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Abstract

We discuss a parametric eigenvalue problem, where the differential operator is of (p, 2)-Laplacian type.
We show that, when p , 2, the spectrum of the operator is a half line, with the end point formulated in terms
of the parameter and the principal eigenvalue of the Laplacian with zero Dirichlet boundary conditions. Two
cases are considered corresponding to p > 2 and p < 2, and the methods that are applied are variational.
In the former case, the direct method is applied, whereas in the latter case, the fibering method of Pohozaev
is used. We will also discuss a priori bounds and regularity of the eigenfunctions. In particular, we will
show that, when the eigenvalue tends towards the end point of the half line, the supremum norm of the
corresponding eigenfunction tends to zero in the case of p > 2, and to infinity in the case of p < 2.
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1 Introduction

The reaction-diffusion equation:
∂u
∂t
− ∇ · (H(u)∇u) = f (x, u), (1)

in whichH(u) = a|∇u|p−2 +b|∇u|q−2 for positive constants a and b, has been used to model physical phenomena
that arise in biophysics [11], plasma physics [27], and chemical reaction design [2]. Typically, in these models:

• u(x, t) stands for concentration;

• H(u)∇u stands for the diffusion, withH(u) denoting the coefficient of diffusion;

• f (x, u) denotes the reaction term related to the source and loss processes.

The steady-state version of (1) becomes the following quasilinear partial differential equation:

− a∆pu − b∆qu = f (x, u), (2)

where ∆s denotes the s-Laplacian operator ∆su := ∇ · (|∇u|s−2∇u) for s ∈ (1,∞).
Differential equations of type (2) have attracted a great deal of attention in recent years, see, e. g., [4, 8,

31, 32, 30, 5, 6, 13, 18, 3] for scalar equations, and [17, 7] for systems. When p = q, equation (2) becomes
−∆pu = g(x, u), which has been studied extensively in the literature. As such, the more curious case is when
p , q.
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Figueiredo [12] has studied a differential equation of the following type:

− ∇ ·
(
A(|∇u|q) |∇u|q−2∇u

)
= h(x, u), in Rn, (3)

where the function A : [0,∞) → [0,∞) satisfies certain growth conditions, and shown that the equation has
positive solutions. A particular choice ofA which conforms to the required constraints is:

A(ξ) = b + a ξ
p−q

q , q < p, a, b ∈ R+. (4)

SubstitutingA(ξ) in (3) yields (2). In particular, when a = b = 1, we get:

− ∆pu − ∆u = h(x, u). (5)

The differential operator −∆p−∆ in (5) is called the (p, 2)-Laplacian. Recently, in a series of papers, equation (5)
has been investigated for p > 2, under the boundary condition u = 0, and the assumption that Ω ⊂ Rn is
a bounded C2 domain. In [23], the authors impose certain conditions on the reaction term h(x, u) to make
equation (5) resonant at ±∞ and zero. Using variational methods and critical groups, they obtain existence and
multiplicity results. In [14], the authors consider the case with a reaction term h(x, u) which is superlinear in
the positive direction (without satisfying the Ambrosetti-Rabinowitz condition) and sublinear resonant in the
negative direction. They apply Morse theory and variational methods to establish existence of at least three
non-trivial smooth solutions. In [22], the authors consider (5) when the reaction term takes the following form
(see also [21]):

−∆pu − ∆u = λ|u|p−2u + f (x, u), in Ω.

Here λ > 0 is a parameter, and the function f (x, u) is a Carathéodory perturbation. They obtain existence and
multiplicity results in the case of λ being near the principal eigenvalue λ̂1 of the p-Laplacian operator relative
to W1,p

0 (Ω). Finally, we mention [1], in which the authors consider (4) with a = 1, b = µ ≥ 0, and q = 2. In this
case, equation (3) becomes −∆pu − µ∆u = h(x, u). They use variational methods and Morse theory to prove
two multiplicity results providing precise sign information for all the solutions (both constant sign and nodal
solutions).

