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Abstract: To accurately obtain the performance of concrete structures in coastal regions, it is necessary
to correctly understand the damage evolution law of reinforced concrete (RC) members under real
working conditions. In this paper, four RC beams, subjected to different levels of corrosion and
sustained load, are first tested. Reinforcement corrosion coupled with sustained load increases the
number and width of cracks at the soffit of beams but decreases their loading capacities. Crack width
of the corroded beam under 50% of designed load is two times of that under 30% of designed load.
Residual loading capacities of the corroded beams subjected to 30% and 50% of designed load are
87.5% and 81.8% of the control beam. A finite element model is developed for the corroded RC beams.
Due to less confinement, concrete below and at the sides of reinforcements is subjected to a higher
stress, compared to concrete above the reinforcements. Corrosion expansion of reinforcements is
successfully modelled by a temperature-filed method, as it properly simulates the damage evolution
of the corroded RC beams. As a result, concrete cracking, caused by the reinforcement corrosion,
is well captured. Coupling reinforcement corrosion with sustained load significantly increases the
damage level in RC beams, particularly for those subjected to a high sustained load. The whole
damage evolution process of concrete cracking due to corrosion expansion under the coupling effect
of sustained loading and environment can be simulated, thus providing a reference for the durability
evaluation, life prediction, and numerical simulation of concrete structure.

Keywords: damage evolution; reinforced concrete beam; reinforcement corrosion; sustained load;
finite element model

1. Introduction

The durability of reinforced concrete (RC) is one of the most concerning issues for infrastructure
around the world. Tang et al. [1] reviewed recent research activities on the durability of concrete
and recommended developing a new approach for accurately estimating the durability service life
of RC structures. Reinforcement corrosion is regarded as a crucial factor in causing the deterioration
of RC structures [2]. In order to accurately obtain the service characteristics of concrete structures in
coastal regions, many studies have been devoted to investigations on the performance of RC structural
members, subjected to reinforcement corrosion. With the assumption of uniform reinforcement
corrosion, Zhang et al. [3] presented the test results of two corroded RC beams subjected to 14 years
and 23 years chloride exposure, and proposed a relationship between area loss of reinforcements and
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crack width of beams. Khan et al. [4] investigated the cracking development of corroded RC beams after
exposing to 26 years corrosion in the laboratory and estimated the evolution of reinforcement corrosion
inside the RC beams. Results found that steel cross-sectional loss in the stirrups has no relationship
with the crack width of longitudinal cracks. Their test results were also compared with predictions
of the Rodriguez model [5], the Vidal model [6], and the Zhang model [3]. Gu et al. [7] conducted 19
reinforced concrete slabs to study the non-uniform corrosion characteristics and mechanical properties
of corroded reinforcement under chloride attack. A new non-uniform corrosion factor, R, was used to
analyze the reliability of RC beams. Murthy et al. [8] studied the performance of RC beams that were
retrofitted with a thin ultra-high strength concrete (UHSC) strip. The results showed that the damaged
RC beams can be successfully rehabilitated by using a thin precast UHSC strip.

