
. RESEARCH PAPER .

SCIENCE CHINA
Information Sciences Manuscript

2015, Vol. xxxxxx:1–xxxxxx:9

doi: xxxxxxxxxxxxxx

A Revisit of Three Studies Related to
Random Testing

Tsong Yueh Chen

1
, Fei-Ching Kuo

1
, Dave Towey

2*
& Zhi Quan Zhou

3

1Department of Computer Science and Software Engineering, Swinburne University of Technology, Victoria 3122, Australia;
2School of Computer Science, The University of Nottingham Ningbo China, Ningbo 315100, China;

3School of Computer Science and Software Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.

Received ; accepted

Abstract Software testing is an approach that ensures the quality of software through execution, with a goal

being to reveal failures and other problems as quickly as possible. Test case selection is a fundamental issue

in software testing, and has generated a large body of research, especially with regards to the e↵ectiveness of

random testing (RT), where test cases are randomly selected from the software’s input domain. In this paper, we

revisit three of our previous studies. The first study investigated a su�cient condition for partition testing (PT)

to outperform RT, and was motivated by various controversial and conflicting results suggesting that sometimes

PT performed better than RT, and sometimes the opposite. The second study aimed at enhancing RT itself, and

was motivated by the fact that RT continues to be a fundamental and popular testing technique. This second

study enhanced RT fault detection e↵ectiveness by making use of the common observation that failure-causing

inputs tend to cluster together, and resulted in a new family of RT techniques: adaptive random testing (ART),

which is random testing with an even spread of test cases across the input domain. Following the successful use

of failure-causing region contiguity insights to develop ART, we conducted a third study on how to make use of

other characteristics of failure-causing inputs to develop more e↵ective test case selection strategies. This third

study revealed how best to approach testing strategies when certain characteristics of the failure-causing inputs

are known, and produced some interesting and important results. In revisiting these three previous studies, we

explore their unexpected commonalities, and identify diversity as a key concept underlying their e↵ectiveness.

This observation further prompted us to examine whether or not such a concept plays a role in other areas of

software testing, and our conclusion is that, yes, diversity appears to be one of the most important concepts in

the field of software testing.

Keywords Adaptive random testing, diversity, metamorphic testing, proportional sampling strategy, random

testing, software testing.

Citation T.Y. Chen, F.-C. Kuo, D. Towey, and Z.Q. Zhou. A Revisit of Three Studies Related to Random

Testing. Sci China Inf Sci, 2015, : xxxxxx(9), doi: xxxxxxxxxxxxxx

1 Software Testing

Software testing involves execution of software with the intention of finding problems before releasing it
for use: it is a form of quality assurance. It has been argued that software testing is among the most

*Corresponding author (email: Dave.Towey@nottingham.edu.cn)



T.Y. Chen, et al. Sci China Inf Sci 2015 Vol. xxxxxx:2

mature areas of software development [3], and, given the current pervasion of software (and the desire
for high quality in this software), the need for good testing has never been clearer.

When testing, the combination of input parameters required by the software for a single execution is
referred to as a test case, and a test case that uncovers a problem is referred to as failure-causing. The
complete set of possible test cases is the input domain for the software being tested, with each individual
test case being a single element of this input domain. This set is normally huge, and usually only a very
small proportion is ever tested. The ratio of failure-causing inputs to all possible inputs of the input
domain is referred to as the failure rate. We are particularly interested in the e↵ectiveness of the testing
strategies for situations where the failure rate is small, because a small number of test cases, irrespective
of how they are selected, should be able to reveal failure for a program with large failure rates.

Since the checking of all possible inputs is most often prohibitively di�cult or expensive, it is essential
for testers to make best use of their limited testing resources. To do this, various test case selection
methods have evolved, based on di↵erent intuitions. For example, the intuition behind coverage testing
is that if a program entity has not been executed, then there is no way to detect any fault associated with
that entity. Thus, the desire to ensure execution of each program statement, branch, or path has led to
metrics that inform the extent of statement, branch, and path coverage. With these metrics in place, test
cases resulting in execution of the relevant code can be selected. Another example is partition testing —
a family of testing methods which involve division of the input domain into multiple, disjoint partitions,
and then selection of test cases from each partition. The rationale behind partition testing is to group
inputs that are related to the same function or feature into the same partition, which then allows the
testing of that particular function or feature to be achieved by selecting some representative test cases
from the relevant partition. The ideal situation is to have all partitions homogeneous, that is, elements
of the same partition are either all failure-causing, or all non-failure-causing inputs. In such a scenario,
there is no need to test a partition with more than one of its elements. Unfortunately, no algorithm exists
for constructing homogeneous partitions — other than the trivial, but practically useless, set-up of all
single-input partitions.