Using critical point theory, truncation and comparison techniques, and Morse theory, Papageorgiou and
Rădulescu [20] proved multiplicity results for (5) for both p > 2 and p < 2. In the latter case, they also used
the Lyapunoff-Schmidt reduction method, together with certain conditions on the reaction term h(x, u),

In the current paper, we are interested in the case when p ∈ (1,∞) \ {2}, a = t, b = 1 − t, q = 2, in (4),
and h(x, u) = λu in (3), where t ∈ [0, 1], and λ is unknown. In this setting, the differential operator turns into a
convex combination of −∆p and −∆, and induces a class of parametric eigenvalue problems: −t∆pu − (1 − t)∆u = λu, in D,

u = 0, on ∂D,
(6)

in which, D ⊆ Rn is a smooth bounded domain.
We will show that the set of eigenvalues of (6) is continuous for t ∈ (0, 1]. In fact, if λ1 is the first eigenvalue

of −∆, then we will prove that the spectrum of (6) is the interval ((1 − t)λ1,∞), even when t is very close to
zero. This result is quite intriguing because when t approaches zero, the differential operator:

Ct := −t∆p − (1 − t)∆

approaches −∆. Recall that the spectrum of the Laplacian is a discrete set:

σ(−∆) = {λ j | j ∈ N}, where λ1 < λ2 ≤ λ3 ≤ λ4 ≤ · · · → ∞.

In other words, when the convex parameter t moves from 1 to 0 in the interval [0, 1], the spectrum σ(Ct) will
keep containing the interval [λ1,∞) until t takes the exact value 0, at which point σ(Ct) collapses into the
discrete set σ(−∆).
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In two recent papers [19, 10], the following eigenvalue problem has been investigated: −∆pu − ∆u = λu, in D,
∂u
∂ν = 0, on ∂D,

where ν denotes the unit outward normal to the boundary ∂D. In [19], the author considers the case p > 2, and
proves that the spectrum is {0} ∪ (λ1,∞), where:

λ1 = inf{
u∈W1,p(D)\{0},

∫
D u dx=0

}
∫

D |∇u|2dx∫
D u2dx

.

On the other hand, in [10], the authors prove that when p ∈ (1, 2), the spectrum is {0} ∪ (λN
1 ,∞), where λN

1
denotes the first non-zero eigenvalue of −∆ with respect to the Neumann boundary condition. Note that when
p > 2, W1,p(D) ⊆ W1,2(D), hence λN

1 ≤ λ1.
Our approach toward solving the eigenvalue problem (6) differs from the ones taken in [19] and [10], in that

ours is based on the fibering method that was introduced in the early 1990s by S. Pohozaev [24], whereas the
approach in [19] is based on the direct method of calculus of variations, and in [10], the Nehari-manifold. The
fibering method is more powerful than that of the Nehari-manifold, as it is applicable to a much broader range
of boundary value problems than we discuss here (see, e. g., [28, 29]).

The following is a summary of what is known about the spectrum of some of the related operators:

(i) σ(−∆) = {λ j | j ∈ N}, in which λ1 < λ2 ≤ λ3 ≤ λ4 ≤ · · · → ∞, with respect to both Dirichlet and
Neumann boundary conditions. In the latter case, λ1 = 0 and λ2 < λ3.

(ii) σ(−∆p − ∆) =

{
{0} ∪ (λ1,∞), 2 < p,
{0} ∪ (λN

1 ,∞), 1 < p < 2,
with respect to the Neumann boundary conditions.

(iii) σ(−∆p) ⊆ [0,∞), provided that p ∈ ( 2n
n+2 ,∞) \ {2}, with respect to the Neumann boundary conditions. In

this case, the zero eigenvalue is isolated.

1.1 Our main results

The current paper has three main theorems. We will present the proofs in Sections 2 and 3. The first of these
theorems is:

Theorem 1.1. Let p ∈ (1,∞) \ {2}, t ∈ (0, 1), and assume that λ1 denotes the first eigenvalue of −∆ with respect
to the Dirichlet boundary condition on ∂D. Then σ(Ct) = ((1 − t)λ1,∞).

Figure 1 on the following page depicts the claim of Theorem 1.1. We prove the theorem using variational
methods. For this purpose, we will consider an energy functional associated with (6), and prove that the critical
points of this functional will give rise to non-trivial solutions of (6). For p > 2, the energy functional is coercive,
hence the direct method applies. The main challenge lies in the case p < 2, where the lack of coercivity renders
the direct method ineffective. Hence, we shall apply the fibering method.

