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ABSTRACT  11 

In this research, ab initio calculations and experimental approach were adopted to reveal the 12 

mechanism of Hg0 adsorption on MoS2 nanosheets that contain various types of defects. The ab 13 

initio calculation showed that, among different structural defects, S vacancies (Vs) in the MoS2 14 

nanosheets exhibited outstanding potential to strongly adsorb Hg0. The MoS2 material was then 15 

prepared in a controlled manner under conditions, such as temperature, concentration of 16 

precursors, etc., that were determined by adopting the new method developed in this study. 17 

Characterisation confirmed that the MoS2 material is of graphene-like layered structure with 18 

abundant structural defects. The integrated dynamic and steady state (IDSS) testing 19 

demonstrated that the Vs-rich nanosheets showed excellent Hg0 adsorption capability. In 20 

addition, ab initial calculation on charge density difference, PDOS, and adsorption pathways 21 

revealed that the adsorption of Hg0 on the Vs-rich MoS2 surface is non-activated chemisorption. 22 

Keywords: MoS2 nanosheet, structural defect, Hg0 adsorption, ab initio calculation 23 

1. Introduction 24 

The airborne elemental mercury (Hg0) is the most dominant and problematic form of 25 

mercury[1-3] because it is highly volatile and insoluble in water [4-6]. It can travel in the 26 

air over a long-distance, bio-accumulate in the ecosystem and is persistent in the 27 

environment [7]. Therefore, it has significant impacts on ecosystem and human being’s 28 

health. In the past two decades, mercury emission has become a global concern and has 29 
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attracted tremendous amount of attention in the development of novel materials for the 30 

mercury removal[8]. 31 

Technologies for the removal of elemental mercury in gas phase is highly demanded in 32 

industries such as coal-fired power plants, petrochemical processes, incineration 33 

plants[9-13]. Currently, activated carbon is commercially applied in power plants for 34 

elemental mercury removal[14]. However, the spent carbon is still a hazardous material 35 

and may compromise fly ash as a saleable by-product[15-17]. Therefore, the 36 

development of alternative non-carbon-based sorbents is necessary for mercury 37 

emission control in industry[18-20]. 38 

Recently, 2-dimensional transition-metal dichalcogenides (2D-TMDs) have attracted 39 

increasing attention due to their unique structural features and have been applied in 40 

various industrial processes[21]. MoS2 is a 2D-TMDs material that has layered structure, 41 

strong in-plane bonding and weak out-of-plane interactions, which shows excellent 42 

electrical, physical, chemical and mechanical properties[22]. To date, MoS2 has been 43 

successfully applied in various applications for reducing the emission of hazardous 44 

pollutants[23-26]. However, not much work has been carried out on the application of 45 

MoS2 in the adsorption of elemental mercury (Hg0).  46 

In our previous studies, a suite of Mo-based transition metal oxides and sulphides were 47 

investigated as candidate materials for Hg0 removal[27, 28]. The presence of Mo species 48 

in metal oxides was found to promote Hg0 removal[27], and the MoS2 nanosheets 49 

exhibited outstanding Hg0 removal performance [16, 29-31]. The effects of temperature, 50 

space velocity, the existence of other gas species and the recovery of Hg0 as a resource (or for 51 

permanent disposal) have been studied in detail[30, 31].However, the effect of structural 52 

defects of MoS2 nanosheets on Hg0 adsorption remains unclear. 53 

Normally, structural defects provide extraordinary opportunities to tailor the intrinsic 54 

properties and create new functionalities. For 2D materials, structural defects have been 55 
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found to have strong influence on the electron−electron interactions. Different types of 56 

defects in MoS2 nanosheets were found playing important roles in various 57 

applications[32]. However, the roles of different types of defects in MoS2 nanosheets in 58 

airborne Hg0 adsorption remain unexplored.  59 

In this research, ab initio calculation was conducted to study mechanism of the 60 

adsorption of Hg0 on MoS2 nanosheets with different types of defects. A novel method 61 

was developed to determine conditions for the rapid synthesis of MoS2-containing 62 

materials with desired functions. Characterisation of defect-rich MoS2 containing 63 

materials was then carried out, followed by the testing of the performance of this 64 

material in Hg0 adsorption. 65 

2. Materials and methods  66 

2.1 Equipment 67 

A dedicated rig was adopted for the evaluation of mercury adsorption performance of 68 

the MoS2 materials. The rig consists of a mercury analyser, elemental mercury 69 

calibrator/generator, dilution probe controller, mercury sample conditioner, which was 70 

used to generate elemental mercury and to perform online analysis of elemental and 71 

oxidised mercury. A flue gas analyser was used to analyse other gas compounds in the 72 

simulated flue gas from coal-fired power stations. The details of this experimental set-73 

up are described elsewhere[27-29, 32].  74 

2.2 Computational method  75 

ab initio calculation was performed using Density Functional Theory – Dispersion 76 