As explained above, the intuitions behind coverage testing and partition testing are quite di↵erent.
In fact, there is a great deal of variety in the motivations based on which various test case selection
methods have been developed. An interesting question therefore is: is there any more fundamental,
underlying intuition or attribute common to all testing methods? This paper revisits three of our previous
software testing studies, examining some interesting and unexpected similarities among all three. Through
reflection on these studies, we believe we have identified a key characteristic of the successful testing
strategies: Diversity.

The next section presents the three software testing studies that are all related to random testing,
our reflections on them, and our interpretation of the role of diversity in the successful testing. Section
3 expands the diversity discussion to another successful area of software testing research, Metamorphic
Testing [7]. The power of diversity in software testing is discussed in Section 4, where some recent,
surprising Metamorphic Testing results, and random testing’s e↵ectiveness, are also examined further.
Section 5 concludes the paper.

2 A Revisit of Three Separate Studies

A fundamental, yet important and e↵ective, testing strategy is random testing (RT), which requires
that test cases (inputs) be selected randomly and independently from the input domain. A uniform test
profile is normally assumed, in which every element of the input domain has the same probability of
being selected as a test case. RT can be used alone or applied with other testing methods, and due to its
conceptual simplicity and e�ciency for test case generation, it has been a commonly-used testing method.
It has been successfully applied in testing Java and .Net libraries [30], the OpenSSL library [19], mission-
critical flight software [21], database systems [4], real-time embedded systems [2], and interrupt-driven
embedded systems [32], to name a few.

The three separate studies on which we based our reflections are all related to RT, and include the



T.Y. Chen, et al. Sci China Inf Sci 2015 Vol. xxxxxx:3

development of a su�cient condition for partition testing to perform equally or better than random
testing [5,14–17]; an investigation into how to enhance the e↵ectiveness of random testing [10,11]; and an
examination of the upper bound of testing e↵ectiveness, using random testing as a reference point [12].

2.1 A Su�cient Condition for Partition Testing to Outperform Random Testing

Random testing (RT) has often been compared to partition testing (PT), which involves division of the
input domain into disjoint subsets, namely partitions, and selection of test cases from each partition.
Since division of the input domain inevitably incurs overheads, a natural question is whether or not these
overhead costs are justified in terms of bringing increased failure-finding e↵ectiveness. This question has
been investigated and debated extensively, with some apparently contradictory empirical results obtained.

In view of the conflicting empirical results, it appeared that no conclusive answer would be found
through empirical study, and therefore theoretical analysis was identified as a possible alternative. The-
oretical analysis, though often involving certain assumptions (sometimes unrealistic ones), has yielded
some definite conclusions. One of the first such analyses was conducted by Weyuker and Jeng [36], who
defined a partition testing strategy in which the input domain was divided into equally-sized partitions,
with the same number of test cases being randomly selected, with replacement, from each of these parti-
tions. This strategy is referred to as the Equal-Size-Equal-Sampling Strategy (ESESS), and it has been
proven, under the assumption that every input is equally likely to be failure-causing, that if the same
total number of test cases are used for both RT and the ESESS, then the probability of detecting at least
one failure (referred to as the P-measure) for ESESS is not less than that of RT.

This was the first theoretically proven result for PT to perform at least as well as RT, and although
its applicability was restricted to situations with equally-sized partitions, which may not be practically
feasible, this result did motivate Chen and Yu to seek a more general approach, which they defined as
the Proportional Sampling Strategy (PSS) [15]. The PSS states that all partitions should have the same
ratio of the number of randomly selected test cases, with replacement, from a partition to the size of the
relevant partitions — in other words, the PSS recommends that test cases should be randomly drawn
from di↵erent partitions in proportion to the partition sizes. This strategy has been proven to perform
at least as well as RT in that, for the same number of test cases, PSS is guaranteed to have an equal
or higher P-measure — for any possible partitioning of the input domain, and for any program. In fact,
PSS and RT have the same P-measure only if all partitions have equal failure rates: PSS has a higher
P-measure than RT as long as some partitions have di↵erent failure rates. Because partitions are very
unlikely to have equal failure rates, PSS more frequently performs better, rather than equally to, RT.
Obviously, ESESS is a special case of PSS. It was also subsequently proven that PSS is not only su�cient,
but is actually necessary, to ensure an equal or higher P-measure than that of RT [17].