The numerical simulation of reinforcement corrosion is an efficient tool to estimate the
performance of the corroded RC beams. Xu [9] discussed the influence of pitting geometry on the
tensile behavior of reinforcement by using finite element analysis (FEA). Based on a multi-phase and
multi-species modelling method, Liu et al. [10] and Mao et al. [11] investigated different ionic transport
features in concrete composite. Jiang et al. [12] presented a mesoscopic numerical model to investigate
the mechanism of chloride diffusion under freeze–thaw cycles, which can reflect the coupled effect
of the freeze–thaw process and the chloride diffusion process at time scale. Xi et al. [13] proposed a
meso-scale fracture model for the reinforcements by incorporating the influence of aggregates, cement
paste, and interfacial transmission zone. The proposed corrosion model was able to simulate the
non-uniform corrosion of reinforcements in the middle and corner of beam section. Yang et al. [14]
introduced a cohesive crack model to simulation crack initiation and propagation in the corroded
RC structural members, which was successfully used to predict the crack width of the corroded
RC structures. Abddelatif et al. [15] proposed a 3D chemo-hygro-thermo-mechanical model to
simulate the corrosion of reinforcements in the lap spliced joints in RC structures. The proposed
3D model was further verified by the test results from the literature. Zhu and Zi [16] proposed
a two-dimensional corrosion model for reinforcements, which couples the effects of chloride ions,
carbonation, electrochemical reaction, and corrosion-induced damage. It was successfully used to
predict the non-uniform distribution of corrosion production, expansion stress, and crack propagation
in the RC beams. Richard et al. [17] and Al-Osta et al. [18] investigated the damage of corroded RC
beams by using different corroded bars and concrete interface models. Shayanfar and Safiey [19]
proposed an algorithmic for producing the tension-stiffening curve of RC elements, taking into account
factors such as the rate of steel bar corrosion, bond-slip behavior, concrete cover, and amount of
reinforcement. Since numerous structures have been constructed and retrofitted by various types
of new materials and techniques, the dynamic performance and shear capacity of RC structural
members has been an important issue [20,21]. Based on a cohesive finite element technique, Weinberg
and Khosravani [22] conducted a numerical fracture simulation about the dynamic properties of
Ultra-High-Performance Concrete (UHPC) made with low-silica content. Mohammad et al. [23]
adopts the extended finite element method to simulate the crack initiation and propagation of UHPC
material under dynamic Brazilian test. Li et al. [21] proposed a numerical model for investigating
the shear behavior of bolted side-plated (BSP) beams. The OpenSees software was employed for the
numerical simulation.

In the coastal regions, reinforcement corrosion, coupled with sustained load, has been recognized
as the main issue affecting the durability of RC structures. Dong et al. [24] investigated the flexural
behavior of RC beams under simultaneous sustained load and steel corrosion. Chloride ions were
electro-migrated into the RC beams, followed with a DC current under wetting and drying cycles. Test
results indicate that coupling sustained load with reinforcement corrosion leads to more severe and
faster cracking damage in the RC beams. Li et al. [25] tested the RC beams under simultaneous loading
and reinforcement corrosion and indicated that sustained load accelerates the crack propagation
along the longitudinal direction of beam. A higher sustained loading level and longer corrosion
exposure are prone to cause the brittle failure of RC beams. Similarly, Zhang et al. [26] tested RC
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beams under simultaneous sustained load and chloride ingress and illustrated that reinforcement
corrosion has a marginal influence on the distribution of transverse cracks in RC beams. In addition,
reinforcement corrosion in RC beams shall be properly considered, as it may exceed creep effect
at a relatively low corrosion level. Zhang and Zhao [27] compared the structural performance of
nature aggregate and recycled aggregate RC beams subjected to the coupled sustained load and
reinforcement corrosion. It was found that the recycled aggregate RC beams had more severe damage
than the nature aggregate RC beams. Hou et al. [28] investigated the corrosion behavior of reinforced
concrete/ultra-high toughness cementitious composite (RC/UHTCC) beams under sustained loading
and shrinkage cracking. The results indicated that the coupled effect of sustained loading can further
aggravate the degradation in flexural capacity of corroded RC/UHTCC beams.

Many existing studies have been conducted to experimentally investigate the structural
performance of RC beams subjected to simultaneous reinforcement corrosion and sustained load.
However, there are limited studies focusing on the damage evaluation of the RC beams under combined
reinforcement corrosion and sustained loads, particularly for numerical simulation of corroded RC
beams. The authors of this study proposed a finite element model for the RC beams under coupled
reinforcement corrosion and sustained load in which the elasto-plasticity model was adopted for
concrete [29]. Thus, the damage evolution of corroded RC beams cannot be simulated. In this paper,
the concrete damage plasticity (CDP) model was employed to simulate the damage evolution of
RC beams under coupled reinforcement corrosion and sustained loads. Reinforcement corrosion is
simulated by the thermal expansion of reinforcement under a designed temperature field. Meanwhile,
an external load is applied to the RC beams. Focus is given to the damage of concrete around the
corroded reinforcement in the RC beams under different levels of simulated corrosion expansion and
sustained load. In order to verify the results of numerical simulation, the accelerated corrosion test,
under coupled action of chloride attack and static loading, was conducted. The cracking behavior and
static performance of RC beams with different corrosion degree were evaluated.

