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ABSTRACT
The restricted excitation subspace approximation is explored as abasis to reduce thememory storage
required in linear response time-dependent density functional theory (TDDFT) calculations within
the Tamm–Dancoff approximation. It is shown that excluding the core orbitals and up to 70% of the
virtual orbitals in the construction of the excitation subspace does not result in significant changes
in computed UV/vis spectra for large molecules. The reduced size of the excitation subspace greatly
reduces the size of the subspace vectors that need to be stored when using the Davidson procedure
to determine the eigenvalues of the TDDFT equations. Furthermore, additional screening of the two-
electron integrals in combination with a reduction in the size of the numerical integration grid used
in the TDDFT calculation leads to significant computational savings. The use of these approximations
represents a simple approach to extend TDDFT to the study of large systems and make the calcula-
tions increasingly tractable using modest computing resources.

1. Introduction

Kohn–Sham density functional theory (DFT) [1] has
emerged as an extremely popular and successful approach
for modelling molecular systems and solids. Within
the framework of DFT, electronically excited states are
usually studied though linear response time-dependent
density-functional theory (TDDFT) [2]. In many stud-
ies, for example in biological chemistry or organic pho-
tovoltaics, there is a requirement to study the excited
states of large molecular-based systems. For the study of
excited states, it is often important to have an ab initio
based approach since it is more difficult to parameterise
reliable empirical methods for excited states. The appli-
cation of TDDFT to study large systems is challenging
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owing to the computational cost, both in terms of the
time for the calculations and memory required. Efficient
schemes for solving the Casida equations for TDDFT and
determining the excitation energies and associated oscil-
lator strengths have been developed [3,4]. However, to
study large system comprising of hundreds of atoms often
requires further approximations to be made. The den-
sity functional tight binding (DFTB) method is a semi-
empirical form of DFT which can be several orders of
magnitude faster than DFT, and a linear response form
of DFTB has been reported [5]. Another approach to
extend TDDFT to study very large systems is the sim-
plified TDDFT method of Grimme [6]. The approach
exploits a Löwdin monopole based approximation to the
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two electron integrals and single excitation space selec-
tion and can be applied to systems of 500–1000 atoms.
Other time-dependent semi-empirical approaches have
been developed [7–9]. The low lying excited states of large
systems have been studied with pseudo spectral TDDFT
[10,11] which leads to a significant speedup in the calcu-
lations.

Another important factor in applying TDDFT to study
large systems is the memory required by the calculations.
TDDFT calculations typically use an iterative eigen-
solver method, such as Davidson’s algorithm [12,13],
to solve for the lowest lying excited states. The advan-
tage of Davidson-based approaches is that they are com-
putationally fast but they have the limitation that they
are memory intensive. Within the Davidson’s method
it is necessary to store L vectors of length nocc × nvirt
where L is the size of the excitation subspace, nocc is
the number of occupied orbitals and nvirt is the num-
ber of virtual orbitals. This can limit the applicability of
TDDFT, particularly when studying large systems with
good quality basis sets. Different formalisms of TDDFT
can address this problem, for example complex polar-
isation [14,15], damped response approaches [16] and
real-time TDDFT [17,18]. A symmetric Lanczos algo-
rithm and a kernel polynomial method were introduced
for low memory determination of absorption spectra
within TDDFT [19]. However, within this approach,
determining state specific properties is challenging.
Other approaches included energy specific TDDFT that
allows excited states above a predefined energy thresh-
old to be determined [20] and Krylov-space-based
algorithms [21].

A pragmatic approach to extend the applicability of
Davidson type algorithms is to apply a restriction to the
excitation space. This has been explored in the context of
the algebraic-diagrammatic approach byYang andDreuw
[22]. It was shown that a reduction of the virtual space
by up to 40% could be imposed without introducing a
large error in the excitation energies. Restriction of the
excitation space has also been used with TDDFT, pri-
marily in systems where the excited states of interest are
spatially localised, for example, for molecules on a sur-
face or chromophores in a biological environment [23–
25]. Recently, the reduction in excitation space, along
with integral screening andmodification of the numerical
integration grid, were exploited to enable the calculation
of the X-ray absorption spectra of large systems [26,27].
In this paper, we investigate restriction of the excita-
tion space along with other approximations to enable
TDDFT calculations of the UV/vis absorption spectra
of large systems and to make calculations of the UV
spectra increasingly tractable withmodest computational
resources.