A problem when applying ESESS in practice is that equally-sized partitions may not always be obtain-
able. Although PSS does not have this constraint of equal sizes for all partitions, it faces another problem
— that it may not be practically feasible to have strictly proportional sampling, because resource limi-
tations may restrict the number of test cases that could be executed. Therefore, some guidelines haven
been proposed to address the situation where PSS cannot be strictly applied [14]. A new concept of
General Proportional Sampling Strategy (GPSS) has also been proposed to address the problem that it
may not be feasible to apply PSS on some occasions [14]. Suppose that there are k partitions (with sizes
denoted by di, where 1 6 i 6 k), from which a total of n test cases are to be selected, with ni test cases
from the i

th partition. The test case distribution (n
1

, n

2

, . . . , nk) is said to satisfy GPSS, if for any i and
j such that ni/di < nj/dj , then we have (ni + 1)/di > (nj � 1)/dj . Obviously, PSS is a special case of
GPSS. Furthermore, GPSS is always feasible, but this is not the case with PSS. More importantly, if the
partitions do not have the same failure rates, then for any n, there always exists a test case distribution
(n

1

, n

2

, . . . , nk) satisfying GPSS and yielding a higher P-measure than RT.

In summary, in the absence of any details of the program under test, or information about the partitions
(other than their sizes), it is recommended that PSS be applied if possible. As a reminder, the only
assumption for PSS is that every input has the same chance of being failure-causing; there are no other
constraints on its applicability.



T.Y. Chen, et al. Sci China Inf Sci 2015 Vol. xxxxxx:4

2.2 Adaptive Random Testing

The second revisited study examined an enhancement to random testing which was inspired by the
empirical observation that failure-causing inputs tend to form contiguous regions, and consequently, non-
failure-causing inputs also form contiguous regions. An obvious inference, therefore, was that for any
program in which no failure is detected by particular test cases, then a good next test case should be
one further away from the previously executed ones. Based on this intuition, the approach of Adaptive
Random Testing (ART) [11] was developed, which aims at enhancing random testing through the use of
a more even- and well-spread distribution of random test cases throughout the input domain.

Several di↵erent principles have been used to achieve an even spread of random test cases across the
input domain, including:

1. Selection: Instead of using the next randomly generated input as the next test case, a set of random
inputs is generated as the candidate test cases, with the best candidate (against a selection criterion)
then chosen as the next test case.

2. Exclusion: An exclusion region can be defined around each already executed test case, and when
any randomly generated input falls into such a region, this input is discarded and another input
randomly generated. If the input is outside the exclusion regions, then it is used as the next test
case.

3. Dynamic adjustment of test profiles: Initially, the random test case generation is according to the
uniform test profile. After each randomly generated test case is executed, the test profile is then
adjusted with the aim of achieving an even spread of test cases across the input domain.

4. Partitioning: Already executed test cases are used to divide the input domain into partitions from
which a specific partition is selected (according to a criterion), and the next test case is randomly
selected from this designated partition instead of from the entire input domain.

Due to the variety of even-spreading principles, various ART algorithms have been developed [6,9,11,
13, 18, 25, 28, 33–35]. Although they are based on di↵erent principles to achieve an even spreading of
test cases across the input domain, all of these algorithms have been empirically demonstrated to have
a smaller F-measure than RT — the e↵ectiveness metric F-measure is defined as the expected number
of test cases required to detect the first failure. Furthermore, these ART algorithms also outperform RT
with respect to the P-measure for the same number of test cases used [8, 33].

Obviously, compared with RT, ART algorithms incur additional computational overheads due to the
even spreading of the random test cases across the input domain, and di↵erent ART algorithms have var-
ious orders of complexity for the test case generation, ranging from linear to quadratic order. Intuitively
speaking, a higher order algorithm should achieve a more even spread of test cases, and hence a better
failure detection e↵ectiveness; but in practice, this is sometimes not the case. Similar to sorting, where
di↵erent sorting algorithms (based on di↵erent intuitions) have various favourable and unfavourable con-
ditions, di↵erent ART algorithms (also based on di↵erent principles) also have various favourable and
unfavourable conditions for their application. For example, consider the first, and most commonly re-
ferred to, ART algorithm, the Fixed-Size-Candidate-Set ART (FSCS-ART), which uses the maxi-min
criterion for candidate selection. In each round of test case generation (except for the first test case), a
constant number of inputs are randomly generated as candidates for the next test case. The candidate
with the largest distance from the nearest element amongst all already executed test cases is then selected
as the next test case. Because of an initial concentration of test cases around the input domain boundary,
rather than an even spread across the entire input domain, FSCS-ART performs poorly with higher fail-
ure rates. However, as more test cases are generated, an even spread is gradually and steadily achieved.
In other words, FSCS-ART has a better F-measure than RT for smaller failure rates. However, ART’s
computational overheads (due to even spreading) grow quadratically, and so for smaller failure rates,
FSCS-ART may be less cost-e↵ective than RT. Therefore, a challenging question is: given a program,