2. Experimental Program

2.1. Specimens

Four RC beams were cast by the C40 concrete. The span of each RC beam was 1500 mm. In order
to reflect the coupled effect of chloride ingress and static loading on RC beams, the specimens were
loaded during the accelerated corrosion test by using a self-equilibrium loading frame, as shown
in Figure 1. The sustained loads were applied by spring and nut, in which case, the dimension of
the RC beams cannot be too large. In order to facilitate loading and ensure a certain thickness of
concrete cover, the RC beam has a cross-section of 100 mm × 170 mm with the concrete cover of 20 mm.
Two T12 rebars (HRB335) and two R10 (HPB235) rebars were used as bottom and top longitudinal
reinforcements, respectively. HPB235 round steel rebars with a diameter of 6 mm were adopted as
links with a spacing of 150 mm. It is worth noting that a stainless-steel belt, with the dimension of
10 mm × 1460 mm × 0.2 mm, was embedded in the center of the beam, which served as the cathode
during the accelerated corrosion. The dimension and details of RC beam are shown in Figure 2. In the
concrete mix formulation, ordinary Portland cement 42.5, river sands, and 20 mm crushed coarse
aggregates are adopted. The measured 28-day cubic compressive strength of concrete is 42.5 MPa.
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Figure 2. Details of the reinforced concrete beam.

2.2. Accelerated Corrosion Test

Accelerated corrosion of RC beams were conducted through chloride penetration and wet–dry
cycles. The beams were first cured in a fog room with a temperature of 20 ± 2 ◦C and relative
humidity of 95% for 28 days, which is a standard curing scheme in accordance with Chinese standard
GB/T 500081-2002 [30]. Afterwards, the beams were subjected to an accelerated corrosion process
of reinforcements and different levels of sustained load. According to the corrosion condition and
sustained loads, four RC beams, including control beam without corrosion (i.e., specimen B), three
corroded beams subjected to 0 (i.e., specimen BC), 30% (i.e., specimen BCL-30), and 50% (i.e., specimen
BCL-50) of designed loading capacity, were constructed and tested as shown in Table 1.

Table 1. Details of reinforced concrete (RC) beams under reinforcement corrosion and sustained load.

Specimen Sustained Load Accelerated Corrosion Process Description

B N/A N/A Control beam

BC N/A Step 1: electo-migration for 30 h
Step 2: 6 wet–dry cycles under a constant current
density of 200 µA/cm2, each cycle includes 3-day
drying followed with 4-day wetting.

Non-sustained load

BCL-30 30% Mu Sustained load

BCL-50 50% Mu Sustained load

Note: Mu is the ultimate loading capacity of the RC beam.

In RC structural members, reinforcement corrosion usually occurs in localized non-uniform form
under the chloride attack. A new accelerated corrosion test method, consisting of the electro-migration
step and the wet–dry cycle step, has been adopted in this study [31,32]. In the first step, a sponge
soaked with 5% NaCl solution covers on RC beams, followed with wrapping by a stainless-steel mesh
and a plastic paper. The saturated sponge is kept for 30 h to keep the concrete moist. Subsequently, the
stainless-steel belt embedded inside the RC beam and stainless-steel mesh outside the RC beam are
connected to the anode and cathode of a 30V direct current power source, respectively. The chloride
ions are migrated into concrete cover under the action of the electric field. In the second step, a wet–dry
cycle is applied to the RC beams immediately after the electro-migration process. Each wet–dry cycle
includes a 3-day drying process, followed by a 4-day wetting process. A constant current density of
200 µA/cm2 is applied to accelerate corrosion process during the wetting process. Figure 3 shows a
schematic of the accelerated corrosion test of an RC beam under chloride ingress.
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For the corroded RC beams subjected a sustained load, a constant load was applied by using the
self-equilibrium loading frame consisting of loading cells, loading nuts, springs, and loading plates,
as shown in Figure 4. Owing to the relaxation of loading springs, the applied loads will be reducing
in a couple of days. In order to keep the applied loads constant, the loading springs were adjusted
during the acceleration corrosion process.
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2.3. Loading Scheme