In Section 3, we will derive a priori bounds and regularity results on the eigenfunctions. We will show that
the behavior of the eigenfunctions are totally different between the cases of p > 2 and p ∈ (1, 2):

Theorem 1.2. Assume that p ∈ (2,∞), and let u ∈ W1,p
0 (D) be a non-trivial solution of (6). Then the following

hold:

(i) u ∈ C2,α
loc ∩ L∞(D), and u ∈ C∞(D \ {∇u = 0}).

(ii) ‖u‖W1,p
0 (D) ≤

(
λ−(1−t)λ1

λ1t

)1/(p−2)
|D|1/p.
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Figure 1 Dynamics of the spectrum as t ranges over [0, 1].

Height of the gap

is (1− t)λ1.

λ1

λ2

λk

−∆

−∆p

σ

1− t

t
Ct

−∆p

−∆

when t = 0.

Spectrum is discrete only

Spectrum σ(Ct) is continuous when t ∈ (0, 1].

(iii) supD |u| ≤
C
λ1/2

1

(
λ−(1−t)λ1

λ1t

)1/(p−2)
|D|1/2. In particular, supD |u| → 0 as λ ↓ (1 − t)λ1.1

Theorem 1.3. Assume that p ∈ (1, 2) and let u ∈ W1,2
0 (D) solve (6). Then the following hold:

(i) u ∈ C1,α
loc ∩ L∞(D), and u ∈ C∞(D \ {∇u = 0}).

(ii) For any non-trivial solution u, there is a constant C = C(λ, p, n,D) such that:

‖u‖W1,p
0 (D) ≥

(∫
D
|u|p dx

)1/p

≥ C
(

tλp

λ − λ1(1 − t)

)1/(2−p)

.

Moreover, C > 0 if λ > 0.

(iii) supD |u| → ∞ as λ ↓ (1 − t)λ1.

2 Proof of Theorem 1.1.

Definition 2.1. Eigenpairs of (6) are defined as follows:

p > 2 : We say that (λ, u) ∈ R × (W1,p
0 (D) \ {0}) is an eigenpair of (6) provided that the following integral

equation holds:

t
∫

D
|∇u|p−2∇u · ∇v dx + (1 − t)

∫
D
∇u · ∇v dx = λ

∫
D

uv dx, ∀v ∈ W1,p
0 (D).

p ∈ (1, 2) : We say that (λ, u) ∈ R × (W1,2
0 (D) \ {0}) is an eigenpair of (6) provided that the following integral

equation holds:

t
∫

D
|∇u|p−2∇u · ∇v dx + (1 − t)

∫
D
∇u · ∇v dx = λ

∫
D

uv dx, ∀v ∈ W1,2
0 (D).

1Here, C is as in Lemma 3.1 on page 10.
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Now, suppose that (λ, u) is an eigenpair of (6), and t ∈ (0, 1). From (6), we obtain:

t
∫

D
|∇u|p dx + (1 − t)

∫
D
|∇u|2 dx = λ

∫
D

u2 dx,

which implies that (1 − t)
∫

D |∇u|2 dx < λ
∫

D u2 dx. On the other hand, for the first eigenvalue λ1 of −∆ with
Dirichlet boundary conditions on ∂D, we have λ1

∫
D u2 dx ≤

∫
D |∇u|2 dx.2 So, we deduce that (1 − t)λ1 < λ.

In other words, if λ ∈ [0, (1 − t)λ1] then λ < σ(Ct), in which σ(Ct) denotes the spectrum of −t∆p − (1 − t)∆
with Dirichlet boundary conditions on ∂D. In what follows, we will prove that every λ > (1 − t)λ1 is indeed an
eigenvalue.

2.1 Proof of Theorem 1.1 for p > 2

The proof for p > 2 is straightforward, see also [25]. Henceforth, we fix t ∈ (0, 1) and λ > (1 − t)λ1. Note that
there exists a function ψ ∈ W1,2

0 (D) for which:

λ1 <

∫
D |∇ψ|

2 dx∫
D ψ

2 dx
<

λ

1 − t
.

Since C∞0 (D) is dense in W1,2
0 (D), we can find φ ∈ C∞0 (D) such that:

λ1 <

∫
D |∇φ|

2 dx∫
D φ

2 dx
<

λ

1 − t
. (7)

Note that φ ∈ W1,p
0 (D).