T.Y. Chen, et al. Sci China Inf Sci 2015 Vol. xxxxxx:5

how can a tester choose an appropriate ART algorithm, and best conduct ART in a cost-e↵ective way.
Some approaches towards solutions for this problem are proposed and discussed in [1].

The investigations of ART have not only delivered enhancements to RT, but also given rise to some
new concepts, including adaptive random sequences and failure-based testing. Interested readers may
refer to a survey and synthesis of ART research [10].

2.3 Theoretical Analysis of an Optimal Test Case Selection Strategy

The third study was an investigation of the upper bound of testing e↵ectiveness: a theoretical analysis
of possible improvements over the failure-finding e↵ectiveness of random testing [12]. In terms of the
number of test cases required to find a failure in a program being tested, the study revealed that, short of
location details, any extra information about the failure-causing regions (e.g. shape, orientation, and size)
can only reduce the number of test cases by a maximum factor of two: no testing strategy will use less
than half the number of test cases required by random testing to find the first failure! The proof of this
theoretical bound is based on the design of an optimal test case selection strategy that essentially defines
a grid according to the patterns formed by the failure-causing inputs in the input domain, and then uses
this grid to guide test case selection so as to guarantee that at least one test case will be drawn from
the failure-causing regions, regardless of where in the input domain these regions are. In other words, at
least one failure-causing input is guaranteed to be selected as a test case. As an analogy, imagine that
all fish in the ocean are of the same size and shape: with the actual details of the fish size and shape, we
could design an optimal net (in the sense of using less materials) guaranteed to catch them. The optimal
test case selection strategy is designed along the same logic as the design of this net.

This study was the first investigation to analyse the e↵ectiveness of test case selection strategies by sim-
ply assuming some prior information about the failure-causing inputs, without requiring any knowledge
about the details of selection strategy methods or procedures. A significant benefit of such an approach
is that we can evaluate the e↵ectiveness of a class of test case selection strategies that make use of the
same kind of information, even if their exact methods or procedures are not yet known.

Since ART uses much less information than the optimal test case selection strategy to generate test
cases, intuitively speaking, it should have a higher F-measure. However, because of the experimental
data showing that ART has, on average, about half the F-measure of RT (i.e., reduces the number of test
cases by a factor of about two), we can conclude that the theoretical maximum improvement of two is a
very tight bound, and that the performance of ART is in fact very close to that of the optimal test case
selection strategy. As a consequence, this study implies that more e↵ort should be invested in improving
ART e�ciency (e.g., reduction of the computational overheads related to the even spreading of test cases)
rather than e↵ectiveness (by improvement in the degree of even spreading). Another key implication is
that the use of information regarding the location of failure-causing inputs is a very promising direction
for future research. Obviously, exact information about the location of failure-causing inputs is not going
to be available, but nevertheless, we can make use of some partial information, such as which parts of the
input domain are more likely to have failure-causing inputs. In fact, this result further supports what
has already been proposed by Hamlet and Taylor [23], and Morasca and Serra-Capizzano [29].

2.4 The Underlying Commonality: Diversity

The three studies described above were di↵erently motivated, have di↵erent assumptions, and each pro-
duced di↵erent test case selection strategies. However, in spite of the fundamental and significant di↵er-
ences among them, surprisingly, there is a commonality: their selected test cases all turn out to be evenly
spread across the input domain — that is, they all exhibit a kind of spatial diversity across the input
domain! This striking commonality emphasises the intuition that there must be a more fundamental
concept underlying all three of these testing techniques — PSS, ART and the optimal test case selection
strategy. Motivated by this, a further investigation and analysis of these three test techniques has been
conducted revealing some interesting observations. In PSS, the numbers of randomly selected test cases
belonging to a partition are proportional to the relevant partition size. Thus, PSS e↵ectively imposes