A four-point bending test of the corroded RC beams was conducted in accordance with Chinese
standards GB/T 50152-2012 [33]. Figure 5 shows the test setup for the beams. The beam is simply
supported and is loaded through a loading spreader beam. Displacement transducers are installed at
both ends and mid-span of the beam. A loading jack with 300 kN loading capacity is used to apply the
bending moment. The step loading method was adopted in the experiment to stabilize the relationship
between load and deformation. After each stage of loading, the load was held for 10 min, followed
with the measurement of the displacements at the mid span and each support of the RC beam. Thus,
the mid span deflection of RC beam was calculated as follows.

fm = f 3 − ( f 1 + f 2)/2 (1)

where, fm is the mid span deflection of the RC beam; f 1 and f 2 are the displacements at each support of
the RC beam, respectively; f 3 is the displacements at the mid span of the RC beam.
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3. Experimental Results and Discussion

3.1. Cracking Behavior of RC Corroded Beams

Cracking behavior of RC beams, after being exposed to various levels of reinforcement corrosion,
is shown in Figure 6. For the corroded beam subjected to chloride ingression only, cracks mainly
distribute along the longitudinal direction on the sides and soffit of beam. The continuous cracks form
on both sides of the beam along the longitudinal reinforcements. There are several transverse cracks
only on the sides and bottom of the beam. Applying a sustained load, coupled with reinforcement
corrosion, evidently alters the cracking behavior of RC beams. As the sustained load increases,
longitudinal cracks on both sides of beams are reduced in terms of number and width, but with an
increase of transverse cracks. Similarly, the number and width of cracks on the bottom of beams
increase with the sustained load. This is mainly attributed to the higher tensile stress at the bottom of
the corroded beam, which is caused by the corrosion expansion of reinforcements. Corrosion products
around the reinforcements would press the surrounding concrete, inducing additional stresses in
the concrete. However, the tensile stress of concrete at the sides of the beam is decreased due to the
bending effect. Therefore, there are more cracks on the bottom of beam and less cracks on the sides
of the beam.
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The width of cracks on the bottom of the beam increases with the sustained load. For the beam
without sustained load, the cracks have the almost same width along the beam. As the sustained load
increases, cracks are longer in the pure bending zone than those at both ends of the beam. Cracks at the
bottom of the beam are much wider than those at the sides of the beam. For instance, the maximum
width of crack at the bottom of beam is 1.5 mm, which is 67% wider than that for the beam under 30%
of designed load and is 200% of the corroded beam without sustained load.

3.2. Loading Capacities of the Corroded RC Beams

Figure 7 shows the residual load–deflection relationships of the corroded beams under four-point
bending. Test results of flexural test of four corroded beams are summarized in Table 2. As seen in
Figure 7, the initial stiffness of corroded beams is higher than that of the beams without corrosion
(i.e., specimen B). It indicates that the corrosion of reinforcements would enhance the initial flexural
stiffness of RC beams. Moreover, applying sustained load would further increase the initial flexural
stiffness of corroded beams. The initial stiffness of specimens BCL-30 and BCL-50 are obviously higher
than that of the beams subjected to reinforcement corrosion only (i.e., specimen BC). Jin and Wang [32]
conducted the experimental study on mechanics behaviors of corroded reinforced concrete beams.
The result also shows that the initial stiffness of corroded beams is higher than that of the non-corroded
beam. The enhancement of flexural stiffness of corroded beams is mainly attributed to the fact that the
tensile stress is carried by the reinforcement at the cracks, which cannot be effectively transmitted to
the concrete.

