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Abstract

This paper investigates the microeconomics of employment dynamics, using a Chinese manufacturing

firm-level dataset over the period 1998-2007. It does so in the light of a scheme of “circular and cumu-

lative causation”, whereby firms’ heterogeneous productivity gains and sales dynamics, and innovation

activities ultimately shape the patterns of employment dynamics. Using firm’s productivity growth as

a proxy for process innovation, our results show that the latter correlates negatively with firm-level

employment growth. Conversely, relative productivity levels, as such a general proxy for the broad

technological advantages/disadvantages of each firm, do show positive effect on employment growth in

the long-run through replicator-type dynamics. Moreover, firm-level demand dynamics play a signifi-

cant role in driving employment growth, which more than compensate the labour-saving effect due to

technological progress. Finally, and somewhat puzzlingly, the direct effects of product innovation and

patenting activities on employment growth appear to be negligible.
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1. Introduction

For those who believe that the economy is characteristically in a General Equilibrium and Say’s Law

applies, the impact of technical change upon employment is no big deal: structural unemployment can

only be considered a temporary problem, in that the labour-saving effect of technological progress can

be automatically adjusted by the market (see Freeman, Clark, and Soete, 1982; Vivarelli, 1995; Vivarelli,

2014; Dosi, 1984 and Calvino and Virgillito, 2017, for discussions and critiques of the implied ‘compensation

theory’).

However, the historical evidence militates against any self-equilibrating market mechanism, with long

spells of unemployment both in now-developed and developing countries. Indeed, the broad duality of

technological change, implies that the utilization of labour force is endogenously generated by demand

creation due to product innovation or expanding existing markets, one the one hand, and continuous

labour displacement due to process innovation, on the other hand. In that, the homeostasis between the

two forces cannot be guaranteed, because of the major discontinuities in technological innovation, the

long-term changes in the balance process vs. product innovation, the ‘stickiness’ of consumption baskets

and the long-term fluctuations in the rates of innovation themselves (more on this in Dosi, 1982, 1984).

If this is the case, however, it becomes crucial to understand the determinants of employment dynam-

ics also at sectoral and firm levels. This is what we shall do in the following, examining the impact of

technological catching-up, sales dynamics, and innovation activities on employment growth in China, mak-

ing using of a large representative sample of Chinese manufacturing firms covering the period of Chinese

economic boom before the global financial crisis. Our approach to the relationship between technological

change and employment dynamics is a partial disequilibrium one, grounded on heterogenous patterns of

firm-level learning and catching-up, fuelled by Kaldorian processes of “circular causation” - that is of dy-

namic increasing returns -, linking productivity, sales growth and further efficiency gains (Freeman, Clark,

and Soete, 1982; Freeman and Soete, 1994; Dosi, 1984; Dosi, Pavitt, and Soete, 1990; Dosi, Grazzi, and

Moschella, 2015; Lee, 2013; Vivarelli and Pianta, 2000; Bogliacino et al., 2017). In turn, sales dynamics, at

least in the case of China, have been driven to a good extent by export growth. We interpret the latter in

a ‘technology-gap’ perspective, whereby the absolute advantages/disadvantages of sectors and firms evolve

according to (i) the dynamics of the technology they master compared to their foreign competitors, (ii)

their cost competitiveness (i.e. relative unit labour cost), and (iii) the elasticity of their sales to world in-

come dynamics. Exports, as such an important indicator for country’s international competitiveness, but

also play an important role in stimulating macroeconomic activities and employment growth through the

‘foreign-trade multiplier’ (Thirlwall, 1979, 1980; MacCombie and Thirlwall, 1994).1 Of course the overall

dynamic is affected by the sectoral ones which in turn sums up the dynamics of a large number of highly

heterogenous firms.

Hence, in the following we start by studying the sectoral-level employment dynamics as the outcome

of sectoral average productivity growth and sales growth. In turn, exports are an important component of

1Kaldor (1970) and Thirlwall (1979) suggest that “if balance of payments equilibrium must be maintained, a country’s long
run growth rate will be determined by the ratio of its rate of growth of exports to its income elasticity of demand for imports”
(Thirlwall’s Law). As known, China overshot the constraint and ran throughout a significant surplus.
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sales and they are jointly affected by world income growth, variations on sectoral unit labour cost (relative

to the “rest of the world”), and (relative) innovativeness.

Behind sectoral dynamics, however, rest a multiplicity of heterogenous firm-level patterns. Thus, next,

we investigate the microeconomics of employment as the outcome of firm-specific technological learning,

capital accumulation and sales variation within narrowly defined sectors. The question is the extent to

which firm-level employment dynamics is affected by the labour displacement associated with productivity

growth as compared to the labour creation induced by product innovation and sales growth. Furthermore,

we address the two-sided impact of sales growth on employment growth: firm-level demand expansion

creates, other things being equal, job opportunities, but it also plays a significant role in driving up

productivity due to Kaldorian increasing returns and capability accumulation (Cimoli, Dosi, and Stiglitz,

2009).

In brief, we find that Chinese employment dynamics reveals a Keynesian-Kaldorian adjustment story,

in presence of a fast and very successful technological catching-up. At the sectoral level, labour demand

is largely driven by sectoral sales growth while the growth of productivity is markedly labour displacing,

even if it helps cost competitiveness (proxied by relative unit labour cost). In turn, sectoral sales growth

is primarily determined (via exports) by world income growth and to a less extent by the variations of

sectoral unit labor cost. Interestingly, during the period under investigation, proxies for product innova-

tiveness do not seem to contribute directly to sales/or export growth, except few sectors (probably a sign

that sectors as a whole have not reached the international technological frontier). At the firm-level, the

labour-displacing effects of productivity growth is often overcompensated by the dramatic growth in sales.