T.Y. Chen, et al. Sci China Inf Sci 2015 Vol. xxxxxx:6

an even spread of random test cases across the entire input domain, and hence can be regarded as ART
through the partitioning of the input domain. Obviously, the more partitions there are, the more even
the spreading of test cases is. Also observed is that ART can be regarded as imitating the optimal strat-
egy, which e↵ectively defines a grid according to the patterns formed by failure-causing inputs to guide
selection of test cases — in the absence of information about the failure-causing regions, an even spread
of random test cases across the input domain is an intuitively appealing and straightforward approach to
implementing such a grid. The various and independent empirical evaluations of the F-measure for ART,
as well as the theoretically derived F-measure for the optimal test case selection strategy, collectively show
the closeness of their performance, which means that ART and the optimal test case selection strategy
are intrinsically the same — at least from the perspective of their failure detection e↵ectiveness.

An important question naturally emerges: is the above commonality amongst these three studies just
a coincidence or an isolated case? A further reflection shows that the answer is “no.” In fact, in most
test case selection approaches, regardless of the stated or implicitly implied intention, the actual process
involves selection of a somehow diverse set of test cases! Obviously, the meaning of diverse varies from
approach to approach: in partition testing, as explained in Section 1, partitions are normally designed
in such a way that inputs from the same partition are related to the same function or feature. Partition
testing aims at selecting test cases from as many di↵erent partitions as possible, rather than test cases
from the same partition. Thus, partition testing incorporates diversity in the sense that more distinct
partitions — and therefore more distinct functions or features — are tested, thus achieving diversity
across functions or features. In coverage testing, the basic intuition is that if a program entity is not
tested, then its associated fault (if it exists) has no chance of being revealed: coverage testing gives
preference to testing program entities not yet executed — in other words, coverage testing also implicitly
incorporates diversity, but does so across the program entity.

In summary, diversity appears to be an underlying concept in successful test case selection methods.

3 Diverse Diversity

The studies mentioned in the previous section show the importance of diversity, which has been either
explicitly included or implicitly implied within a test case selection strategy. In this section, we would
like to highlight another aspect of diversity in other areas of software testing.

A test oracle is a mechanism that can verify the correctness of the output for any input to a program.
The oracle problem occurs when either the test oracle does not exist, or it is not practically feasible to use
it. This is a di�cult but frequently encountered problem in software testing. Metamorphic Testing (MT)
is one of the many approaches that have been proposed to alleviate the oracle problem [24,27]. Basically
speaking, MT involves multiple program executions, with the inputs selected such that they and their
outputs satisfy certain relations — the relationships between the inputs and their outputs are known as
metamorphic relations, some necessary properties of the algorithm being implemented. The main idea
behind MT is that although we may not be able to verify the correctness of an output, it may be possible
to know the relationships between some inputs and their related outputs. For example, for the algorithm
sine, we know that a possible metamorphic relation is sin(x) = sin(x + 360), where x is in the unit of
degrees. So, if x = 29 is somehow selected as a test case, then a new test case 389 (referred to as a
follow-up test case) can be constructed from the metamorphic relation with reference to the original test
case of 29. If the outputs do not comply with the expected relations, we can conclude that the program
has some fault or mistake — however, due to an intrinsic limitation of testing, compliance cannot be
interpreted as meaning that the program is correct: testing can show the presence of bugs, not their
absence [20, p.16].

In two independent studies involving the application of MT [31,37], faults were found in three programs
of the popular Siemens suite, namely, print token, schedule and schedule 2. The Siemens suite has long
been used by the testing community for benchmarking testing strategies, and hence programs in this suite
have been extensively tested by various test case selection methods. Therefore, it is quite surprising, at
first glance, that MT is able to detect some previously unknown faults. We want to emphasise that this



T.Y. Chen, et al. Sci China Inf Sci 2015 Vol. xxxxxx:7

is not to say that MT is necessarily better than existing test case selection techniques, but rather that
testing should be performed from diverse perspectives — MT was successful in revealing further faults
because it is based on a perspective not previously used by the other testing techniques (testing some
necessary properties involving multiple inputs for the program under test). The detection of these faults
in the extensively tested Siemens suite is strong evidence that diversity is an underlying concept, not only
for individual test case selection strategies, but also for a comprehensive and thorough testing. It is well
known that a single test case selection strategy is not su�ciently powerful to reveal all faults — otherwise
there would be one, and only one, strategy. As far as we know, no guidelines currently exist for how to
choose an appropriate combination of strategies for thorough testing, but in light of the faults recently
detected in the Siemens suite by MT, we believe that diversity should be a key factor in determining
such a group of strategies. As a reminder, in addition to the above mentioned real-life faults, MT also
revealed real-life faults for other extensively tested and often used open software [27].