Loading capacities of corroded beams decrease significantly as compared to the control beam
without corrosion. Coupling sustained load with reinforcement corrosion further decreases the
loading capacity of the corroded beams. As seen in Table 2, the loading capacities of corroded beams
under 0%, 30%, and 50% of designed load is 96.1%, 87.5%, and 81.8% of that of beams without
reinforcement corrosion. As the load is mainly taken by the longitudinal reinforcement, corrosion
of reinforcement would obviously decrease the loading capacities of corroded beams due to the
reduction in cross-section of reinforcements. Besides, considerable research work has been carried
out on the bond strength between concrete and corroded reinforcement. The results show that severe
corrosion significantly reduced steel/concrete bond strength [34,35]. Therefore, the deterioration of
bond between the corroded reinforcements and concrete would be another reason for the reduction of
loading capacity of corroded beams.
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Table 2. Summary of load capacities of the corroded beams.

Specimen B BC BCL-30 BCL-50

Load capacity (kN) 53.9 51.8 47.2 44.1
Reduction as compared to specimen B N/A 3.90% 12.43% 18.18%

Reduction as compared to specimen BC N/A N/A 8.88% 14.86%

4. Simulation Results and Discussion

4.1. Concrete Plastic Damage Model

The concrete damage plasticity (CDP) model built in ABAQUS is adopted in this study, which
employs concepts of isotropic damaged elasticity in combination with isotropic tensile and compressive
plasticity to represent the inelastic behavior of concrete. The CDP model is capable of simulating
loading cases of concrete subjected to monotonic, cyclic, and/or dynamic loading under low confining
pressures [36]. In the cases of uniaxial tension and compression, assumptions are made that the two
main failure mechanisms are tensile cracking and compressive crushing of concrete, as shown in
Figure 8 [37]. Here, subscripts t and c represent tensile and compressive, respectively. Under uniaxial
tension, the stress–strain relationship of the concrete material is purely elastic until the failure stress σt0

is reached, where micro-cracks in the concrete material start emerging. Beyond the failure stress, the
formation of micro-cracks becomes significant associated with a softening stress–strain response of the
material. Under uniaxial compression, the response is linear until the value of initial yield stress σc0 is
reached. In the plastic regime the response is typically characterized by stress hardening followed by
strain softening beyond the failure stress σcu. Under both loading situations, the concrete material is
modelled by the CDP model, which utilises two equivalent plastic strains, ε̃

pl
c and ε̃

pl
t to control the

evolution of the yield and failure surface.
When the concrete is unloaded from any point on the strain softening branch of the stress–strain

curves, the unloading response exhibits a weakened stiffness slope, indicating that the elastic stiffness
of the material has been damaged. The damaged elastic stiffness is characterized by two damage
indices, as shown in Equation (2).

dt = dt(ε̃
pl
t , θ, fi); 0 ≤ dt ≤ 1, dc = dc(ε̃

pl
c , θ, fi); 0 ≤ dc ≤ 1 (2)

where dt and dc represent tensile and compressive damage index, respectively; θ stands for the
temperature, and fi (i = 1, 2, . . . ) represent other field variables involved.
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Damaged stress–strain relations under compression and tension are characterized using damage
indices, as in the following Equation (3).

σt = (1 − dt)E0(εt − ε̃
pl
t )σc = (1 − dc)E0(εc − ε̃

pl
c ) (3)

where E0 is the initial elastic stiffness of the concrete.
Under uniaxial tension, the post-failure behavior for cracked concrete is modelled with tension

stiffening, which is defined by means of a post-failure stress–strain relation. In RC member,
the post-failure behavior is specified by defining the post-failure stress as a function of the cracking
strain. Definition of the cracking strain is given in Equation (4).