Remember that our task is to prove that λ is an eigenvalue of (6). Consider the functional Φ : W1,p
0 (D)→ R:

Φ(u) B
t
p

∫
D
|∇u|p dx +

1 − t
2

∫
D
|∇u|2 dx −

λ

2

∫
D

u2 dx.

Since p > 2, the functional Φ is coercive. Now, consider the minimization problem:

inf
u∈W1,p

0 (D)
Φ(u) =: m. (8)

Let (un) be a minimizing sequence for (8). Since Φ is coercive, there exists a function u ∈ W1,p
0 (D), and a subse-

quence of (un)—still denoted (un)—such that un ⇀ u in W1,p
0 (D) and in W1,2

0 (D). From the compact embedding
W1,2

0 (D) → L2(D), it follows that un → u in L2(D). Observe that Φ is weakly lower semi-continuous. So,
Φ(u) ≤ lim infn→∞Φ(un) = m. This implies Φ(u) = m. For u to qualify as an eigenfunction corresponding to λ,
it has to be non-trivial, i. e., u , 0. In that case, (λ, u) will be an eigenpair of (6), because Φ ∈ C1(W1,p

0 (D),R).
To seek a contradiction, we assume that m = 0, which implies that Φ(v) ≥ 0 for every v ∈ W1,p

0 (D). So, it
suffices to find a v ∈ W1,p

0 (D) such that Φ(v) < 0. Let ξ > 0, and consider ξφ, where φ ∈ W1,p
0 (D) is the function

satisfying (7). We have:

Φ(ξφ) =
t ξp

p

∫
D
|∇φ|p dx +

(1 − t)ξ2

2

∫
D
|∇φ|2 dx −

λξ2

2

∫
D
φ2 dx

≤
t ξp

p

∫
D
|∇φ|p dx +

ξ2

2
N, (9)

where, according to (7):

N := (1 − t)
∫

D
|∇φ|2 dx − λ

∫
D
φ2 dx < 0.

2Note that if p > 2, then W1,p
0 (D) ⊆ W1,2

0 (D). Hence, regardless of which value p takes, we would have u ∈ W1,2
0 (D).
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We choose ξ such that

ξ <

 −pN

2t
∫

D |∇φ|
p dx


1

p−2

.

This choice of ξ, in conjunction with (9), guarantees Φ(ξφ) < 0, which is in contradiction with m = 0. This
completes the proof of the theorem for p > 2. �

2.2 Proof of Theorem 1.1 for 1 < p < 2

Since p < 2, the appropriate function space would be W1,2
0 (D). Note that in this case W1,2

0 (D) ⊆ W1,p
0 (D).

Henceforth, ‖ · ‖1,p denotes the norm in W1,p
0 (D), i. e.:

‖u‖1,p B
(∫

D
|∇u|p dx

) 1
p

.

The notation ‖u‖p, as usual, is used for denoting the Lp(D)-norm. Let us introduce

H(u) B λ

∫
D

u2 dx − (1 − t)
∫

D
|∇u|2 dx,

and observe that H is a 2-homogeneous functional, i. e., H(ξu) = ξ2H(u). We can write:

Φ(u) =
t
p
‖u‖p1,p −

1
2

H(u).

Unlike the case of p > 2, here, Φ is not coercive. Hence, the direct method is not applicable. Instead, we
use the fibering method as presented in the following theorem. We include the proof for the relevant insights it
offers.

Theorem 2.1. Let X be a real Banach space. Let M : U ⊆ X → R be differentiable and satisfy the non-
degeneracy condition:

∃c ∈ R,∀u ∈ M−1(c) : 〈M′(u), u〉 , 0, (10)

in whichU is an open set and M−1(c) B {u ∈ U | M(u) = c}. Let Φ ∈ C1(X \ {0}), and define Ψ : R × X → R
by Ψ(r, u) = Φ(ru). Suppose (r̂, û) ∈ R × M−1(c), with r̂û , 0, is a (constrained) critical point of Ψ relative to
R × M−1(c). Then, v̂ = r̂û is a non-zero critical point of Φ, i. e. Φ′(v̂) = 0 in X∗.