Together, productivity levels do show positive effect on employment growth through the replicator-type

dynamics: more productive firms grow more in terms of employees. Finally, at micro level, product inno-

vation do appear to have positive effect on labour demand. Conversely, firms’ patenting activities (in the

US) do not correlate with employment growth (note however that the surge in Chinese patenting abroad

is a quite recent phenomenon).

The paper is organized as follows. Section 2 briefly discusses the state-of-the-art on the evidence both

at sectoral and firm-level. Section 3 presents our simple interpretative models. Section 4 describes the

data. Section 5 presents the broad patterns of growth, export and employment dynamics in China up to

the Crisis. Section 6 presents our sectoral- and firm-level empirical results. Section 7 concludes.

2. Employment dynamics at sectoral and firm-level: a brief review of

the evidence

The empirical literature on the relationship between technical change and employment at both sectoral

and firm-level is critically reviewed in Calvino and Virgillito (2017) to which we refer for all details and

the full list of references. Here let us just mention the thrust of the findings.

In general the literature - both theoretical and empirical - on sectoral level employment dynamics is

based on partial disequilibrium framework interpreting it as a result of structural change involving both

embodied and disembodied technological change and changing patterns of consumption (for a seminal
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theoretical model see Pasinetti, 1981). On the empirical side one often finds an overall positive relationship

between structural change, proxied by relative sectoral value added growth and growth in employment, a

negative relationship between productivity growth and employment growth, and a positive effect of product

innovations on sectoral employment growth.2

A second stream of literature adopts the Haltiwanger-type job flow measure (Davis and Haltiwanger,

1990; Davis et al., 1998) and find that sectors with more process innovation have a higher job destruction

rate and a lower net employment growth rate, vice versa for sectors with more product innovation.3

Notice that most of the foregoing studies refer to developed countries. An interesting question is

whether the differential impact of product vs. process innovation applies also to the sectors on a catching-

up country, like China. We shall address that in the following.

Finally, a third stream of studies which is not generally associated with the analyses of sectoral dy-

namics is based on a technology-gap trade framework and emphasizes in the first instance the intercountry

differences in innovativeness (within the same sector) as the basis of international trade flows and implic-

itly sectoral dynamics. Rather than interindustry variations in the technological ‘endowments’ of a specific

country, it is the variation in innovativeness within each sector across countries which is deemed to be

crucial. Indeed, in Dosi et al. (1990, 2015) one suggests that countries’ sectoral market shares are mainly

shaped by technological factors while cost advantages/disadvantages do not seem to play any significant

role. However, the technology-gap framework has never been extended to the studies on employment

dynamics. This is another task that we shall undertake in the following.

Considering firm-level employment dynamics, let us refer again Calvino and Virgillito (2017). Only

some remarks are in order. Notice, first, that a much wider literature addresses the issue, but also that

the methodologies are quite different mostly employing to different degrees some equilibrium assumptions

concerning micro decisions on the demand for labor together with in our view equally questionable assump-

tions on the existence of some well-behaved production function.4 This notwithstanding, some relatively

robust patterns have emerged.

A large number of micro-econometric studies detects the direct impact of innovation on employment,

without identifying the compensation mechanism (the indirect effect) through lowering cost competitiveness

and creating/enlarging markets.5

A number of empirical works have tried to disentangle the effect of process and product innovation on

firm-level employment. Most studies have found a positive impact of product innovation on employment

via new demand, especially when the new products cannot perfectly substitute the old products within the

same firm, while the impact of process innovation seems more ambiguous. The direct impact of process

innovation is to increase productivity, implying a labour-displacement effect.6 However, there can be an

indirect effect of process innovation on employment, that the increasing productivity may be associated

2See among others Pianta et al. (1996), Vivarelli et al. (1995), Pianta (2000), Bogliacino and Pianta (2010), Mastrostefano
and Pianta (2009) and Bogliacino and Vivarelli (2012).

3See among others Greenan and Guellec (2000) and Meriküll (2010).
4The roots of our scepticism are discussed in Dosi and Grazzi (2006); Dosi and Nelson (2010) and Dosi et al. (2016).
5See among the others Van Reenen (1997), Greenhalgh et al. (2001), Piva and Vivarelli (2005), Coad and Rao (2011),

Bogliacino et al. (2012), Ciriaci et al. (2015) and Van Roy et al. (2015).
6See among others Greenan and Guellec (2000), Hall et al. (2008), Harrison et al. (2014), Evangelista and Vezzani (2012),

Herstad et al. (2015), Zimmermann (2009) and Triguero et al. (2014).
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with sales growth and employment growth driven by strengthening cost competitiveness.

There have been few empirical studies on the employment impact of innovation or technological

catching-up in the context of developing countries.7

Note that the foregoing results stem implicitly or explicitly from an equilibrium framework whereby

labour demand is derived from an underlying “production function”. What does one see when one abandons

such a perspective and considers the evidence of microeconomic employment dynamics in a (micro-founded)

disequilibrium framework? This is one of the questions that we shall address in the following.