ε̃ck
t = εt − εel

0t (4)

where εel
0t = σt/E0 as shown in Figure 8.

According to the tensile damage curve, dt − ε̃ck
t , the cracking strain can be converted to plastic

strain as follows
ε̃

pl
t = ε̃ck

t − dt

(1 − dt)

σt

E0
(5)

Under uniaxial compression, the stress–strain behavior of plain concrete outside the elastic
regime needs to be defined. This is done by inputting the compressive stress as function of the
compressive inelastic strain, ε̃in

c . Strain-softening happens once the stress–strain curve becomes beyond
the ultimate stress. The compressive inelastic strain is defined as the total strain minus the elastic strain
corresponding to the undamaged material as follows

ε̃in
c = εc − εel

0c (6)

where, εel
0c = σc/E0, as shown in Figure 8b.

Using the defined compressive damage curve, dc − ε̃in
c , the compressive inelastic strain can be

converted to compressive plastic strain as follows.

ε̃
pl
c = ε̃in

c − dc

(1 − dc)

σc

E0
(7)

4.2. Finite Element Model of RC Beams

The dimension of the FE model for RC beam is 100 mm × 150 mm × 600 mm with a cover
thickness of 20 mm as shown in Figure 9a. Two T10 reinforcements are embedded in the beam as the
bottom reinforcements. Damage indices were calculated following the damage evolution equations
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given in the Chinese Standard GB50010-2010 ‘Code for Design of Concrete Structures’ and converted
to plastic damage as defined in ABAQUS using Equations (5) and (7). The material parameters used in
the numerical simulation are given in Table 3 [38].

Table 3. Parameters for ABAQUS material definition of concrete and reinforcement.

Parameters for Concrete Taken Value Parameters for Reinforcement Taken value

Modulus of elasticity 32.62 GPa Modulus of elasticity 190 GPa
Poisson’s ratio 0.2 Poisson’s ratio 0.3
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Static loads were applied to the top surface of the model over a certain width to avoid stress
concentration. The two reference points on the top surface were coupled with the loading area so that
loading could be applied through the reference points, then uniformly over the beam. Similarly, two
reference points were placed on each side of the model to apply boundary conditions.

Considering the complexity of the stress in the area surrounding the steel, a finer mesh was
employed. Therefore, the number of mesh seed for the steel and the reference line on the right is 5,
while it is 5 for the rest part of the beam. The mesh was produced using the built-in sweep technique, in
which mesh is first generated on the left-hand side of the model and extruded along the beam to mesh
the whole beam, as shown in Figure 9b. The mesh is created using hexahedral elements C3D8R [29].

4.3. Application of Sustained Load and Reinforcement Corrosion

The load applied to the beam is four-point bending, so that the middle section of the beam is
under pure bending. One end of the beam is fixed while the other end is simply supported. Boundary
conditions are applied through the two reference points placed at the bottom of the two ends of the
beam, while the loading is applied in the form of displacement through the two reference points in
the middle.

There are various ways to simulate the corrosion expansion loading [39,40]. For two-dimensional
models, the non-uniform corrosion of reinforcement is often simulated by applying non-uniform
stress to the holes on the model representing reinforcement corrosion. However, for three-dimensional
models, such application is not suitable as the reinforcements need to sustain loads. In order to
simulate non-uniform corrosion expansion in three-dimensional model, the thermal expansion method
is applied in this study. The linear expansion coefficient of the steel reinforcement is set to be
1.2 × 10−5/◦C and the initial temperature is 0 ◦C. It is assumed that the corrosion is uniformly
formed along the reinforcement, and the cohesive damage between the concrete and the reinforcement
is neglected.