Proof. Since (r̂, û) is a critical point of Ψ relative to (R \ {0}) × M−1(c), we can apply the Lagrange multiplier
rule that ensures existence of µ ∈ R such that:

∂Ψ

∂r
(r̂, û) = 0, (11)

and
∂Ψ

∂u
(r̂, û) = µM′(û), in X∗. (12)

Equations (11) and (12) are called the fibering equations. From (12), we obtain:

〈
∂Ψ

∂u
(r̂, û), û〉 = µ〈M′(û), û〉.

On the other hand, we have:

〈
∂Ψ

∂u
(r̂, û), û〉 = r̂〈Φ′(r̂û), û〉 = r̂

∂Ψ

∂r
(r̂, û).

Thus, we get:

r̂
∂Ψ

∂r
(r̂, û) = µ〈M′(û), û〉. (13)

From (11) and (13) we deduce that µ 〈M′(û), û〉 = 0. Recalling the non-degeneracy condition (10), we find that
µ = 0. Whence, from (12) we get r̂Φ′(v̂) = ∂Ψ

∂u (r̂, û) = 0, for v̂ = r̂û, and r̂ , 0. Therefore, Φ′(v̂) = 0, as
desired. �
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For r ∈ R, Φ(ru) =
t|r|p

p ‖u‖
p
1,p −

1
2 r2H(u). Keeping an eye on the fibering equation (11), we differentiate

Φ(ru), and solve ∂rΦ(ru) = 0 with respect to r. As a result, we get:

t|r|p−2r‖u‖p1,p − rH(u) = 0,

which, as r , 0, yields:

|r| =

 t‖u‖p1,p
H(u)


1

2−p

. (14)

Of course, a necessary condition for (14) to make sense is that H(u) be positive. As r depends on u, we may
refer to it as r(u). Substituting r(u) back in Φ(ru) gives us:

Φ̂(u) := Φ(r(u)u) =

(
1
p
−

1
2

)  t‖u‖p1,p
H(u)


2

2−p

H(u). (15)

A quick check verifies that Φ̂ is 0-homogeneous. By taking the fibering function

M(u) :=
t‖u‖p1,p
H(u)

,

from equation (15), we obtain the special case:

∀u ∈ M−1(1) : Φ̂(u) =

(
1
p
−

1
2

)
H(u). (16)

Note that for all u ∈ M−1(1), we have 〈H′(u), u〉 = 2H(u). Hence, the fibering function M satisfies the non-
degeneracy condition. Indeed:

∀u ∈ M−1(1) : 〈M′(u), u〉 = t
p‖u‖p1,pH(u) − ‖u‖p1,p〈H

′(u), u〉

H2(u)
= p − 2 , 0.

On M−1(1) we have H(u) = t‖u‖p1,p, which implies that Φ̂|M−1(1) is non-negative. Hence, we consider the
following minimization problem:

inf
u∈M−1(1)

Φ̂(u) =: m. (17)

We will show that (17) is solvable. Once this goal is achieved, we will present an argument to prove that any
minimizer is indeed an eigenfunction corresponding to λ, which of course will be the result we are seeking.

Our first step is to make sure M−1(1) is non-empty.

Lemma 2.2. The set M−1(1) is non-empty.

Proof. Remember the condition λ > (1 − t)λ1. From the variational formulation of λ1, i. e.:

λ1 = inf
u∈W1,2

0 (D)

∫
D |∇u|2 dx∫

D u2 dx
,

we infer the existence of a function u ∈ W1,2
0 (D) such that:

λ1 <

∫
D |∇u|2 dx∫

D u2 dx
<

λ

1 − t
.

This means that H(u) > 0, and as a result, M(u) > 0. Though u itself may not belong to M−1(1), for ξ B
(M(u))

1
2−p , we have M(ξu) = 1. �
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We will have to deal with minimizing sequences for the minimization problem (17). Our next step is proving
that these sequences are bounded.

Lemma 2.3. Minimizing sequences of (17) are bounded in W1,2
0 (D).