Correction (DFT-D) with exchange-correlation functional GGA-PW91-OBS[33]. The ultra 77 

soft pseudo potential (USPP)[34] was implemented. It was assumed that there were no 78 

atomic layers being constrained in the MoS2 (4 4)[35]. Furthermore, the transition state 79 

(TS) confirmation was implemented following the nudged elastic band (NEB) method. 80 
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The p-band center ( ), following the d-band model approach [36], is adopted to study 81 

the formation of chemisorption bonds[37].  82 

           (1) 83 

where the right side term represents the attraction between adsorbate and adsorbent , 84 

in which V is the coupling matrix element;  is the energy level of the most active 85 

band in the adsorbate and was set to be the value of Hg0 s-orbital band center;  is 86 

the energy level of p orbitals, which is the active orbital of atoms and can be calculated 87 

by  (the x and  correspond to energy (eV) and DOS 88 

(electron/eV), respectively, while integral domain is from the minimum energy to fermi-89 

energy of p-orbital electrons). 90 

The adsorption energy ( ) is calculated by, 91 

      (2) 92 

where,  is ground state energy of the free Hg0 atom in a (11 Å)3 supercell;  is 93 

total energy of the  supercell, and  is optimized total energy of the 94 

system with a Hg0 atom being adsorbed and the  supercell. 95 

Vacancy energy is calculated by,  96 

        (3) 97 

where, is total energy of the defect-free structure;  is total energy of the 98 

structure having a particular type of vacancy; while  is total energy of missing 99 

atoms in the vacancies. 100 

2.3 Sample preparation  101 
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The Vs-rich MoS2 nanosheets containing material was prepared using incipient wetness 102 

impregnation (IWI) followed by sulphur-chemical vapour reaction (S-CVR) method[16, 103 

32]. The precursor used was (NH4)6Mo7O24•4H2O, while the commercial mesoporous γ-104 

Al2O3 (V-SK Co., Ltd.) was selected as the support. The stable phases of the molybdenum 105 

containing materials under different temperatures and partial pressure were predicted 106 

using FactSage™ 6.3 with a Phase Diagram module [38], which was then used to guide 107 

the selection of appropriate preparation conditions to ensure the formation of MoS2 108 

nanosheets under a controlled manner. By following the predicted conditions, the γ-109 

Al2O3 saturated with (NH4)6Mo7O24•4H2O solution was dried in an oven at 120 °C for 24 110 

h and calcined in air at 520 °C for 12 h. Prior to S-CVR, the sample was pre-heated to 111 

500°C and kept isothermal for 1 h with nitrogen purge at a flow rate of 100 ml/min to 112 

remove moisture and other adsorbed matters. The samples were then in situ sulphided 113 

with a H2S/H2 gas mixture (10 vol.% H2) at a flow rate of 20 ml/min under a desired 114 

temperature for 3 h. A similar procedure for sample preparation was described in detail 115 

elsewhere[16, 32]. 116 

2.4 Characterization of the MoS2 material  117 

X-Ray Photoelectron Spectroscope (XPS) analysis was conducted using a Kratos AXIS 118 

Ultra DLD spectrometer with an Al Kα radiation source at room temperature and under 119 

a vacuum condition (10-7 Pa)[39]. Samples were analyzed using a Raman Renishaw 120 

RM2000. The pump radiation was supplied by a diode laser of 514 nm and the Raman 121 

emission was focused using a 50 × objective[40]. The crystallinity of the sample was 122 

analysed using an X-Ray Diffraction (XRD, Bruker D8 A25, Germany), during which the 123 

CuKα radiation was set as 40 kV and 40 mA, and scanning was carried out from 10˚ to 90˚ 124 

[32]. A high-resolution transmission electron microscopy (HRTEM) (JEM 2100) operated 125 

at 200 kV was used to study the morphology of the samples[39].  126 
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In-situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (In-situ DRIFTS) was 127 

applied to investigate the surface acid sites by using NH3 as the alkaline probe molecule. 128 

The IR spectra were recorded using a Fourier Transform Infrared Spectrometer (Bruker 129 

V70, USA) equipped with a Praying Mantis™ reaction chamber (Harrick, USA). Similar 130 

experimental procedures are described elsewhere[32]. Adsorption/desorption of NH3 131 

(as the base probe molecule) on the surface of the sample was studied by using 132 

Temperature Programmed Desorption (TPD) following similar procedures as the in-situ 133 