4 Discussion

In this paper, we have argued the importance of the presence of diversity in test case selection and in
determining a group of test case selection methods to support a comprehensive and thorough testing. We
would like to share the result of a recent study [27] which illustrates how important a role diversity can
also play in other areas of software testing.

As discussed in Section 3, MT has been proposed to alleviate the oracle problem. A study [27] was
conducted recently to determine how e↵ectively metamorphic relations (MRs) might actually replace an
oracle in testing. One of the key findings in this study was that a small number of diverse MRs could
have a similar fault-detection capability to a test oracle, and could therefore be used as an e↵ective
substitute. Furthermore, this oracle-like fault-detection capability, realized through the diversity of the
MRs used, could be achieved by groups of relatively inexperienced testers working in an ad-hoc manner —
resembling the Best Buy case [22], where vice-president Je↵ Severts found that a diverse group of several
hundred employees were ten times better able to predict sales than the company’s expert forecasters [26].
Metamorphic testing involves more than just the generation of new (follow-up) test cases — such as
the follow-up test case of 389 with respect to the original test case of 29 and the metamorphic relation
sin(x) = sin(x + 360), as explained in Section 3 — it also includes examination of properties of the
algorithm under test, and enables groups of testers, of varying degrees of experience and expertise to
collaborate in the testing. Thus, it is interesting to see how diversity also plays a key role in guiding the
selection of metamorphic relations to enhance MT’s cost-e↵ectiveness, and to serve as a virtual oracle in
the absence of an actual one.

Since RT does not make use of any information to guide test case selection, there has long been debate
in the literature, with many studies conducted, to determine whether or not RT is a cost-e↵ective method.
These studies have somehow yielded controversial results, with some reporting RT to be cost-e↵ective,
but others not. As proven in [12], unless some kind of the information about the location of failure-
causing inputs is available and applied, there is no possible way to use less than half the number of test
cases required by RT to detect the first failure. In other words, there is only a di↵erence factor of two
between the e↵ectiveness performance for RT and the optimal test case selection strategy. It should
also be noted that the optimal strategy is assumed to make use of information of the failure-causing
inputs other than their locations, such as, their sizes, shapes, orientations, and distributions. However,
such information is normally not available prior to testing, and hence the optimal strategy is simply a
theoretical ideal: actual, implemented strategies should be less e↵ective. In other words, taking into
account its e�cient generation of test cases, from a theoretical perspective, RT is in fact a cost-e↵ective
test case selection strategy. It is further worthwhile noting that RT also exhibits some kind of diversity
through its randomness. Thus, we believe that RT is not too far from the optimal strategy because of its
inherent diversity.

So, in summary, all these investigations strongly identify diversity as a fundamental, underlying intu-
ition in successful software testing. A possible reason for this may be related to the diversity possible in



T.Y. Chen, et al. Sci China Inf Sci 2015 Vol. xxxxxx:8

human error, which may also help explain why the optimal strategy is only twice as e�cient as RT at
finding the first failure — because it needs to take account of all possible diversity of errors.

5 Conclusion

Some people may regard the role of diversity as overstated, or as little more than common sense —
expected, taken for granted, and not really worth talking about or investigating seriously. In contrast,
this paper has presented strong objective evidence to support its importance. The strengths gained from
diversity — as seen in so many fields and disciplines — should mean that having diversity as a guiding
principle in software testing is very philosophically appealing, in view of the fact that programmers can
make many kinds of errors. Such a guiding principle may enable a shift in how some software testing
research has been viewed, encouraging new insights and perspectives, potentially leading to better and
stronger approaches. An example of this is the inherent ability of RT to generate a relatively diverse set
of test cases due to randomness, but at a low cost. This reasonably easily obtained diversity is simple,
yet e↵ective (as proven by theoretical analysis [12]), and may serve to ensure that random testing will
never be obsolete. Indeed, enhanced versions of random testing, such as adaptive random testing, should
draw increased research attention and merit further development. Furthermore, ART involves a simple
form of diversity — arguably the simplest form — and we suggest that other forms of diversity should be
considered in the design of new testing methods. In fact, although ART’s spatial diversity was inspired
by the common occurrence of failure-causing input contiguity — and this spatial diversity remains an
integral, defining characteristic of ART — ART itself has inspired other kinds of diversity-based testing
approaches and research.