Proof. Let us fix a minimizing sequence (un) ⊆ M−1(1), and assume that:

lim
n→∞

Φ̂(un) = lim
n→∞

(
1
p
−

1
2

)
H(un) = m. (18)

Since M(un) = 1, we have:

t
∫

D
|∇un|

p dx + (1 − t)
∫

D
|∇un|

2 dx − λ
∫

D
u2

n dx = 0. (19)

To seek a contradiction, we assume that (un) is not bounded. Hence, passing to a subsequence—still denoted
as (un)—if necessary, limn→∞ ‖un‖1,2 = ∞. From (19), we have (1 − t)

∫
D |∇un|

2 dx ≤ λ
∫

D u2
n dx. As a result,∫

D u2
n dx→ ∞ as well.
We set vn B

un
‖un‖2

, and keep in mind that ‖vn‖2 = 1. From the last inequality, we get
∫

D |∇vn|
2 dx ≤ λ

1−t ,
hence (vn) is bounded in W1,2

0 (D). This implies the existence of v ∈ W1,2
0 (D), and a subsequence of (vn)—still

denoted by (vn)—such that: 
vn ⇀ v in W1,2

0 (D),
vn ⇀ v in W1,p

0 (D),
vn → v in L2(D).

Returning to (19), dividing the entire equation by ‖un‖
p
2 and rearranging the terms, we get t

∫
D |∇vn|

p dx =
H(un)
‖un‖

p
2

.

The right hand side tends to zero, because of (18) and the fact that ‖un‖2 → ∞. Therefore,
∫

D |∇vn|
p dx→ 0.

As vn ⇀ v in W1,p
0 (D), by the weak lower semi-continuity of norms we infer that ‖v‖1,p ≤ lim infn→∞ ‖vn‖1,p =

0. Thus, v = 0, and as a consequence vn → 0 in L2(D). However, this implies that ‖vn‖2 → 0, which is impos-
sible, since ‖vn‖2 = 1 for every n. So, the minimizing sequence (un) must be bounded. �

Lemma 2.4. The minimization problem (17) has a non-zero solution.

Proof. We consider a minimizing sequence (un), and assume, for the time being, that m , 0. By Lemma 2.3,
(un) is bounded in W1,2

0 (D). So, there is a subsequence—still denoted (un)—and a function u ∈ W1,2
0 (D), such

that: 
un ⇀ u in W1,2

0 (D),
un ⇀ u in W1,p

0 (D),
un → u in L2(D).

(20)

Note that since M(un) = 1, equation (19) still holds, which together with (20) implies:

t
∫

D
|∇u|p dx + (1 − t)

∫
D
|∇u|2 dx − λ

∫
D

u2 dx ≤ 0. (21)

Let us show that H(u) , 0. Assuming the contrary, (20) leads to lim supn→∞ H(un) ≤ H(u) = 0. Since
H(un) ≥ 0, we infer lim supn→∞ H(un) = 0. Whence, we can extract a subsequence—still denoted (un)— such
that limn→∞ H(un) = 0. This, in turn, implies limn→∞ Φ̂(un) = 0, so m = 0. This is a contradiction, hence
H(u) , 0.

From (21), we get M(u) ≤ 1. On the other hand, since (un) ⊆ M−1(1):

Φ̂(un) =

(
1
p
−

1
2

)
t
∫

D
|∇un|

p dx.
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This, in turn, implies that Φ̂(u) ≤ lim infn→∞ Φ̂(un) = m. Thus, for u to be a solution of (17), we need to show
that in fact M(u) = 1. We already know that M(u) ≤ 1. Hence, in order to derive a contradiction let us assume
that M(u) < 1. Then, by setting ξ = (M(u))

1
2−p , we would get M(ξu) = 1. As ξ < 1, we have:

Φ̂(ξu) = ξ2Φ̂(u) ≤ ξ2m < m,

where in the last inequality we have used the assumption m , 0. This is a contradiction.
So, to complete the proof we need to show that m , 0. Again, we seek a contradiction and assume that

m = 0. Let (un) be a minimizing sequence. Then:

Φ̂(un) =

(
1
p
−

1
2

)
t
∫

D
|∇un|

p dx→ 0. (22)

Since (un) is bounded in W1,2
0 (D), it contains a subsequence—still denoted as (un)—such that:

un ⇀ u in W1,2
0 (D),

un ⇀ u in W1,p
0 (D),

un → u in L2(D),

(23)

for some u ∈ W1,2
0 (D). From (21), (23), and the weak lower semi-continuity of the W1,2

0 (D)-norm we deduce
that u = 0. Next, we set vn =

un
‖un‖2

, and remember that ‖vn‖2 = 1. On the other hand, since H(un) > 0, we see
that the sequence (vn) is bounded in W1,2