DRIFTS experiments. 134 

2.5 Evaluation of mercury adsorption performance  135 

The samples were evaluated by using an integrated Hg0-TPSR dynamic and steady state (IDSS) 136 

method. The Hg0-TPSR and IDSS were carried out using a dedicated experimental rig that 137 

equipped with a mercury generator (Tekran 3310, USA) and mercury analysis system (Tekran 138 

3300RS, USA) as described in our previous research[27]. 139 

Based on qualitative analysis, the characteristics of Hg0 capture were extracted from the profile 140 

generated from the Hg0-TPSR experiment. 141 

Quantitative analysis of the Hg0-TPSR experimental results was conducted to study the 142 

instantaneous Hg0 removal efficiency, the adsorption and desorption of Hg0 on the surface of 143 

the adsorbents. 144 

The maximum instantaneous Hg0 removal efficiency (∆X max) was calculated using Equation (4).  145 

∆Xmax =
[H𝑔0]in − [H𝑔0]out 

[H𝑔0]in
 × 100       (4) 146 

Area of the adsorption region (Sa) and the desorption region (Sd), which corresponds to the areas 147 

below or above the concentration baseline, was determined by the integration of Equation (5).  148 

S = ∫ 𝑓(𝑡)𝑑𝑡
𝑡2

𝑡1
                   (5) 149 
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where, t1 is the starting time of adsorption/desorption, min; t2 is the ending time of 150 

adsorption/desorption, min; f(t) is the change of Hg0 concentration as a function of time; S is 151 

the area determined using the integration method, mingm-3. 152 

Based on the Hg0-TPSR dynamic transient analysis, a steady-state evaluation of Hg0 adsorption 153 

performance was further conducted. The samples were evaluated under the same temperature 154 

(50°C) and Hg0 concentration (30 μg/m3) for at least 180 min after the reactions had reached 155 

steady state. 156 

3. Results and discussion 157 

3.1 Computational study 158 

3.1.1 Geometric structure of defective MoS2 nanosheets  159 

The MoS2 nanosheets normally contain different structural defects in its crystal lattices, 160 

which are the potential sites for airborne Hg0 capture [41].The MoS2 nanosheets with 161 

defect-free surface as well as those with different types of defects, such as vacancies 162 

with the absence of one S atom (VS), the absence of two S atoms (VS2) and the absence 163 

of one Mo atom (VMo), were investigated in detail in this study.  164 

It is found that the atoms around the S vacancy exhibit different extents of inward 165 

relaxation depending on the number of S atoms that are absent. This is because the 166 

radius of an S2- ion (0.184nm) is much larger than that of a Mo4+ ion (0.065nm) [42, 43] 167 

and this type of inward relaxation is commonly seen in defective surface structures with 168 

large size atoms being removed from a defect-free surface.  169 

For a Mo vacancy, its neighbouring atoms show an outward relaxation due to the 170 

weakened electrostatic attraction force between the NA S atom and the Mo vacancy. 171 

Additionally, the outward relaxation of the NA S atom is greater than that of the NA Mo 172 

atoms. That means the relative distance between upper S plane and the second NA Mo 173 

atoms becomes greater as compared with no relaxation occurred. Based on the 174 
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calculation, after relaxation, the distance between the NA S atoms and the Mo vacancy 175 

increased by 2.61%, while the distance between the NA Mo atoms and the Mo vacancy 176 

was shorten by 0.63% (as shown in Table 1). It can be concluded that absence of Mo 177 

atom(s) leads to the formation of Mo vacancies that are negative charged, which have 178 

the potential to facilitate the adsorption of metals in oxidized state. Therefore, the 179 

oxidation of Hg species (for example, HgCl, HgO) could have affinity with such kind of 180 

positions. 181 

However, driven by the weakened electrostatic repulsion between the nearest adjacent 182 

(NA) S atoms and the S vacancy, the extent of the inward relaxation of the NA S atom is 183 

greater than that of the NA Mo atoms. Therefore, the distances between VS and the NA 184 

Mo atoms and between VS and the NA S atoms are shortened by 0.04% and 2.70%, 185 

respectively. Therefore, it can be concluded that the absence of S atoms leads to the 186 

formation of S vacancies that are positive charged (electron deficient), which has the 187 

potential to facilitate the capture of metal atoms (electron donors). Moreover, it is found 188 

that the inward relaxation of the VS2 is greater than that of the VS as the VS2-MoNA and 189 

the VS2-SNA distances are shortened by 5.47% and 3.53% respectively (Table 1). This 190 

means that after relaxation, distance between the Mo atoms and the S vacancy become 191 

shorter.  192 

Therefore, the missing of S atoms leads to the formation of S vacancies that are positive 193 

charged (electron deficient), which would facilitate the capture of metal atoms (electron 194 

donors). Moreover, some researches have reported the adsorption of metals, such as 195 