3. Interpretative models

3.1. Sectoral-level employment dynamics: the model

Let us consider sectoral employment change starting from the simple identity :

Njt ≡
Yjt
Πjt

(1)

where Njt is sectoral employment (sector j at time t), Yjt is sectoral output,8 Πjt is sectoral (weighted-)

average labour productivity. The dynamic version of (1) is

∆Njt

Njt
=

∆Yjt
Yjt

− ∆Πjt

Πjt
(2)

where ∆Njt is Njt −Nj,t−1. Here, obviously, sectoral employment dynamics is positively associated with

sectoral-level output/demand growth which, in turn, we shall argue on the interpretative side, is shaped by

the sector’s absolute competitiveness in the international market, and negatively associated with sectoral

labour productivity growth. Notice that, labour productivity, as measured in actual data, does not capture

only physical productivity, but also reflects variations in value added generated, for example, by high-

quality products which are sold at higher prices. More generally, productivity is related to the way in

which the process of production is carried on (on average) in the sector, and thus also reflects the efficiency

of organizational routines and the dynamic capabilities of the firms in that sector and country.

Next, let us derive the determinants of the dynamics of sectoral absolute competitiveness as a function

of the dynamics of technological absolute advantage, cost advantages and world income growth. In a first

approximation suppose that the variation of demand of sector j of a country, say China, depends on the

change of the commodities’ relative prices in sector j of the country to the world price of the same sector

(P ∗
jt) and the variation of world income (Ywt).

∆Yjt
Yjt

= ηp
∆P ∗

jt

P ∗
jt

+ ηy
∆Ywt

Ywt
(3)

7Exception are Benavente and Lauterbach (2008) and of course Crespi et al. (2018, forthcoming) and Huang et al. (2018,
forthcoming) in this issue.

8Here we assume for simplicity sectoral output equals demand.

5



where ηp is the price elasticity of demand (plausibly ηp < 0) (i.e., an increase in price leads to some

proportional decrease of demand), ηY is the income elasticity of demand (ηY > 0) (i.e., the degree to which

increases in world income leads to proportional increases of demand).

The relative price of commodities of sector j is a function of sectoral relative unit labour cost (RULC).

The variation of the relative price in sector j is

∆P ∗
jt

P ∗
jt

= µ1 +
∆RULCjt

RULCjt
(4)

where µ1 is a constant capturing the dynamics of the markup, relative unit labour cost is the relative (Chi-

nese) ULC of sector j to the world ULC of the same sector.9 The RULC can be expressed as
ULCChina,jt×Et

ULCWorld,jt

where Et is the trade-weighted bilateral exchange rate index, and the dynamic version of relative ULC

can be expressed as
∆ULCChina,jt

ULCChina,jt
+ ∆Et

Et
− ∆ULCWorld,jt

ULCWorld,jt
. In comparison with the “world” the dynamics of

sectoral cost advantages/disadvantages captures the joint effect of wages and labour productivity.

We can plug the price variation Equation (4) into the demand growth Equation (3). Thus:

∆Yjt
Yjt

= µ2 + ηp
∆RULCjt

RULCjt
+ ηy

∆Ywt

Ywt
(5)

sales growth of sector j is a function of the growth of relative unit labour cost of China and world income

growth. Indeed, Equation (5) just states that sectoral sales growth is jointly determined by some cost

effect and some world income effect. Sectoral sales growth is the outcome of an absolute measure of

competitiveness (i.e. independent of the competitiveness of other sectors within China). The cost effect is

measured by (the variation of) relative unit labour cost, as a proxy of cost advantages, which is jointly

determined by (the dynamics in) wage gap (measured in international currency) and the dynamics in labour

productivity gaps, which, it is important to note, reflect underlying technological catching-up dynamics.

Finally, we augment the estimates with a patent-based variable, a measure of sectoral technological

absolute advantages, as compared to sectors/countries ‘on the frontier’, specially in product innovations.

Thus:
∆Yjt
Yjt

= α+ ηp
∆RULCjt

RULCjt
+ ηy

∆Ywt

Ywt
+ β

∆PATSjt
PATSjt

(6)

where PATSjt proxies the sectoral “frontier” innovativeness. In this work, the proxy are Chinese patents

in the USPTO.

After estimating Equation (6) and evaluating its robustness, we shall use it to estimate the overall

sectoral employment effect of export dynamics.

3.2. Micro-foundation of technology-gap theory and employment dynamics: a general

disequilibrium firm-level model

In line with the theoretical interpretation of the sectoral-level employment growth, our firm-level em-

ployment dynamics is jointly shaped by the overall market growth, the firm-specific labour productivity,

9Notice that the unit labour cost of sector j in country i (ULCjt) is defined as the ratio between sectoral average wage per
employee (Wji) and average productivity (Πjt) is defined as the ratio between real value added and the number of employees).
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the dynamics of firm-specific competitiveness (influencing firm’s sales growth) within a narrowly defined

(4-digit) sector. Let us start from the simple relation

∆Nijt

Nijt
= g

(
∆Πijt

Πijt
,
∆Yijt
Yijt

)
(7)

where ∆Nijt/Nijt denotes the employment growth of firm i in sector j and year t; ∆Πijt/Πijt is firm’s

labour productivity growth; ∆Yijt/Yijt stands for the growth of sales of the firm.10

Of course, the growth of sales of a firm depends on the growth of the market ∆Yj/Yj and the dynamics of

the share in it of i, ∆Sij/Sij . The latter, we suggest in an evolutionary perspective, depend on firm-specific

competitiveness. The notion is grounded on the persistent heterogeneity among firms and the systematic

processes of competitive selection among them. Firms persistently differ over all dimensions one is able to

detect. Idiosyncratic capabilities and, dynamically, idiosyncratic patterns of learning by individual firms

are the general rule. In turn, such persistently heterogeneous firms are nested in competitive environments

which shape their individual economic performances and collectively the evolution of the forms of industrial

organization. Differences in product characteristics, and in the processes of production are central features

of the competitive process by which some firms grow, some decline, and some go out of business.