0 (D). Whence, it contains a subsequence—still denoted as (vn)—such
that: 

vn ⇀ v in W1,2
0 (D),

vn ⇀ v in W1,p
0 (D),

vn → v in L2(D),

(24)

for some v ∈ W1,2
0 (D). Note that since (un) ⊆ M−1(1), we have:

t
∫

D
|∇un|

p dx + (1 − t)
∫

D
|∇un|

2 dx − λ
∫

D
u2

n dx = 0. (25)

Dividing equation (25) by ‖un‖
2
2 yields:

t‖un‖
p−2
2

∫
D
|∇vn|

p dx + (1 − t)
∫

D
|∇vn|

2 dx − λ = 0. (26)

Since (vn) ⊆ W1,2
0 (D) is bounded, (26) implies

∫
D |∇vn|

p dx → 0. This, in conjunction with the Poincaré
inequality, implies that v = 0. As a result, from (24) we infer that vn → 0 in L2(D). This is a contradiction since
‖vn‖2 = 1. �

Completing the proof of Theorem 1.1 for 1 < p < 2: We achieve this by applying Theorem 2.1. Let r(u)

be as in (14), and set Φ̂(u) B Φ(r(u)u). The fibering function is M(u) B
t‖u‖p1,p
H(u) , where H(u) = λ

∫
D u2 dx − (1 −

t)
∫

D |∇u|2 dx. As we have seen, the minimization problem

inf
u∈M−1(1)

Φ̂(u)

is solvable. So, if û ∈ M−1(1) is a solution, then according to Theorem 2.1, v̂ := r̂û (with r̂ = r(û) = 1) is a
critical point of Φ. �

Remark 2.1. Note that since the minimizing sequence (un) can be assumed to be non-negative, the critical point
û turns out to be non-negative as well. As a result, by an application of the strong maximum principle (see,
e. g., [26]) we deduce that û is in fact strictly positive.
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3 A priori bounds, regularity, and proofs of theorems 1.2 and 1.3

Remember that the appropriate spaces for solutions of (6) are W1,2
0 (D) if p ∈ (1, 2), and W1,p

0 (D) when p > 2.
The solution is the function u satisfying:

t
∫

D
|∇u|p−2∇u · ∇v dx + (1 − t)

∫
D
∇u · ∇v dx = λ

∫
D

uv dx, (27)

for any v ∈ W1,2
0 (D) when p ∈ (1, 2), and for any v ∈ W1,p

0 (D) when p > 2. As is clear from Theorem 1.1,
equation (6) has a non trivial solution when λ > (1− t)λ1. In what follows, we derive bounds for such solutions.
First, define u+ B max{u, 0} and u− B min{u, 0}.

Note that the differential operator in (6) is a non-degenerate elliptic operator if p ≥ 2 and a singular one if
p ∈ (1, 2). Thus, we may employ established results to derive bounds [9, 15, 16]. We begin with some a priori
supremum bound that holds for solutions of (6).

Lemma 3.1 (Supremum Bound). Let 1 < p < ∞, and assume that u solves (6). Then, there exists a constant
C = C(t, λ, n,D) such that:

sup
D
|u| ≤ C‖u‖L2(D).

Moreover, if 0 < a < b < ∞, then 0 < infa<λ<b C ≤ supa<λ<b C < ∞.

Proof. The proof is a slight adaptation of the proof of Theorem 8.15 in [15]. Hence, we provide only a brief
outline. Since both u and −u are solutions, it is enough to show the bound for u+. Also, if u solves (6), then
u ∈ W1,2

0 (D) for 1 < p < ∞.
Let N > 0 and β ≥ 1 and consider the functions H ∈ C1([0,∞)) of the form:

H(z) B

 zβ, if z ∈ [0,N),
linear, if z ≥ N.

The proof relies on the use of the test function

v = G(u+) B
∫ u+

0
|H′(s)|2ds.

In general, v ∈ W1,2
0 (D), and in particular, if p ≥ 2, then v ∈ W1,p

0 (D). Using v in (27), we obtain:∫
D

(
t|∇u+|p + (1 − t)|∇u+|2

)
G′(u+) dx = λ

∫
D

uv ≤ λ
∫

D
G′(u+)(u+)2 dx,

since G(s) ≤ sG′(s). Disregarding the first term on the left hand side, we obtain:∫
D
|∇H(u+)|2 dx ≤

λ

1 − t

∫
D

(
H′(u+)u+)2 dx.