Mn atom, Fe atom and Au cluster, on the Vs type of defects in MoS2 nanosheet [44, 45], 196 

which shows the potential of Vs position in capturing metal atoms. Most of the trace Fe 197 

and Mn species were in dust form of flue gas at coal fired power plant that can be 198 

removed by existing air pollution control devices (APCDs) such as electrostatic 199 
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precipitator (ESP), fabric filters (FF). Therefore, most of the effective surface of the MoS2 200 

with Vs defect is active for capture airborne Hg0. 201 

3.1.2 ab initio mapping of MoS2 surface  202 

Theoretically, a more negative adsorption energy ( ) indicates a more favourable 203 

interaction between adsorbent and the adsorbate [46]. All potential adsorption sites on 204 

the defect-free and defective MoS2 nanosheets were evaluated and numbered in the 205 

order of magnitude of the adsorption energy as shown in Figure 1.  206 

Based on ab initial calculations, it is clear that on the defect-free MoS2 nanosheets, the 207 

strongest adsorption site is Position 18, which is the position on top of a Mo atom. This 208 

suggests that the adsorption of Hg0 on the MoS2 nanosheets is affected by S and Mo 209 

atoms in a synergistic manner.  210 

For the defective structure with one absent Mo atom (VMo), the site with the second 211 

highest absolute adsorption energy (Position 21) is also found to be on top of a Mo atom. 212 

However, for this VMo structure, the strongest adsorption site is on top of the hollow 213 

space of the sulphur plane (Position 2). This is mainly due to the repulsive force against 214 

Hg0 atom from the negatively charged VMo. With the absence of Mo atom, the adsorption 215 

energy of VMo is significantly lower than that of the other positions on the defective 216 

surfaces and the defect-free surface. This further indicates that Mo atoms affect the 217 

adsorption of Hg0 on MoS2 nanosheets.  218 

Based on ab initio calculations, it is clear that Hg0 adsorption occurred on the MoS2 219 

nanosheets with VS2 and VS showed similar behaviours. For both cases, the adsorption 220 

site with the second largest absolute adsorption energy, Position 2 for VS and Position 11 221 

for VS2, are on top of Mo atoms, with an adsorption energy of approximately 1.12 eV. 222 

Furthermore, for the adsorption of mercury atoms on defective MoS2 nanosheets, i.e., 223 

VS2 and VS, the most stable adsorption sites are the ones right above the original position 224 
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of the absent S atoms, i.e., on top of the S vacancies. It is found that for the structure 225 

with only one absent sulphur atom, the absolute adsorption energy is slightly greater 226 

than that of the structure with two absent sulphur atoms, which indicates stronger 227 

attraction to Hg0 on the VS than on the VS2. These results suggest that the S vacancies 228 

have major influence on the adsorption of Hg0, while the absence of an additional S atom 229 

in the VS2 has less influence on the adsorption process. 230 

In order to quantify the interactions between Hg0 and the different types of vacancies on 231 

a MoS2 surface, p-band centre analysis was carried out following a similar method as the 232 

d-band centre analysis for transition metals [37]. Compared with PDOS or DOS of each 233 

element in MoS2 as shown in 234 

Figure 2, it can be found that both the s and p orbitals of S atoms and s and p orbitals of 235 

Mo atoms have some noticeable influence on the adsorption of Hg0. Moreover, p-band 236 

centre analysis was also carried out in this study to show the bonding strength of mercury 237 

adsorption on different types of defects in MoS2 surface. The variation in binding energy 238 

(Equation (1)) is determined by the , which is plotted in Figure 3 (a). The closer 239 

of p band center to the Fermi level indicates the greater interaction between s orbital of 240 

the Hg0 atom with p orbitals of the defective MoS2 surface. Based on p-band center 241 

analysis, it is found that adsorption energy is in the order of VS > VS2 > VMo. Therefore, it 242 

can be concluded that VS is the strongest sites for Hg0 adsorption. 243 

Generally, defects with different formation energy can affect the physical and chemical 244 

properties of the MoS2 monolayers, which could subsequently influence adsorption[47]. 245 

To further reveal the adsorption of Hg0 on different defects in the MoS2 surfaces, 246 

relationship between formation energy ( ) of the defects and adsorption energy was 247 

studied using Equations (2) and (3), the results of which are shown in Figure 3 (b). The 248 

smaller positive Ev value suggests that the formation of the vacancy is endothermic and 249 
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easier to form. As shown in Figure 3 (b), the VS had the lowest formation energy. This is 250 

consistent with findings of other researchers that the VS is frequently observed in MoS2 251 

surfaces [48]. The formation energy of VS2 was higher than that of Vs, which is consistent 252 

with reported finding that randomly distributed Vs is more frequently observed than Vs2 253 