Evolutionary approaches have often modeled the competitive process by different instantiations of some

replicator dynamics. The bottom line is a relation between some corporate features - that is, technological,

organizational, or behavioral traits - which the particular interactive environment “favors”, on the one

hand, and the dynamic performance in the carriers of such characters in the relevant population on the

other (see, among others, Silverberg et al. (1988); Dosi et al. (1995), and the discussion in Dosi and Nelson

(2010). In its linear specification
∆Sijt
Sijt

= f(Eijt − Ejt)Sij,t−1 (8)

where ∆Sijt/Sijt is the rate of change in the share of firm i in the total production of the sector; Eijt

represents firm’s competitiveness (capture the firm’s technological and cost advantages) and Ejt is the

average of the variable(s) over all firms within the sectors.

Below we shall proxy competitiveness with the productivity levels of firm i (Πij) relative to the sectoral

average, and, in some specifications, with the shares of new products in the total output of the firm.

In the opposite direction, in the spirit of the circular and cumulative causation scheme, increasing

returns in the accumulation of capabilities imply a positive association with demand dynamics, that is the

dynamic version of Kaldor-Verdoorn Law:

∆Πijt

Πijt
= h

(
∆Yijt
Yijt

)
(9)

Hence, the micro-founded “technology-gap” theory of employment growth, based on the interaction

between growth in productivity and demand variation, develops along three different sequences. First,

increases in labour productivity are likely to lead to labour shedding, other things being equal. However,

10Of course, for each firm the relation (7) is an identity, but overall it captures the average effect of productivity and sales
growth upon employment growth and that stops being an identity.
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second, relative labour productivities affect the competitiveness of each firm and through that the dynamics

of market shares and thus its demand. Finally, third, increases in productivity are stimulated by growth

in production through increasing returns, learning and the accumulation of capabilities.

4. Data and descriptive statistics

4.1. Database description: firm-level data

This work draws upon firm level data from the Annual Survey of Industrial Enterprise collected by the

Chinese National Bureau of Statistics (NBS). The dataset includes all industrial firms with sales above 5

million RMB covering period 1998-2007 and has already been employed in other empirical investigations,

including Dong and Xu (2009), Yu et al. (2015) and Yu et al. (2017).11 The surveys cover approximately

55 to 79 million workers, accounting for about 7.5% to 10.5% of the total employment. Each firm is

assigned to a sector according to the 4-digit Chinese industry Classification (CIC) system that closely

matches the Standard Industrial Classification (SIC) employed by the U.S. Bureau of Census.12 Out of

the comprehensive set of all firms, we focus on manufacturing firms only (CIC 13 - 42). Table A.1 (in the

Appendix) shows the summary statistics of manufacturing firms. The total number of employees in the

manufacturing sector has increased from 50 in 1998 to 68 million in 2007. (In fact, it decreased by 5.7

million during period 1998 and 2001, then increased thereafter.)13

4.2. Variables used in firm-level analysis

We measure the firm-level employment growth rate as the log difference of employment levels of two

consecutive years: ∆nijt = nijt − nij,t−1, where nijt is ln(Nijt). Productivity (πijt) is the (log) ratio

of value added (at constant prices) over the number of employees. Productivity growth (∆πijt) is the

log difference of productivity levels of two consecutive years.14 Productivity levels and growth can be

considered proxies for process efficiency and process innovation, admittedly defined in a very broad sense,

and with some important caveats. Productivity as measured, could also represent product innovations,

especially if we consider revenue productivity, and in some sense we partly capture revenue productivity.

Industry deflators do not cancel completely the price effects in productivity.

We define firm’s sales growth (∆gijt) as the log difference of (constant price) sales in two consec-

utive years. We use two-year moving average of investment intensity as proxy for investment: Iijt =
INVijt+INVij,t−1

V Aijt+V Aij,t−1
, where INVijt is real investment and V Aijt denotes real value added.15 We use the per-

11Industry if defined to include mining, manufacturing and public utilities, according to NBS of China. Five million RMB
is approximately $US 600,000.

12In 2003, the classification system was revised. Some sectors were further disaggregated, while others were merged together.
To make the industry code comparable over time, we adopted the harmonized classification proposed in Brandt et al. (2012).

13We have applied a few cleaning procedures to the dataset in order to eliminate visible recording errors. We dropped firms
with missing, zero or negative output, value-added, sales, original value of fixed assets, employment (< 8). And we keep firms
existing for at least two consecutive years.

14Sales, value added and output are all deflated using the same deflator constructed by Brandt et al. (2012).
15Notice that, we compute real investment at time t as the difference of firm’s real capital stock between time t and t− 1.

The time series of real capital stock are computed following Brandt et al. (2012), that apply a standard perpetual inventory
method, with a 9% rate of depreciation.
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Table 1: Summary statistics (mean) on the firm-level dataset (after cleaning).