As seen in Figure 10, when the reinforcement is heated, the deformation tends to develop more
significantly towards the bottom of the beam as a result of a concrete cover at the bottom. In reality, the
thin concrete cover at the bottom of beam allows the air media to penetrate to the beam easier, which



Materials 2019, 12, 627 11 of 16

elevates the corrosion of reinforcement. Although the mechanism of the corrosion is different from
the experimental study, they have similar consequences. Therefore, the thermal expansion method is
validated to be used for simulating corrosion of reinforcements. Detailed simulation cases of sustained
load and reinforcement corrosion for RC beams are tabulated in Table 4.

Materials 2019, 11, x FOR PEER REVIEW  11 of 16 

 

method is validated to be used for simulating corrosion of reinforcements. Detailed simulation cases 
of sustained load and reinforcement corrosion for RC beams are tabulated in Table 4. 

  
(a) (b) 

Figure 10. Thermal expansion of reinforcements-induced (a) stress, and (b) strain. 

Table 4. Cases of sustained load and reinforcement corrosion for RC beams. 

Specimen Sustained Load (mm) Corrosion Expansion (oC) 
L0-C20 0 20 
L1-C10 0.0625 10 
L1-C20 0.0625 20 
L2-C10 0.125 10 
L2-C20 0.125 20 
L4-C10 0.25 10 
L4-C20 0.25 20 

4.4. Damage Evolution of RC Beams under Reinforcement Corrosion and Sustained Load 

Figures 11–13 show the damage evolutions on the cross-sections of the beams under different 
sustained load and reinforcement corrosion. For the beam subjected to reinforcement corrosion only, 
damage is primarily observed in the concrete–steel interface area while negligible damage occurs in 
the concrete, as can be seen in Figure 11. With increasing the sustained load, the damaged area in the 
cross-section grows constantly, and eventually emerges with the neighboring damaged area as 
shown in Figures 12 and 13. The numerical results agree well with those in Xu el al [41]. Besides, 
although under the same sustained load, there are obvious differences in the damage caused by 
different levels of corrosion expansion. A much more severe damage of concrete is caused when a 
larger corrosion expansion is applied, indicating that the coupling effect of the corrosion expansion 
and the sustained load intensifies the damage in the corroded beam. 

 

Figure 11. Damage index of mid-span beam section subject to reinforcement corrosion only (condition: 
L0-C20). 

Figure 10. Thermal expansion of reinforcements-induced (a) stress, and (b) strain.

Table 4. Cases of sustained load and reinforcement corrosion for RC beams.

Specimen Sustained Load (mm) Corrosion Expansion (◦C)

L0-C20 0 20
L1-C10 0.0625 10
L1-C20 0.0625 20
L2-C10 0.125 10
L2-C20 0.125 20
L4-C10 0.25 10
L4-C20 0.25 20

4.4. Damage Evolution of RC Beams under Reinforcement Corrosion and Sustained Load

Figures 11–13 show the damage evolutions on the cross-sections of the beams under different
sustained load and reinforcement corrosion. For the beam subjected to reinforcement corrosion only,
damage is primarily observed in the concrete–steel interface area while negligible damage occurs in
the concrete, as can be seen in Figure 11. With increasing the sustained load, the damaged area in the
cross-section grows constantly, and eventually emerges with the neighboring damaged area as shown
in Figures 12 and 13. The numerical results agree well with those in Xu et al. [41]. Besides, although
under the same sustained load, there are obvious differences in the damage caused by different levels
of corrosion expansion. A much more severe damage of concrete is caused when a larger corrosion
expansion is applied, indicating that the coupling effect of the corrosion expansion and the sustained
load intensifies the damage in the corroded beam.
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Figure 13. Damage indexes of mid-span beam sections under high level of reinforcement corrosion:
(a) L1-C20, (b) L2-C20, and (c) L4-C20.