[48]. The formation energy of VMo is even higher than that of VS2. These results further 254 

indicate that the Vs is the most stable configuration for Hg0 adsorption and the Vs is the 255 

prevailing defect in MoS2 nanosheets. 256 

3.2 Experimental Study 257 

3.2.1 Preparation of defective MoS2 nanosheets  258 

In this study, a novel approach based on FactSage™ (version 6.3) with phase diagram 259 

module was developed to determine conditions for sample preparation, such as 260 

concentration of precursors and temperature for preparation, which is to avoid problems 261 

associated with traditional trial-and-error approach in sample preparation. Figure 4 (a) 262 

illustrates preparation conditions for the formation of MoS2 sample via sulphur-chemical 263 

vapour reaction (S-CVR) process. This triangle phase diagram indicated that the calcined 264 

material (mainly consists of MoO3) reacts with H2S and H2 gas mixture with different mole 265 

fractions at 400 °C and results in the formation of various stable phases, such as MoS2, 266 

MoO2, Mo4O11, Mo8O23 and Mo9O26. It is clear that to prepare MoS2 as the main 267 

component of the adsorbent, the calcined adsorbent should be sulphided at 400 °C in 268 

the atmosphere of H2S (10 vol.%) /H2 (90 vol.%). It can be concluded that the graphene-269 

like MoS2-containing adsorbent (with a surface area around 204 m2/g) was prepared on 270 

the mesoporous γ-Al2O3 (with 211 m2/g surface area) in a well-controlled manner. This 271 

novel method developed in this study can also be used in the controlled synthesis of 272 

other materials for environmental applications. 273 

3.2.2 Characterization of Defective MoS2 Nanosheets  274 
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The samples prepared were then characterized by using a number of techniques. The 275 

well-dispersed chemical species and the chemical state on the surface of samples were 276 

further investigated by using XPS analysis[49, 50].The stable phases of the Mo 3d XPS 277 

spectra are as shown in Figure 4(b). According to the XPS database (version 4.1) of NIST 278 

Chemistry WebBook [51], the peaks with binding energy (BE) of approximately 232.8 eV, 279 

228.8 eV, 162.6 eV are assigned to Mo4+ 3d3/2, Mo4+ 3d5/2 and S 2p, respectively. 280 

Therefore, it is proved that MoS2 was successfully prepared in this study. This also 281 

confirmed that it is feasible to use FactSage™ to guide the preparation of samples with 282 

desired phase of the active components. 283 

The S-Mo-S layered structure was then characterized by Raman spectroscopy. As shown 284 

in Figure 4(c), the Raman spectra show two strong peaks at the in-plane E1
2g and the out-285 

of-plane A1g vibration, which are the typical peaks of MoS2 nanosheets. Normally the 286 

peak positions of E1
2g and A1g bands are the strong indicator of the number of layers [52]. 287 

Figure 4 (c) shows the peak positions of E1
2g and A1g bands, which are 378.72cm-1 and 288 

404.11cm-1, respectively. The peak position of A1g bands (out-of-plane vibration, see the 289 

schematic diagram inside the Figure 4(c)) is consistent with that of 1-3 layers. However, 290 

the frequency of E1
2g bands (i.e., in-plane vibration) decreased when compared with 291 

what was reported for pristine MoS2 (384 cm-1)[52]. The significant shift of E1
2g mode and 292 

almost unchanged A1g mode correspond to sulphur vacancies in MoS2 [47]. 293 

Moreover, XRD analysis was conducted to show structure of the MoS2 on γ-Al2O3 294 

support. Only three major peaks at around 37, 47 and 67 degrees can be identified as 295 

shown in Figure 4(d) (ii), which are the characteristic peaks of γ-Al2O3 crystal (as shown 296 

in Figure 4(d)(i)). There are no visible diffraction peaks of Mo species, which is an 297 

indication that MoS2 is well-dispersed on the support and forms monolayers 298 

(nanosheets) [53].  299 
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Morphology of the adsorbent prepared was further characterized using a HRTEM as 300 

shown in Figure 4(e). It can be seen that the regular interplanar spacing is 0.27 nm. This 301 

is the characteristic pattern of (001) planes of the hexagonal MoS2 crystal structure. 302 

Based on this observation, the schematic structure of the 2D-TMD MoS2 nanosheets was 303 

proposed and illustrated inside the Figure 4(e). The HRTEM result is consistent with the 304 

other researchers’ recent findings that the un-supported MoS2 sample is defect-rich 305 

ultra-thin MoS2 nanosheets [48]. In addition, there are many dislocations and distortions 306 

that can be observed in Figure 4(e), which also suggest that this type of MoS2 nanosheets 307 

contains defects [48]. 308 

Moreover, NH3 was selected as the probe molecule for the in-situ DRIFTS to characterize 309 

acidity of active centres (Figure 4(f)), which is to show the surface property and therefore 310 

to understand properties of the defect-rich MoS2 nanosheet [52]. The peaks at around 311 