Year Number of
Firms

Employment Sales
Labour Pro-

ductivity
Employment

Growh
Sales

Growth

Labour
Productivity

Growth

Ratio of New
Product in

Output

2-year MA
Investment
Intensity

1998 108286 379 43 847 44 NA NA NA 0.029 NA
1999 125917 348 45 266 48 −0.038 0.016 0.070 0.028 NA
2000 126054 337 53 875 54 −0.022 0.049 0.061 0.029 0.291
2001 138410 307 55 577 59 −0.024 0.007 0.046 0.031 0.269
2002 149189 292 60 690 68 −0.001 0.071 0.083 0.028 0.266
2003 162086 285 73 925 76 0.018 0.129 0.099 0.027 0.253
2004 211534 235 73 162 88 0.013 0.118 0.047 0.034 0.242
2005 238160 242 87 461 97 0.051 0.189 0.154 0.036 0.236
2006 265912 233 98 964 114 0.024 0.178 0.171 0.039 0.229
2007 248299 245 128 191 137 0.032 0.199 0.177 0.038 0.205

Note: Sales are in current price; labour productivity and investment intensity are in 1998 constant price; unit 1000
RMB. Growth rates are calculated as log differences of real value, at 1998 constant price.

centage share of new products in total output as our proxy for product innovation (NEWPROD).16 Note

that, only less than 5% firms display positive shares of new products. Firm age is computed using infor-

mation on firm’s foundation year. Our proxies for firm size are (log-) number of employees and (log-) sales.

Table 1 provide basic descriptive statistics of the main variables used in the empirical analysis. Finally, we

use as yet another proxy for innovativeness the patents granted in the US identified through a procedure

discusses in Appendix B.17

4.3. Sectoral data

For our sectoral analysis, our firm-level dataset has been aggregated at 4-digit sectoral level, in order to

obtain total (real) value-added, total employment, total (real) sales, total (real) exports for each 4-digit

sector. Sectoral employment growth, sales growth and labour productivity growth are calculated as above.

Table A.2 provide basic descriptive statistics of the main variables used in the empirical analysis. The

growth rate of relative unit labour cost of sector j at time t can be derived based on: a) the growth rate of

Chinese unit labour cost of sector j at time t; b) the growth of trade-weighted bilateral exchange rate index

(i.e. trade-weighted “world currency” per Chinese yuan);18 c) growth of world unit labour cost.19 We proxy

world income growth using growth rate of world gross domestic product.20 We use the share of Chinese

patents in total foreign patents granted in the United States for sector j year t as a proxy for sectoral

innovativeness (source: PATSTAT Version 2014a, USPTO patents only. For details, see Appendix B).21

16According to NBS of China, “new products” are defined as product adopting new technology and/or new design, or
products that have been significantly improved in performances and functions over existing ones by improving their structure,
materials and/or process technics. Hence, these “new products” are new to the enterprises but not new to the market. Because
output of new product are not available for years 2001 and 2004, we fill in the gaps using the averages between the the values
of previous year and the next year for each firm.

17A dummy variable distinguishes firms holding patent for at least one year in the USPTO during 198-2007.
18To calculate it, we use two variables 1) G7 trade weights, calculated by authors based on NBSC statistical yearbook; 2)

bilateral exchange rates between Chinese yuan and G7 currencies, directly available from IMF.
19We proxy it using the G7 countries’ manufacturing ULC growth rates: source OECD.stat.
20Source: IMF World Economic Outlook Database, gross domestic product, constant prices, percentage change.
21The United States as a major technology ‘market’ indeed appears to be a good mirror of the OECD or world technology

market: more in Dosi et al. (1990).
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Figure 1: Unit labour cost of Chinese manufacturing relative to the world (proxied by G7 countries).
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Source: Chinese firm-level dataset (Chinese unit labour cost); OECD.stat (G7 unit labour cost); China Statistical
Yearbook (China-G7 trade weights); IMF (exchange rates between China and G7 countries).

5. The general picture

There are five fundamental characteristics of China’s “economic miracle” which place the discussion that

follow in the proper context.

First, Chinese economic growth has occurred and is occurring in dual economic system, characterized

by the persistent coexistence of a relatively ‘modern’ sector and a ‘traditional rural’ one. The unlimited

supplies of labour from the traditional sector served as a source of cheap labour for almost three decades of

rapid capital accumulation and industrialization in China, without dramatic increase in wages (see Lewis,

1954; Lutz, 2014; and Cai and Wang, 2010 for China). This is also reflected in the limited role of wages in

the growth of Chinese aggregate demand during the early phase of transition, and in a rather stable import

propensity. Indeed, Chinese manufacturing relative unit labour cost shows a decreasing trend until 2004

and kept stable/or mildly increased afterwards (see Figure 1), suggesting an increasing cost advantages,

too, until 2004.

Second, the dramatic productivity growth and catching-up has been well documented. For example,

Yu et al. (2015) estimates a 10% labour productivity growth and Brandt et al. (2012) a 7.7% TFP growth,

intimately coupled with process of technological and organizational learning and knowledge accumulation

(see Fu and Gong, 2011 and Yu et al., 2017).

Third, export grew at a spectacular rate even if the export share into the total Chinese manufacturing

output has increased only mildly from 18.3% in 1998 to 22% in 2006 (see Table A.1). The foreign-trade

multiplier played an important role during the Chinese catching-up process, with export fuelling effective

demand and leading to overall increase in output and employment (see Lin and Li, 2003 and Fu and

Balasubramanyam, 2005).