2. Computational details

The calculations have been performed using TDDFT
with the Tamm–Dancoff approximation (TDA) since
this approach is computationally less expensive than
full TDDFT. However, the principles also apply to full
TDDFT. Within the TDA, the excitation energies and
associated transition dipole moments are obtained from
the following equation [28]:

AX = ωX (1)

The matrix A is given by

Aiaσ, jbτ = δi jδabδστ (εaσ − εiτ )

+ (iaσ | jbτ ) + (iaσ | fXC| jbτ ) (2)

where

(iaσ | jbτ ) =
∫ ∫

ψ∗
iσ (r1)ψ∗

aσ (r1)
1
r12

× ψ jτ (r2)ψbτ (r2)dr1dr2 (3)

(iaσ | fXC| jbτ ) =
∫

ψ∗
iσ (r1)ψaσ (r1)

δ2EXC
δρσ (r1)δρτ (r2)

× ψ jτ (r2)ψ∗
bτ (r2)dr1dr2 (4)

and ϵi are the orbital energies, and EXC is the exchange
correlation functional. For the simulation ofUV/vis spec-
tra, only the low energy roots, typically between 0 and
10 eV, are of interest. The Davidson procedure [13] is
a computationally fast algorithm that allows these low
energy roots to be determined. A more detailed analysis
of the Davidson and related methods can be found else-
where [29].

A major factor that limits the application of this
approach to study large systems is the large amount of
memory that is required. The Davidson diagonalisation
procedure is an iterative subspace approach where for a
given root k the eigenvectors of interest are expanded in
an orthonormal vector space

Xk ≈ xk =
L∑
i

cki bi (5)

where xk is the approximation to Xk for the current iter-
ation. A subspace matrix is diagonalised

Gck = pkck. (6)

As the number of expansion vectors bi is increased, the
eigenvalues and eigenvectors of the subspace matrix will
approach the exact (within the model) eigenvalues and



MOLECULAR PHYSICS 3

eigenvectors. On each iteration, if the root is not con-
verged, the subspace is expanded by adding a correction
vector δk

Xk = xk + δk (7)

The correction vector δk is orthogonalised with respect
to the existing expansion vectors and added to the sub-
space. A consequence of this is that it is necessary to store
all subspace vectors bi, and this corresponds to L vectors
of length nocc × nvirt, where nocc is the number of occu-
pied orbitals and nvirt is the number of virtual orbitals.
Clearly, for large systems where it may be necessary to
converge a large number of roots the memory storage
requiredwill become considerable. This canmake the cal-
culation intractable or make the use of substantial high
performance computing resources necessary.

In the restricted excitation subspace approximation,A
is constructed in a reduced orbital subspace. This sub-
space is defined as the single excitations from a subset
of the occupied orbitals to a subset of the virtual orbitals
which naturally leads to a reduction in the length of the
subspace vectors, greatly reducing the storage required.
Here we use a modification of the code implemented for
the study of core excitations [27] where A is constructed
in the reduced orbital subspace. If there are nsubocc and nsubvirt
in the occupied and virtual orbital subspaces, respectively,
the memory storage for the subspace vectors becomes
L × nsubocc × nsubvirt. This can be implemented within existing
TDDFT/TDA implementations by expanding the sub-
space vectors where necessary, which can be done on a
root by root basis to avoid large memory requirements.
For the occupied subspace, a simple approximation is to
exclude the core orbitals. For the virtual subspace, we
omit the high energy orbitals, where 25% means that a
quarter of the orbitals (those with the highest energy)
have been excluded from the virtual orbital subspace. The
structures of the molecules have been optimised at the
B3LYP/6-311G** level of theory and the calculations were
performed with a development version of the Q-Chem
software package [30]. Representation of the spectra is
generated by convoluting the calculated transition ener-
gies and intensities with gaussian functions with a full
width at half maximum of 0.2 eV.

3. Results and discussion

Before examining the effect of the restriction of the
virtual orbital space, we will explore the role of the
numerical quadrature grid used in the TDDFT calcu-
lation. Studies of core excitations have shown that it is
possible to employ small (reduced quality) integration

grids with little effect on the computed excitation ener-
gies and oscillator strengths whilst significantly reducing
the time for the calculation andmaking the study of large
systems more accessible. For the case of core excitations,
the grid could be reduced to 10 point Euler–McClaurin
radial grid and 18-point Lebedev angular grid, denoted
as (10,18), without introducing significant changes in the
excitation energies and oscillator strengths. We note that,
in this approach, the integration grid is only reduced in
the TDDFT calculation and the grid used in the Kohn–
Sham DFT calculation is unchanged. Table 1 shows the
effect of successively reducing the quality of the inte-
gration grid from a standard (50,194) grid. The data is
for the lowest 30 states for the four molecules benzene,
N-acetylglycine-N-methyl-amide (NAGNMA), histidine
and Cr(CO)6. Considering 30 states for these molecules
includes a variety of different types of excitations such
as nπ∗, ππ∗, metal-ligand charge transfer and Rydberg.
It also means that states of relatively high energy (up
to 10 eV) are considered since the restricted excitation
approximation is likely to predominantly affect states
with high energy. Results are shown for two different
types of exchange-correlation functional, the generalised
gradient approximation functional (GGA) PBE and the
Coulomb attenuated functional CAM-B3LYP, and the 6-
311+G∗ basis set which includes diffuse basis functions is
used.