1230, 1450, 1630, 1670, 2800, 3000 and 3200 cm-1 remained after NH3 adsorption and 312 

N2 purging. Normally, peaks at 1230 cm-1 and 1630 cm-1 are the characteristic pattern of 313 

the absorbed NH3 molecules on Lewis acid sites, whilst peaks at 1450 cm-1 and 1670 cm-314 

1 are the coordinated NH4
+ species on Brønsted acid sites [54]. The peaks at 2800, 3000 315 

and 3200 cm-1 in the stretching region are associated with the NH4
+ bands. It is obvious 316 

that the intensity of Brønsted acid sites of the MoS2 material was higher than that of 317 

Lewis acid sites.  318 

Surface acidity was further investigated by using NH3-TPD. The NH3 desorption peaks at 319 

low temperatures are attributed to the Brønsted acid sites, whereas those peaks at high 320 

temperatures are assigned to Lewis acid sites [27]. As shown in Figure 4(f), the strong 321 

desorption peaks are observed at temperature below 250 °C, which further confirms that 322 

surface of the MoS2 nanosheets is dominated by Brønsted acid sites. The amount of NH3 323 

adsorbed at Brønsted acid sites can be associated with the existence of coordinative 324 

unsaturated sites (CUS) on surface of the defect-rich MoS2 nanosheets [55]. The 325 
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formation of Vs on the MoS2 nanosheets might result in high Hg0 adsorption efficiency 326 

as previously predicted by computational results.  327 

3.2.3 Evaluation of Defective MoS2 Nanosheets for Hg0 Adsorption  328 

Mercury adsorption capability of the defective MoS2 nanosheets was then evaluated by 329 

using the IDSS experimental method. Figure 5(a) shows that the adsorbent demonstrated 330 

excellent performance in the adsorption of Hg0 at temperatures below 150°C. The 331 

steady-state analysis (as shown in Figure 5(b)) further demonstrates that the Vs-rich 332 

MoS2 nanosheets show excellent performance in Hg0 adsorption with almost 100% 333 

removal efficiency. 334 

It is found that the adsorbed Hg0 could then be desorbed when temperature was raised 335 

to above 200°C with the calculated ratio of desorption over adsorption exceeding 99.4%. 336 

This suggests that the MoS2 nanosheet containing materials can be regenerated easily at 337 

high temperature. This property makes MoS2 nanosheet containing material a better 338 

adsorbent both technically and economically, as compared with activated carbon 339 

injection technology. In addition, this Vs-rich MoS2 nanosheets demonstrates the 340 

potential to recover the captured Hg0 efficiently as a resource without having any 341 

impacts on the saleability of fly ash as a product. 342 

3.3 Hg0 adsorption mechanism  343 

Mechanism of the adsorption of Hg0 on the Vs-rich MoS2 surface was further studied by 344 

the charge density difference analysis, PDOS analysis, and adsorption pathways and 345 

energy profiles predictions. 346 

Plots of the charge-density difference for Hg0 adsorption on the Vs, Vs2 and VMo are 347 

shown in Figure 6. The blue area covered the entire S vacancy, which means charge 348 

density increased in this area.  349 

Atomic charges for Vs in MoS2 monolayer and corresponding Hg0-MoS2 nanosheets were 350 

calculated by using Mulliken method. Table 2 shows the electron transfer through Hg0-351 
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MoS2 (001) interactions with Vs, Vs2 and VMo. The charge transfer was based on the 352 

difference between the original state and the adsorption state. A positive value means 353 

the atom obtains electrons after adsorption, while a negative value indicates the atom 354 

loses electrons after adsorption.  355 

Results of Mulliken charge analysis (as illustrated in Table 2) showed that the electrons 356 

transferred a charge of 0.02eV from the Hg atom (6s) to S atom (3p) through the sulphur 357 

vacancy (Vs), and the Mo atom (4p) also transfers a charge of 0.01eV to the S surface, 358 

which enhanced the electronegativity of the vacancy (shown in blue area). There are 359 

charge-charge interactions between Hg0 and the Vs, which indicates that Hg0 atoms are 360 

chemically adsorbed on the surface. The order of the magnitude of adsorption energy at 361 