Figures 14 and 15 illustrate the damage evolution at the bottom of the beams under different
levels of reinforcement corrosion and sustained load. As the sustained load and corrosion expansion
increase, more cracks form in the bending area at the bottom of the beam. The bottom surface of the
beam becomes more vulnerable to cracking formation under the coupling effect of the bending force
and corrosion expansion force. As is shown in Figures 5 and 15, the number of cracks at the bottom
of RC beams increases generally with increased sustained load, which makes the corrosive medium
easier to reach the surface of reinforcement. The corrosion damage of RC beams is prone to be more
severe. The development of cracks in the axial direction is in harmony with the experimental results,
which validates the numerical method in this paper.
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Figure 16 shows the influence of the sustained load on the damage evolution of RC beams.
When the sustained load is slight, the initial damage is chiefly controlled by the corrosion expansion.
Therefore, the crack onset time of L0-C20, L1-C20, and L2-C20 are almost the same; when the sustained
load becomes more significant, the initial damage is affected by both the sustained load and corrosion
expansion. Therefore, the initial crack onset in L4-C20 is followed by quicker damage evolution and
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5. Conclusions 

Damage evolution of RC beams under simultaneous reinforcement corrosion and sustained load 
is investigated in this paper. An experimental study of four RC beams, subjected to various levels of 
corrosion and loads, is first conducted. A finite element analysis is subsequently performed to 
simulate the corroded beams under sustained load and corrosion. Based on the experimental and 
simulation results, the following conclusions can be drawn. 

1. Reinforcement corrosion, coupled with sustained load, changes the cracking behavior of RC 
beams. Increasing the sustained load reduces the number of cracks on the side of the beam 
but increases the number and width of cracks on the bottom of the beam. The crack width in 
the corroded beam under 50% of designed load is 67% higher than that under 30% of 
designed load. 

2. Reinforcement corrosion, coupled with sustained load, decreases the residual loading 
capacities of RC beams, but increases their initial stiffness. Comparing to the control beam, 
the loading capacity of the corroded beams subjected to 0, 30%, and 50% of designed load is 
decreased by 3.9%, 12.5%, and 19.2%, respectively.  

3. Stresses caused by the corrosion expansion of reinforcement are successfully simulated by 
the temperature filed method. With the influence of concrete cover, concrete stresses at both 
the sides and the bottom of the beam are higher than that above the reinforcement. This is 
consistent with the actual corrosion expansion of reinforcements in the RC beams. 

4. Parametrical studies indicate that coupling reinforcement corrosion with sustained load 
significantly increases the damage level in the beams. Increasing sustained loading 
intensifies the concrete damage around the reinforcement, particularly for the concrete below 
the reinforcements. Further increases in the sustained load aggregates the concrete damage 
until concrete cracking. 
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5. Conclusions

Damage evolution of RC beams under simultaneous reinforcement corrosion and sustained load
is investigated in this paper. An experimental study of four RC beams, subjected to various levels of
corrosion and loads, is first conducted. A finite element analysis is subsequently performed to simulate
the corroded beams under sustained load and corrosion. Based on the experimental and simulation
results, the following conclusions can be drawn.

1. Reinforcement corrosion, coupled with sustained load, changes the cracking behavior of RC
beams. Increasing the sustained load reduces the number of cracks on the side of the beam but
increases the number and width of cracks on the bottom of the beam. The crack width in the
corroded beam under 50% of designed load is 67% higher than that under 30% of designed load.

2. Reinforcement corrosion, coupled with sustained load, decreases the residual loading capacities
of RC beams, but increases their initial stiffness. Comparing to the control beam, the loading
capacity of the corroded beams subjected to 0, 30%, and 50% of designed load is decreased by
3.9%, 12.5%, and 19.2%, respectively.

3. Stresses caused by the corrosion expansion of reinforcement are successfully simulated by the
temperature filed method. With the influence of concrete cover, concrete stresses at both the sides
and the bottom of the beam are higher than that above the reinforcement. This is consistent with
the actual corrosion expansion of reinforcements in the RC beams.

4. Parametrical studies indicate that coupling reinforcement corrosion with sustained load
significantly increases the damage level in the beams. Increasing sustained loading intensifies the
concrete damage around the reinforcement, particularly for the concrete below the reinforcements.
Further increases in the sustained load aggregates the concrete damage until concrete cracking.
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