Fourth, the employment growth has been much lower than the overall income growth of China. This
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is hold both for the economy as a whole and for the industrial sector alone, as shown in Figure 2.22
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Figure 2: Growth rates of GDP, industrial value added, total employment and industrial employment. Note: The
employment growth rate time series are discontinuous in 1990 as the employment statistics before 1990 are from a
different data collection method. Source: National Bureau of Statistics of China.

The elasticity of employment to output, measured as ratio between the rate of growth of employment

and the rate of growth of production (cf. Figure 3), shows a steady decreasing trend from 0.15 in 1998 to 0.04

in 2010, with a high volatility in the industrial sector. Such an elasticity was even negative between 1998

and 2003, due to the massive layoff of employees in the State-owned enterprises (SOEs) coupled with the

‘ownership transformation’ process.23 It surged to around 0.5 during 2004-07, dropped again significantly

to 0.2 in 2008, the year of the global financial crisis. Both in the overall economy and in the industrial

sector, (almost) jobless growth appears to have precociously emerged as a dominant characteristic.

Fifth, “on the frontier” innovative activities are a quite recent phenomenon in China. Table 2 shows

the patenting activities in the USPTO. The number of Chinese patents granted has increased from 151

to 4527, accounting for 0.17% in 1998 and 2.46% in 2007 of the non-US assignees’s patents (i.e. the year

refers to the filing year of the granted patents). Indeed, patenting has exploded since then.

22Industry is composed by mining, manufacturing, construction and utilities.
23For the labour restructuring process associated with the ownership transformation in China, see Dong and Xu (2009) and

Yu et al. (2015).
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Figure 3: The elasticity of employment growth to GDP growth and industrial value added growth. Source: National
Bureau of Statistics of China.

Table 2: Summary statistics of the patenting activities in the USPTO.

Year
Number of Chinese

patents
% of Chinese patents

in non-US patents
% of Chinese patents

in world patents

1998 151 0.17 0.08
1999 226 0.23 0.11
2000 345 0.31 0.15
2001 579 0.39 0.19
2002 821 0.54 0.26
2003 1130 0.68 0.35
2004 2091 1.11 0.57
2005 2880 1.40 0.72
2006 3963 2.11 1.01
2007 4527 2.46 1.15

Source: PATSTAT (version 2014a). Year refers to patent application year. Note: if one patent corresponds to
multiple assignee persons (possibly from multiple countries), we assign equal weights to each of the assignee persons.

6. Empirical results

6.1. Sectoral-level empirical estimates

First, we estimate Equation (2) for each 2-digit sector, that is sectoral-level employment dynamics as the

joint outcome of productivity growth and sales growth. Results are shown in Table 3. Productivity growth

displays very significant negative association with employment growth at the sectoral level, while sectoral

sales growth contributes significantly to employment growth.24

Adopting the same model, we estimate the association between export growth and employment dynam-

ics. Results are shown in Table 4. The strong positive association of export growth on employment growth

24In the next few paragraphs we discuss some inter-industry differences. However, admittedly, we do not consider possible
inter-sectoral interdependences in demands and productivities via input/output flows.
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Table 3: Sectoral-level employment dynamics (∆Njt) Equation (2) - sales growth.

CIC SECTOR ∆Πjt ∆Yjt Constant # Obs. R2

All manufacturing −0.4803*** 0.7743*** −0.0031 3812 0.7475
(0.025 5) (0.021 9) (0.009 8)