Vs (as shown in Figure 1) also corresponds to chemical interactions between the surface 362 

and the mercury atoms adsorbed [56]. The distance from the mercury atom to the Vs is 363 

short as shown in Figure 7. Since the distance from the Hg0 atom to the NA S atoms is 364 

shorter than the sum of the covalent radii by 40%[57], it is confirmed again that the Hg 365 

atom is chemically adsorbed on the Vs.  366 

To further understand the adsorption of Hg0 atoms on MoS2 (Vs) nanosheets, the density 367 

of state (DOS) of the surface atoms was studied in depth. The partial density of states 368 

(PDOS) of Hg, Mo and S atoms were calculated and are shown in  369 

Figure 2. The PDOS peaks of d, s and p orbitals of an isolated Hg0 atom are close to -3.1, 370 

0 and 5.7eV, respectively. After adsorption, all the PDOS peaks of the Hg atom shifted 371 

left with the state of s and p orbitals significantly decreased in energy level. This 372 

suggested that there are strong interactions between Hg0 and MoS2 (Vs-rich) nanosheets. 373 

As shown in 374 

Figure 2 (a), no noticeable shift in d states of the Mo atom was observed, which suggests 375 

that 4d orbitals of Mo atoms does not have noticeable influence on the adsorption of 376 

Hg0. Among these notable features of the PDOS changes, it is worth mentioning that the 377 
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peak at -4 eV of PDOS(d) of Hg atoms overlaps with the major peak in the PDOS(s) of Mo 378 

atoms and PDOS(s) of sulphur atoms. This indicates the repulsive force between Hg 379 

atoms and MoS2 nanosheets may be from the filled s orbitals of S, d orbitals of Hg and 380 

unfilled s orbitals of Mo. Compared with the PDOS of p states of Mo and S atoms before 381 

and after adsorption, both strongly overlapped with the s and p states of Hg atoms at 382 

approximately -0.9 eV and 2.3 eV (the value of DOS, 0.1/ eV), respectively. All of these 383 

suggest that Hg0 atoms interact strongly with the MoS2 surface, and the p states of both 384 

Mo and S atoms play important roles in the adsorption of mercury. This is also the reason 385 

why the p-band centre analysis was developed for potential adsorption sites evaluation.  386 

Figure 8 illustrates the adsorption pathways and energy profiles of a Hg0 atom adsorbed 387 

on the Vs in MoS2 (001) surface. The result represents the minimum energy path for the 388 

diffusion of an Hg0 atom between Position 9 and Position 1 as shown in Figure 1. 389 

Based on the fully optimized adsorption geometry of the Vs of MoS2 (001) nanosheet 390 

(monolayer) (as shown in Figure 1(a)), nine stable adsorption configurations were 391 

identified. As discussed, Position 1 corresponds to a Hg atom adsorbed on top of the S 392 

vacancy, which is the most stable adsorption site. Position 9 represents the adsorption 393 

of a Hg atom on top of an S atom, which is the second NA S atom to the vacancy with the 394 

minimum adsorption energy. The minimum energy paths for the diffusion of an Hg atom 395 

between different adsorption configurations using NEB calculations were further 396 

investigated and are shown in Figure 8.  397 

The NA Mo atoms around the S vacancy make the Hg adsorption configuration unstable, 398 

which is caused by the interactions between the Hg cations and the Mo cations. 399 

Furthermore, the positive charge (electron deficient) of Vs attracts the Hg atom to the 400 

centre of the vacancy. As discussed previously, the inward relaxation makes the surface 401 

of MoS2 become a sunken cave. As shown in Figure 8, the pathway between Position 9 402 

and Position 1, from high energy level to low energy level, has no energy barrier for the 403 
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adsorption to occur. Based on the adsorption pathways and energy profiles predictions, 404 

the adsorption could be classified as non-activated chemisorption, which is introduced 405 

by surface defects (VS), which exhibit high adsorption probability[58]. The IDSS 406 

experimental observation indicated that the Vs containing MoS2 nanosheets are able to 407 

adsorb Hg0 at lower temperatures, which is consistent with ab initio calculation 408 

computational investigation. It can therefore be concluded that the adsorption of Hg0 409 

atom around the Vs is non-activated chemisorption.  410 

4. Conclusions 411 

In this study, the ab initio calculation showed that S vacancies (Vs) in the MoS2 412 

nanosheets exhibited outstanding potential in Hg0 adsorption among different structural 413 

defects. The MoS2 material was successfully prepared in a controlled manner under 414 

conditions that were determined via phase diagrams that are generated using Factsage. 415 

Results of characterisation work confirmed that the MoS2 material consists of 416 

nanosheets and is of graphene-like layered structure with abundant defects. Moreover, 417 

the existence of coordinative unsaturated sites (CUS) on the surface of the defect-rich 418 