The data shows that there is little difference in the
behaviour observed for the two functionals. Reducing the
size of the grid to (10,18) leads to an average absolute
error of 0.01–0.02 eV. This level of error is not significant
in the context of the error associated with other approx-
imations made in the calculations, such as the approxi-
mate exchange-correlation functional and finite basis set.
However, while this average error is small, some large
errors are evident in some of the transitions. In particular,
an error of 0.25 eV is found for a transition in Cr(CO)6
and it is important to note that this is not a high energy
transition. For the (10,18) grid, there is also some vari-
ation evident in the computed oscillator strengths. The
larger (20,86) grid provides a consistently low error with
respect to the (10,194) grid whilst providing a significant
reduction in the computational time. For the PBE and
CAM-B3LYP functionals, the time for the calculations
is reduced by 45% and 28%, respectively. We note that
there are well-documented problems associated with the
use of GGA functionals with TDDFT [31,32]. The value
for CAM-B3LYP is lower because the evaluation of the
integrals associated with the exchange-correlation func-
tional comprises a smaller fraction of the computational
time since additional two-electron integrals need to be
evaluated. In TDDFT implementations, it is standard to
screen the two-electron integrals based upon the Schwarz
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Table . Effect of quadrature grid relative to the (,) grid for TDDFT calculations for the lowest  states
of benzene, diamide, histidine and Cr(CO). The -+G* basis set is used, and the percentage error in the
oscillator strength of the most intense transition is shown.

(,) (,) (,) (,) (,)+τ = −

PBE functional
Mean absolute error (eV) <. <. <. . <.
Max. error (eV) <. <. . . .
Max. error in f (%) < < <  <
Average time saving (%)     

CAM-BLYP functional
Mean absolute error (eV) <. <. <. . <.
Max. error (eV) <. <. . . <.
Max. error in f (%) < < <  <
Average time saving (%)     

inequality

(μν|λσ ) ≤ QμνQλσ (8)

where

Qμν = (μν|μν)
1
2 (9)

The default cut-off used in Q-Chem is 1×10−10; Table 1
also shows the effect of increasing the threshold (τ ) to
1 × 10−5 in the TDDFT calculation. With this value for
the threshold parameter, there is no significant change in
the computed values for the transition energies and oscil-
lator strengths and reduces the time for the calculation for
both PBE and CAM-B3LYP functionals by about a factor
of two, and this would becomemore significant for larger
systems.Wenote that increasing the value of τ further can
lead to spurious states with low energy or negative tran-
sition energies, and if such roots appear in a calculation,
the value of τ should be increased.

Table 2 shows the effect on the computed excitation
energies and oscillator strengths when the size of the

virtual orbital space is successively reduced. These cal-
culations have been performed with the CAM-B3LYP
functional, 6-311+G∗ basis set and the (50,194) integra-
tion grid. Here 10% means that excitations to the highest
energy 10% of virtual orbitals are excluded from the exci-
tation space in the TDDFT calculation, i.e. the excitation
subspace consists of excitation from the occupied orbitals
to the lowest 90% of there virtual orbitals. Excluding up
to 30% of the virtual orbitals introduces no significant
error, with the maximum error in the transition energies
being less than 0.01 eV and the error in the oscillator
strength of the most intense transition is less than 1%.
In a previous study with the algebraic diagrammatic
construction (ADC) method, it was found that up to
40% of the virtual orbital subspace could be frozen. At
the 40% level for TDDFT, the size of the errors begin
to increase but remain well within acceptable limits. On
further reduction of the virtual orbital space, the error
in the transition energies remains small up to trunca-
tion levels of 60%. At this level of truncation, there is a
significant error of 0.18 eV for benzene. Benzene is
the smallest system studied and as a consequence has

Table . Effect of truncation of the virtual subspace with the CAM-BLYP exchange-correlation functional and -+G* basis set for
the lowest  states. The percentage error in the oscillator strength of the most intense transition is shown.

% % % % % % % %

Benzene
Mean absolute error (eV) . . . . . . . .
Max. error (eV) . . . . . . . .
Error in f (%) < < < < < . . .

NAGNMA
Mean absolute error (eV) . . . . . . . .
Max. error (eV) . . . . . . . .
Error in f (%) < < < . . . . .