Given the diversity of human error, the future of successful software testing, as with so much else, may
well lie in increased recognition of the importance of diversity. Recently, there has been a promotion for
the development of a general theory for software engineering. We fully agree that a general theory for
software engineering will enhance its significance and impact. If a theory of software testing is ever to be
developed, then diversity shall certainly form a part of its foundation, and may well play a role similar
in importance to that of gravity in physics!

Acknowledgment

The authors would like to acknowledge the support of a linkage grant from the Australian Research
Council (project no. ARC LP100200208).

References

1 S. Anand, E. Burke, T. Y. Chen, J. Clark, M. B. Cohen, W. Grieskamp, M. Harman, M. J. Harrold, and P. McMinn. An
orchestrated survey on automated software test case generation. Journal of Systems and Software, 86(8):1978–2001,
Aug. 2013.

2 A. Arcuri, M. Z. Iqbal, and L. Briand. Black-box system testing of real-time embedded systems using random and
search-based testing. In Proceedings of the 22nd IFIP WG 6.1 International Conference on Testing Software and
Systems, ICTSS’10, pages 95–110, Berlin, Heidelberg, 2010. Springer-Verlag.

3 P. G. Armour. Not-defect, the mature discipline of testing. Communications of the ACM, 47(10):15, Oct 2004.
4 H. Bati, L. Giakoumakis, S. Herbert, and A. Surna. A genetic approach for random testing of database systems. In

C. Koch, J. Gehrke, M. N. Garofalakis, D. Srivastava, K. Aberer, A. Deshpande, D. Florescu, C. Y. Chan, V. Ganti,
C. Kanne, W. Klas, and E. J. Neuhold, editors, Proceedings of the 33rd International Conference on Very Large Data
Bases, University of Vienna, Austria, September 23-27, 2007, pages 1243–1251. ACM, 2007.

5 F. T. Chan, T. Y. Chen, I. K. Mak, and Y. T. Yu. Proportional sampling strategy: Guidelines for software testing
practitioners. Information and Software Technology, 28(12):775–782, 1996.

6 K. P. Chan, T. Y. Chen, and D. Towey. Restricted random testing: Adaptive random testing by exclusion. Interna-
tional Journal of Software Engineering and Knowledge Engineering, 16(4):553–584, 2006.

7 T. Y. Chen, S. C. Cheung, and S. M. Yiu. Metamorphic testing: A new approach for generating next test cases.
Technical report, hkust-cs98-01, Hong Kong University of Science and Technology, 1998.



T.Y. Chen, et al. Sci China Inf Sci 2015 Vol. xxxxxx:9

8 T. Y. Chen, F.-C. Kuo, and R. G. Merkel. On the statistical properties of testing e↵ectiveness measures. Journal of
Systems and Software, 79(5):591–601, 2006.

9 T. Y. Chen, F.-C. Kuo, R. G. Merkel, and S. P. Ng. Mirror adaptive random testing. Information and Software
Technology, 46(15):1001–1010, 2004.

10 T. Y. Chen, F.-C. Kuo, R. G. Merkel, and T. H. Tse. Adaptive random testing: The ART of test case diversity.
Journal of Systems and Software, 83(1):60–66, Jan 2010.

11 T. Y. Chen, H. Leung, and I. K. Mak. Adaptive random testing. In M. J. Maher, editor, Advances in Computer
Science – ASIAN 2004. Higher-Level Decision Making, volume 3321 of Lecture Notes in Computer Science, pages
320–329. Springer Berlin Heidelberg, 2004.

12 T. Y. Chen and R. Merkel. An upper bound on software testing e↵ectiveness. ACM Transactions on Software
Engineering and Methodology, 17(3):1–27, Jun 2008.

13 T. Y. Chen, R. Merkel, G. Eddy, and P. K. Wong. Adaptive random testing through dynamic partitioning. In
Proceedings of the Quality Software, Fourth International Conference, QSIC ’04, pages 79–86, Washington, DC, USA,
2004. IEEE Computer Society.

14 T. Y. Chen, T. H. Tse, and Y. T. Yu. Proportional sampling strategy: A compendium and some insights. Journal of
Systems and Software, 58(1):65–81, 2001.

