergent
machine learning. arXiv preprint arXiv:1810.07354, 2018.

[18] Jose Luis Nunez-Yanez. Adaptive voltage scaling with in-situ detectors in commercial fpgas. IEEE
Transactions on Computers, 64(1):45–53, 2014.

[19] Atukem Nabina and Jose Luis Nunez-Yanez. Adaptive voltage scaling in a dynamically reconfigurable
fpga-based platform. ACM Transactions on Reconfigurable Technology and Systems (TRETS), 5(4):20,
2012.

[20] Xuechao Wei, Yun Liang, and Jason Cong. Overcoming data transfer bottlenecks in fpga-based dnn
accelerators via layer conscious memory management. In DAC, pages 125–1, 2019.

[21] Caiwen Ding, Shuo Wang, Ning Liu, Kaidi Xu, Yanzhi Wang, and Yun Liang. Req-yolo: A resource-
aware, efficient quantization framework for object detection on fpgas. In Proceedings of the 2019
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pages 33–42. ACM, 2019.

[22] Xiaofan Zhang, Cong Hao, Yuhong Li, Yao Chen, Jinjun Xiong, Wen-mei Hwu, and Deming Chen. A bi-
directional co-design approach to enable deep learning on IoT devices. arXiv preprint arXiv:1905.08369,
2019.

[23] Cong Hao, Xiaofan Zhang, Yuhong Li, Sitao Huang, Jinjun Xiong, Kyle Rupnow, Wen-mei Hwu, and
Deming Chen. FPGA/DNN co-design: An efficient design methodology for IoT intelligence on the edge.
In Proceedings of the 56th Annual Design Automation Conference, page 206. ACM, 2019.

[24] Jose L. Nunez-Yanez. Energy proportional neural network inference with adaptive voltage and frequency
scaling. IEEE Transactions on Computers, PP(99):1–1, 2018.

[25] Xiaofan Zhang, Cong Hao, Haoming Lu, Jiachen Li, Yuhong Li, Yuchen Fan, Kyle Rupnow, Jinjun
Xiong, Thomas Huang, Honghui Shi, Wen-mei Hwu, and Deming Chen. Skynet: A champion design
for DAC-SDC on low power object detection. arXiv preprint arXiv:1906.10327, 2019.

[26] Andreas Weissel and Frank Bellosa. Process cruise control: event-driven clock scaling for dynamic
power management. In Proceedings of the 2002 international conference on Compilers, architecture,
and synthesis for embedded systems, pages 238–246. ACM, 2002.

[27] Karel De Vogeleer, Gerard Memmi, Pierre Jouvelot, and Fabien Coelho. The energy/frequency convexity
rule: Modeling and experimental validation on mobile devices. In International Conference on Parallel
Processing and Applied Mathematics, pages 793–803. Springer, 2013.

[28] Huang Huang, Vivek Chaturvedi, Gang Quan, Jeffrey Fan, and Meikang Qiu. Throughput maximiza-
tion for periodic real-time systems under the maximal temperature constraint. ACM Transactions on
Embedded Computing Systems (TECS), 13(2s):70, 2014.

[29] Heng Yu, Rizwan Syed, and Yajun Ha. Thermal-aware frequency scaling for adaptive workloads on
heterogeneous mpsocs. In Proceedings of the conference on Design, Automation & Test in Europe, page
291. European Design and Automation Association, 2014.

[30] Heng Yu, Yajun Ha, and Jing Wang. Quality optimization of resilient applications under temperature
constraints. In Proceedings of the Computing Frontiers Conference, pages 9–16. ACM, 2017.

[31] Yue Ma, Thidapat Chantem, Robert P Dick, and Xiaobo Sharon Hu. Improving system-level lifetime
reliability of multicore soft real-time systems. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 25(6):1895–1905, 2017.

-16

16

[32] Kyeongryeol Bong, Sungpill Choi, Changhyeon Kim, and Hoi-Jun Yoo. Low-power convolutional neural
network processor for a face-recognition system. IEEE Micro, 37(6):30–38, 2017.

[33] Giulia Santoro, Mario R Casu, Valentino Peluso, Andrea Calimera, and Massimo Alioto. Design-space
exploration of pareto-optimal architectures for deep learning with dvfs. In 2018 IEEE International
Symposium on Circuits and Systems (ISCAS), pages 1–5. IEEE, 2018.

[34] Guan-Chyun Hsieh and James C Hung. Phase-locked loop techniques. a survey. IEEE Transactions on
industrial electronics, 43(6):609–615, 1996.

[35] J-H Kim, Y-H Kwak, Mooyoung Kim, S-W Kim, and Chulwoo Kim. A 120-mhz–1.8-ghz cmos dll-based
clock generator for dynamic frequency scaling. IEEE Journal of Solid-State Circuits, 41(9):2077–2082,
2006.

[36] Ian Brynjolfson and Zeljko Zilic. Dynamic clock management for low power applications in fpgas. In
Proceedings of the IEEE 2000 Custom Integrated Circuits Conference (Cat. No. 00CH37044), pages
139–142. IEEE, 2000.

[37] Arash Farhadi Beldachi and Jose L Nunez-Yanez. Run-time power and performance scaling in 28 nm
fpgas. IET Computers & Digital Techniques, 8(4):178–186, 2014.

[38] Arash Farhadi Beldachi and Jose L Nunez-Yanez. Accurate power control and monitoring in zynq
boards. In 2014 24th International Conference on Field Programmable Logic and Applications (FPL),
pages 1–4. IEEE, 2014.

[39] Mohammad Hosseinabady and Jose Luis Nunez-Yanez. Run-time power gating in hybrid arm-fpga
devices. In 2014 24th International Conference on Field Programmable Logic and Applications (FPL),
pages 1–6. IEEE, 2014.

-17

17