Histidine
Mean absolute error (eV) . . . . . . . .
Max. Error (eV) . . . . . . . .
Error in f (%) < < . . . . . .

Cr(CO)
Mean absolute error (eV) . . . . . . . .
Max. Error (eV) . . . . . . . .
Error in f (%) < < < < . . . .
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Figure . Variation in the computed PBE/-+G* spectra for (a) coronene, (b)β-carotene and (c) zinc porphyrinwith the size of the virtual
orbital subspace. X% indicates that excitations to the highest energy X% of virtual orbitals are excluded from the excitation space in the
TDDFT calculation.
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Figure . Molecular structures of the large molecules studied.

the smallest number of virtual orbitals with 129. For
molecules of this size, the high levels of virtual orbital
truncation leaves relatively few virtual orbitals remain-
ing in the calculation, resulting in significant errors. In
general, for all of the molecules the oscillator strength
shows a greater sensitivity to the restriction of the exci-
tation space, with significant errors that would alter the
appearance of the computed spectra being observed
at the higher levels of orbital exclusion. In addition to
restriction of the virtual orbitals, the exclusion of the core
orbitals (1s for the first row of the periodic table, 1s, 2s

and 2p for heavier elements) does not result in significant
errors.

The molecules considered in Table 2 show how the
computed excitation energies and intensities are insen-
sitive to significant restrictions of the excitation space.
However, these molecules are relatively small and are
not representative of the types of system where restric-
tion of the excitation space would be required. Figure 1
shows the computed spectra for three larger molecules,
coronene, β-carotene and zinc prophyrin, with varying
sizes of virtual subspace. These calculations have been
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Figure . Computed spectra for (a) C, (b) PB and (c) ramo-
planin. For (a) and (c) experimental data from references [,] is
also shown.

performed with the PBE functional and 6-31+G∗ basis
set and include 50–120 states, and the occupied orbital
space excludes the core orbitals. For these larger sys-
tems, the low energy regions of the spectra (<10 eV) are
remarkably insensitive to the exclusion of a large fraction
of the high-energy virtual orbitals. Closer inspection of
the spectra for coronene shows some small changes in
the high-energy band at >60% levels. However, for all
of the molecules, the spectra with the exclusion of 80%
of the virtual orbitals are nearly indistinguishable from
the full virtual orbital subspace (0%). In general, for
molecules of this size, 70% of the virtual orbitals can be
excluded without any effect on the computed spectra in
this region.

To illustrate the application of the methodology, the
UV spectra of the three large molecules, shown in
Figure 2, have been computed. These include C60, P3B2
which has been studied previously with real-timeTDDFT
[18] and semi-empirical methods [9] and ramoplanin
(PDB code: 1DSR) which is an antibiotic drug. The

computed spectra are shown in Figure 3 and have been
computed using the 6-31G* basis set and PBE functional
for C60 and CAM-B3LYP functional for P3B2 and ramo-
planin, and exclude the core orbitals and 70% of the vir-
tual orbitals from the excitation subspace. For P3B2 and
ramoplanin, it was necessary to use the CAM-B3LYP
functional because for these systems the PBE functional
has a large number of low-energy charge-transfer transi-
tions that have very low intensities. A consequence of this
is that it is necessary to converge a large number of roots
in order to determine the transitions with intensity. The
energy of these charge-transfer states are predicted to be
too low with the PBE functional but are described cor-
rectly by the CAM-B3LYP functional. Ramoplanin is the
largest of these systems with 271 atoms and 2483 basis
functions and the calculations were performed on a PC
with 125 GB of RAM. The computed spectrum for C60
is in excellent agreement with experiment, and the spec-
trum for P3B2 is consistent with the low-energy region
of the real-time TDDFT spectrum which also shows an
intense band at 3 eV. The spectrum for ramoplanin also
qualitatively agrees with experiment.

4. Conclusions

It has been shown that the computational cost of linear-
response TDDFT/TDA calculations that use the David-
son procedure to determine the low energy eigenval-
ues can be reduced significantly. First, exploiting a
larger integral screening threshold in conjunction with
reduced quality numerical integration grid can signifi-
cantly reduce the time for the calculations. Furthermore,
a limitation of approaches based upon Davidson-type
algorithms is the memory required to store all of the sub-
space vectors. It has been demonstrated that restriction of
the excitation subspace by excluding the core orbitals and
up to 70% of the virtual orbitals can greatly reduce the
length of the subspace vectors without adversely affect-
ing the computed spectra. The limiting factor of the cal-
culations is the evaluation of the two-electron integrals,
however, solutions to this problem have been proposed
[10]. Overall, the modifications described can extend the
size of system that can be studied with linear-response
TDDFT and make the calculations increasingly tractable
using modest computing resources.
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