15 T. Y. Chen and Y. T. Yu. On the relationship between partition and random testing. IEEE Transactions on Software
Engineering, 20(12):977–980, 1994.

16 T. Y. Chen and Y. T. Yu. On the expected number of failures detected by subdomain testing and random testing.
IEEE Transactions on Software Engineering, 22(2):109–119, 1996.

17 T. Y. Chen and Y. T. Yu. The universal safeness of test allocation strategies for partition testing. Information
Sciences, 129(1-4):105–118, 2000.

18 I. Ciupa, A. Leitner, M. Oriol, and B. Meyer. ARTOO: Adaptive random testing for object-oriented software. In
Proceedings of the 30th International Conference on Software Engineering (ICSE’08), pages 71–80, 2008.

19 Codenomicon. The heartbleed bug, 2014. Available from http://heartbleed.com/ (Accessed 11 August 2014).
20 E. W. Dijkstra. In Software Engineering Techniques, Report on a conference sponsored by the NATO Science

Committee, Rome, Italy, 27th to 31st October 1969, 1969.
21 A. Groce, G. J. Holzmann, and R. Joshi. Randomized di↵erential testing as a prelude to formal verification. In ICSE,

pages 621–631. IEEE Computer Society, 2007.
22 G. Hamel. The Future of Management. Harvard Business School Press, 2007.
23 D. Hamlet and R. Taylor. Partition testing does not inspire confidence. IEEE Transactions on Software Engineering,

16(12):1402–1411, 1990.
24 M. Harman, P. McMinn, M. Shahbaz, and S. Yoo. A comprehensive survey of trends in oracles for software testing.

Technical report, cs-13-01, University of She�eld, 2013.
25 H. Hemmati, A. Arcuri, and L. C. Briand. Achieving scalable model-based testing through test case diversity. ACM

Transactions on Software Engineering Methodology, 22(1):6, 2013.
26 A. Kingl. Diversity helps to discern: why cross-company dialogue delivers (part 2). South China Morning Post:

Education Post (March 6th), 2013.
27 H. Liu, F.-C. Kuo, D. Towey, and T. Y. Chen. How e↵ectively does metamorphic testing alleviate the oracle problem?

IEEE Transactions on Software Engineering, 40(1):4–22, 2014.
28 J. Mayer. Lattice-based adaptive random testing. In Proceedings of the 20th IEEE/ACM International Conference

on Automated Software Engineering, ASE ’05, pages 333–336, New York, NY, USA, 2005. ACM.
29 S. Morasca and S. Serra-Capizzano. On the analytical comparison of testing techniques. In Proceedings of the 2004

ACM SIGSOFT International Symposium on Software Testing and Analysis, ISSTA ’04, pages 154–164, New York,
NY, USA, 2004. ACM.

30 C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feedback-directed random test generation. In Proceedings of the
29th International Conference on Software Engineering, ICSE ’07, pages 75–84, Washington, DC, USA, 2007. IEEE
Computer Society.

31 P. Rao, Z. Zheng, T. Y. Chen, N. Wang, and K. Cai. Impacts of test suite’s class imbalance on spectrum-based
fault localization techniques. In The Symposium on Engineering Test Harness (TSETH ’13) co-located with the 13th
International Conference on Quality Software (QSIC ’13), pages 260–267, 2013.

32 J. Regehr. Random testing of interrupt-driven software. In W. Wolf, editor, EMSOFT 2005, September 18-22, 2005,
Jersey City, NJ, USA, 5th ACM International Conference On Embedded Software, Proceedings, pages 290–298. ACM,
2005.

33 A. Shahbazi, A. F. Tappenden, and J. Miller. Centroidal voronoi tessellations - a new approach to random testing.
IEEE Transactions on Software Engineering, 39(2):163–183, 2013.

34 A. F. Tappenden and J. Miller. A novel evolutionary approach for adaptive random testing. IEEE Transactions on
Reliability, 58(4):619–633, 2009.

35 A. F. Tappenden and J. Miller. Automated cookie collection testing. ACM Transactions on Software Engineering
Methodology, 23(1):3, 2014.

36 E. J. Weyuker and B. Jeng. Analyzing partition testing strategies. IEEE Transactions on Software Engineering,
17(7):703–711, 1991.

37 X. Xie, W. E. Wong, T. Y. Chen, and B. Xu. Metamorphic slice: An application in spectrum-based fault localization.
Information and Software Technology, 55(5):866–879, May 2013.