The rest of the proof uses the Sobolev embedding and the Moser iteration to obtain the conclusion. The last
part of the statement follows by keeping track of the constants in the proof. �

Next, we discuss bounds for solutions. We begin with the case p > 2. From here on, λ1 denotes the
first eigenvalue of −∆, and λp denotes the first eigenvalue of −∆p, on D. We state the following Poincaré
inequalities:  λ1

∫
D u2 dx ≤

∫
D |∇u|2 dx, ∀u ∈ W1,2

0 (D),

λp
∫

D |u|
p dx ≤

∫
D |∇u|p dx, ∀u ∈ W1,p

0 (D).
(28)

Now, we present the proofs of theorems 1.2 and 1.3:
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Proof. (Theorem 1.2)

(i) We recall Lemma 3.1 and the results in [9, 16]. Thus, u ∈ C1,α
loc ∩ L∞(D). Since p > 2, the operator in (6)

is uniformly elliptic. Applying the Schauder estimates implies that u ∈ C2,α
loc (D). In the set D \ {∇u = 0},

one may differentiate and bootstrap to conclude u ∈ C∞.

(ii) Using u as a test function in (27), we obtain

t
∫

D
|∇u|p dx + (1 − t)

∫
D
|∇u|2 dx = λ

∫
D

u2 dx. (29)

We use the Poincaré inequality (28) on the right hand side of (29) to obtain:∫
D
|∇u|p dx ≤

(
λ − (1 − t)λ1

λ1t

) ∫
D
|∇u|2 dx. (30)

Applying the Hölder inequality, we get:∫
D
|∇u|2 dx ≤

(∫
D
|∇u|p dx

)2/p

|D|(p−2)/p.

Thus, (30) leads to: ∫
D
|∇u|p dx ≤

(
λ − (1 − t)λ1

λ1t

)p/(p−2)

|D|. (31)

The result follows by applying the Poincaré inequality in (28).

(iii) We apply Lemma 3.1, the Poincaré inequality (28), the Hölder inequality, and (31) to obtain:

sup
D
|u| ≤ C

(∫
D

u2 dx
)1/2

≤
C

λ1/2
1

(∫
D
|∇u|2 dx

)1/2

≤
C

λ1/2
1

(∫
D
|∇u|p dx

)1/p

|D|(p−2)/2p

≤
C

λ1/2
1

(
λ − (1 − t)λ1

λ1t

)1/(p−2)

|D|1/2.

which completes the proof. �

Proof. (Theorem 1.3)

(i) We recall Lemma 3.1 and [9, 16]. Thus, u ∈ C1,α
loc ∩ L∞(D). Since p < 2, the operator is uniformly

elliptic in the set D \ {∇u = 0}. Applying the Schauder estimates, we obtain that u ∈ C2,α
loc . Once again by

differentiating and bootstrapping we obtain u ∈ C∞ in D \ {∇u = 0}.

(ii) Use the test function u in (27) and apply the Poincaré inequalities (28) to obtain:

λp

∫
D
|u|p dx ≤

∫
D
|∇u|p dx ≤

λ − λ1(1 − t)
t

∫
D

u2 dx. (32)
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Set M B supD |u|. From Lemma 3.1, for some C = C(λ, t, n,D), we note that M2 ≤ C2M2−p
∫

D |u|
p dx,

implying that M ≤ C2/p‖u‖Lp(D). Next, by using this inequality, for an appropriate C1 = C1(C, p), we get:∫
D

u2 dx ≤ CM2−p
∫

D
|u|p dx

≤ C1

(∫
D
|u|p dx

) (∫
D
|u|p dx

)(2−p)/p

≤ C1

(∫
D
|u|p dx

)2/p

. (33)

By using (33) in (32) we obtain:

λp

∫
D
|u|p dx ≤ C1

(
λ − λ1(1 − t)

t

) (∫
D
|u|p dx

)2/p

.

After simplification, one gets: ∫
D
|u|p dx ≥ C2

(
tλp

λ − λ1(1 − t)

)p/(2−p)

,

in which C2 = C2(λ, n, p,D). Lemma 3.1 implies that C2 > 0 if λ > 0.

(iii) Follows from:
(sup

D
|u|) |D|1/p ≥ ‖u‖Lp(D).

�
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