13 Food from agriculture products −0.4819*** 0.8164*** 0.0099 135 0.8272
(0.051 5) (0.063 4) (0.025 8)

14 Food −0.5414*** 0.8692*** 0.0036 171 0.8460
(0.131 9) (0.060 5) (0.026 9)

15 Beverages −0.5135*** 0.6470*** 0.0418* 108 0.7605
(0.074 2) (0.060 6) (0.018 6)

16 Tobacco −0.4539*** 0.3500* 0.0379 27 0.6967
(0.120 8) (0.144 1) (0.066 8)

17 Textile −0.7809*** 0.8860*** −0.0200 180 0.8773
(0.077 2) (0.031 5) (0.023 9)

18 Textile wearing apparel etc. −0.5273*** 0.9245*** 0.0653 27 0.9097
(0.134 5) (0.082 8) (0.053 6)

19 Leather etc. −0.4610*** 0.8897*** −0.0452 90 0.7785
(0.090 1) (0.092 4) (0.043 7)

20 Timber, wood, bamboo −0.6740*** 0.7005*** 0.0528 72 0.8268
(0.077 7) (0.068 5) (0.032 2)

21 Furniture −0.5555*** 0.8217*** −0.0699 45 0.9198
(0.090 1) (0.075 3) (0.068 4)

22 Paper products −0.7136*** 0.4840*** 0.0528* 45 0.8386
(0.067 0) (0.076 0) (0.025 0)

23 Printing, reproduction and recording media −0.2803** 0.9117*** −0.0482 45 0.9431
(0.106 5) (0.055 4) (0.031 1)

24 Articles for culture, education, sports −0.3238** 0.7602*** 0.0362 126 0.6465
(0.121 5) (0.103 3) (0.030 4)

25 Petroleum, coking, nuclear power −0.6094*** 0.8040*** 0.0759 36 0.9064
(0.087 2) (0.108 0) (0.081 7)

26 Raw chemical materials and chemical products −0.6045*** 0.8904*** −0.0208 270 0.8043
(0.054 1) (0.045 8) (0.018 4)

27 Medicines −0.3175*** 0.4989*** 0.0365* 54 0.7837
(0.094 0) (0.064 6) (0.018 3)

28 Chemical fibers −0.4152** 0.7422*** −0.0146 63 0.7234
(0.127 0) (0.096 3) (0.044 7)

29 Rubber −0.4274*** 0.6851*** −0.0323 81 0.6527
(0.126 7) (0.089 8) (0.036 2)

30 Plastics −0.6164*** 0.9718*** −0.0444 81 0.8532
(0.074 4) (0.086 8) (0.025 1)

31 Non-metallic mineral products −0.5255*** 0.7926*** −0.0150 270 0.7565
(0.070 3) (0.078 1) (0.014 6)

32 Ferrous metals −0.3637** 0.9252*** −0.0649 36 0.8482
(0.122 5) (0.092 6) (0.052 5)

33 Non-ferrous metals −0.6812*** 1.0312*** −0.0883* 135 0.7981
(0.097 9) (0.075 9) (0.038 0)

34 Metal products −0.4436*** 0.8207*** −0.0181 162 0.7994
(0.077 5) (0.075 4) (0.017 1)

35 General purpose machinery −0.5642*** 0.7077*** −0.0278* 279 0.7863
(0.053 2) (0.041 4) (0.011 7)

36 Special purpose machinery −0.5344*** 0.8323*** −0.0530* 378 0.7739
(0.080 4) (0.059 8) (0.021 1)

37 Transport equipment −0.2476*** 0.6464*** −0.0459 207 0.7522
(0.071 1) (0.062 9) (0.030 9)

39 Electrical machinery −0.6826*** 0.8758*** −0.0012 216 0.8377
(0.070 1) (0.063 0) (0.019 8)

40 Communication equipment, computers etc. −0.3269*** 0.7512*** −0.1002** 140 0.8363
(0.052 7) (0.083 4) (0.031 7)

41 Measuring instruments etc. −0.2524** 0.6315*** −0.0307 225 0.7109
(0.081 7) (0.061 7) (0.047 5)

42 Artwork and other manufacturing −0.5954*** 0.8637*** 0.0213 108 0.8554
(0.094 9) (0.049 7) (0.029 4)

Note: OLS regression. Robust standard errors are in parenthesis. ∆Njt 4-digit sectoral employment variation; ∆Πjt

4-digit sectoral productivity growth; ∆Yjt 4-digit sectoral sales growth. Year dummies are included in all estimations.
2-digit sectoral dummies are included in the “all manufacturing” estimation. *** p < 0.01, ** p < 0.05, * p < 0.10.

appears in the majority of sectors, and in particular, in the manufacturing of furnitures, chemical and

metal products, communication equipment and computers, and measuring instruments. The significant

labour-displacing effect of productivity growth is particularly revealed in textile, wood products, furnitures,

paper and plastics.

Second, we estimate Equation (5), that is sectoral sales growth as the joint outcome of the variation

of Chinese relative unit labour cost and world income growth. The estimates are shown in Table 5.25 The

25Here, we adopt “regression through the origin (RTO)”: it implies that the dependent variable is assumed to be zero when
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Table 4: Sectoral-level employment dynamics (∆Njt) Equation (2) - export growth.

CIC SECTOR ∆Πjt ∆EXPORTjt Constant # Obs. R2

All manufacturing −0.1736*** 0.1280*** 0.0831*** 2904 0.2115
(0.043 7) (0.016 9) (0.015 1)