MoS2 nanosheets was confirmed by the NH3-TPD and in-situ DRIFTS by using NH3 as a 419 

probe molecule. Moreover, the experimental results confirmed that this Vs-rich 420 

nanosheets showed excellent Hg0 adsorption. The adsorption of Hg0 on Vs was found to 421 

be non-activated chemisorption. 422 
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 550 

 551 

Figure 1 Potential Hg0 adsorption sites in the MoS2 surface and their corresponding 552 

adsorption energy. (a) Hg0 adsorption sites and (b) Hg0 adsorption energy  553 
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Figure 2 DOS analysis of a defective MoS2 monolayer. (a) DOS of s orbital after adsorption, (b) DOS of p orbitals after adsorption, and, (c) DOS of d 
orbitals after adsorption. (Black line represents VS2, the grey shadow represents VS, red line represents VMo. 
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Figure 3 Different defects for Hg0 capture. (a) p-band center analysis, and, (b) 

formation energy of defect for the most stable Hg0 adsorption sites  
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Figure 4 Preparation and characterization of MoS2 nanosheets. (a) Phase 

diagram. (b) XPS spectra of Mo 3d and S 2p. (c) Raman spectra. (d) XRD analysis 

of γ-Al2O3 (i) and the MoS2 containing adsorbent(ii). (e) HRTEM picture and 

schematic structure (enlarged image). (f) In-situ DRIFTS study and the NH3-TPD 

profile (inserted figure).
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Figure 5 Hg0 adsorption performance of Vs MoS2 (001) containing adsorbent. (a) 

Dynamic transient and (b) steady-state experimental data  
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Figure 6 Charge density difference analysis of an Hg0 atom adsorbed on different 

types of defects in MoS2 (001) of the most stable configuration (iso-surface: 

7.5×10-4 e/ Å3).  
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Figure 7 Hg0 adsorption sites and the distances for different scenarios: Blue: 

distanceto its adjacent Mo atom; Green: distance to its adjacent S atom; Red: the 

distance to the upper layer of S atoms.  
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Figure 8 Adsorption pathways and energy profiles of the adsorption of an Hg0 

atom on the Vs MoS2 (001) Surface. 
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Table 1 Distances from the vacancy to the NA atoms for MoS2 monolayer before 

and after geometry optimization.  

Vacancy Distance from vacancy to NA atoms(Å ) 

Along the S-Mo bond 

direction 

δ% Along the S-Mo bond 

direction 

δ% 

Vs 2.41(V- NA Mo) -0.04% 3.097 (V- NA S) -2.70%  

Vs2 2.279(V- NA Mo) -5.47% 3.071 (V- NA S) -3.52% 

Vmo 2.474(V- NA S) 2.61% 3.163 (V- NA Mo) -0.63% 

Perfect 2.411 3.183 

* d(Mo-Mo)=d(S-S)= 3.183 Å  
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Table 2 Charge transfer of atoms for different defects determined by Mulliken Charge Analysis 

Atom 
indexes 

Vs 
Atom 

indexes 

Vs2 
Atom 

indexes 

VMo 

Before After 
Electron 
Transfer 

Before After 
Electron 
Transfer 

Before After 
Electron 
Transfer 

S(9) -0.02 -0.01 -0.01 S(1) -0.03 -0.02 -0.01 S(1) -0.04 -0.03 -0.01 

S(11) -0.02 -0.01 -0.01 S(12) -0.03 -0.02 -0.01 S(7) -0.02 -0.01 -0.01 

S(17) -0.02 -0.01 -0.01 S(18) -0.03 -0.02 -0.01 S(17) -0.02 -0.01 -0.01 

S(21) -0.04 -0.03 -0.01 S(28) -0.03 -0.02 -0.01 S(23) -0.02 -0.03 0.01 

S(26) -0.02 -0.01 -0.01 S(29) -0.03 -0.02 -0.01 S(24) -0.02 -0.01 -0.01 

S(28) -0.02 -0.01 -0.01 Mo(2) 0.11 0.1 0.01 S(26) -0.04 -0.03 -0.01 

Mo(3) 0.05 0.06 -0.01 Mo(5) 0.01 -0.01 0.02 S(29) -0.1 -0.09 -0.01 

Mo(7) 0.04 0.02 0.02 Mo(10) 0.06 0.03 0.03 Mo(6) 0.1 0.07 0.03 

Mo(13) 0.07 0.08 -0.01 Mo(14) 0.11 0.1 0.01 Mo(12) 0.07 0.08 -0.01 

Mo(15) 0.04 0.02 0.02 Mo(15) 0.01 -0.01 0.02 Mo(14) 0.1 0.09 0.01 

Hg 0 0.02 -0.02 Hg 0 0.02 -0.02 Hg 0 0.02 -0.02 

 