13 Food from agriculture products −0.2524** 0.0763* 0.1391*** 105 0.3245
(0.082 8) (0.034 2) (0.036 9)

14 Food −0.3675 0.2390** 0.0681 130 0.3676
(0.232 9) (0.087 5) (0.052 6)

15 Beverages −0.1822* 0.0329 0.1191*** 84 0.2219
(0.092 0) (0.022 6) (0.030 2)

16 Tobacco −0.1990 0.1187** 0.1374* 21 0.5197
(0.194 4) (0.041 0) (0.056 0)

17 Textile −0.7340*** 0.2179* 0.0965* 140 0.4682
(0.198 7) (0.094 3) (0.037 5)

18 Textile wearing apparel etc. −0.1300 0.3380 0.0616 21 0.7112
(0.189 5) (0.192 7) (0.037 4)

19 Leather etc. −0.1492 0.2722** 0.0534 70 0.3273
(0.132 8) (0.082 9) (0.048 7)

20 Timber, wood, bamboo −0.6905*** 0.0249 0.2606*** 56 0.5799
(0.109 9) (0.042 5) (0.042 7)

21 Furniture −0.7510*** 0.2182*** 0.1325*** 34 0.8375
(0.112 9) (0.036 6) (0.021 0)

22 Paper products −0.3846*** −0.0185 0.1143* 35 0.5061
(0.114 4) (0.028 0) (0.057 2)

23 Printing, reproduction and recording media 0.3308 0.5034* 0.0122 35 0.3554
(0.463 6) (0.226 3) (0.098 5)

24 Articles for culture, education, sports −0.0014 0.2707*** 0.0693 98 0.3627
(0.111 8) (0.067 8) (0.041 6)

25 Petroleum, coking, nuclear power −0.2189 0.0292 0.0683 21 0.3486
(0.287 9) (0.098 5) (0.067 3)

26 Raw chemical materials and chemical products −0.0890 0.1600*** 0.0805* 208 0.2588
(0.128 6) (0.037 7) (0.033 0)

27 Medicines −0.1654 0.0300 0.1244*** 42 0.2549
(0.135 7) (0.068 7) (0.030 1)

28 Chemical fibers −0.2499* 0.3533*** 0.1848*** 49 0.5821
(0.119 8) (0.070 8) (0.050 7)

29 Rubber −0.2912 0.0843 0.0730* 57 0.3557
(0.180 3) (0.046 5) (0.033 2)

30 Plastics −0.4728*** 0.2137** 0.1298*** 63 0.5163
(0.102 9) (0.075 8) (0.032 3)

31 Non-metallic mineral products −0.1976 0.0617 0.0947*** 205 0.2104
(0.107 3) (0.033 1) (0.021 0)

32 Ferrous metals 0.2610 0.1028 −0.0025 28 0.3190
(0.194 2) (0.081 5) (0.051 6)

33 Non-ferrous metals −0.5080 0.0545 0.0770 101 0.2001
(0.278 4) (0.044 5) (0.103 2)

34 Metal products −0.3540** 0.1600*** 0.0996*** 126 0.3817
(0.113 8) (0.046 8) (0.022 7)

35 General purpose machinery −0.2664** 0.0691* 0.0270 217 0.2367
(0.081 5) (0.029 5) (0.020 4)

36 Special purpose machinery −0.3835*** 0.1057* 0.0461 287 0.2821
(0.111 7) (0.042 4) (0.027 1)

37 Transport equipment 0.1189 0.1022* 0.0329 145 0.2177
(0.175 0) (0.046 0) (0.034 6)

39 Electrical machinery −0.4222* 0.2923* 0.0809* 168 0.4241
(0.184 0) (0.138 0) (0.034 4)

40 Communication equipment, computers etc. −0.0358 0.4237*** −0.0298 108 0.6920
(0.098 1) (0.103 6) (0.041 0)

41 Measuring instruments etc. 0.0051 0.1302*** −0.0083 166 0.2215
(0.110 5) (0.033 3) (0.053 4)

42 Artwork and other manufacturing −0.2764 0.2148 0.1145* 84 0.3789
(0.198 1) (0.170 8) (0.051 6)

OLS regression. Robust standard errors are in parenthesis. ∆Njt 4-digit sectoral employment variation; ∆Πjt 4-
digit sectoral productivity growth; ∆EXPORTjt 4-digit sectoral exports growth. Year dummies are included in all
estimations. 2-digit sectoral dummies are included in the “all manufacturing” estimation. *** p < 0.01, ** p < 0.05,
* p < 0.10.

effect of income elasticities dominates that of price elasticities. The degrees of income elasticity vary across

sectors, that the most income elastic (around 4 to 5) sectors include the manufacturing of communication

independent variables are zeros. In our case, it means that we assume that when the growth rates of RULC and world income
are nil, the growth of Chinese sectoral sales/export is equally nil. In fact, the assumption stands for a time zero equilibrium
assumption, which, in this case, as rough as it is, appear much better than assuming some exogenous drift thereafter. We also
compared the results between OLS regression (with constant) and RTO. We find that 1) the standard errors of the estimates
of RULC are very similar in two methods; 2) the standard errors of the estimates of world income growth is much smaller in
RTO than under OLS.
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Table 5: Sectoral-level sales growth (∆Yjt) Equation (5).

CIC SECTOR ∆RULCjt ∆WorldIncomet # Obs. R2

All manufacturing −0.3999*** 2.2096*** 3389 0.4120
(0.050 2) (0.300 7)

13 Food from agriculture products −0.3746*** 3.3838*** 120 0.4279
(0.110 7) (0.413 2)

14 Food −0.2750 3.8097*** 152 0.3631
(0.241 9) (0.410 3)

15 Beverages −0.0696 3.5956*** 96 0.4864
(0.061 8) (0.384 2)

16 Tobacco −0.1413 0.8681 24 0.0539
(0.235 3) (1.011 4)

17 Textile −0.5028 3.4455*** 160 0.3776
(0.286 3) (0.373 7)

18 Textile wearing apparel etc. 0.5447 2.6520*** 24 0.4712
(0.598 9) (0.706 6)

19 Leather etc. −0.1250 3.5231*** 80 0.4403
(0.113 3) (0.474 4)

20 Timber, wood, bamboo 0.1690 4.9863*** 64 0.7517
(0.144 6) (0.354 9)

21 Furniture −0.1153 5.8782*** 40 0.5792
(0.158 5) (1.011 5)

22 Paper products −0.8346* 3.6052*** 40 0.4902
(0.372 0) (1.028 6)

23 Printing, reproduction and recording media −0.0891 3.1436*** 40 0.2367
(0.341 0) (0.892 5)

24 Articles for culture, education, sports −0.5025*** 3.5183*** 112 0.4127
(0.109 8) (0.516 1)

25 Petroleum, coking, nuclear power −0.1463 3.9839*** 32 0.2958
(0.204 6) (1.129 5)

26 Raw chemical materials and chemical products −0.3028** 3.5387*** 240 0.5019
(0.102 8) (0.258 6)

27 Medicines −0.0553 4.2665*** 48 0.6790
(0.213 7) (0.431 3)

28 Chemical fibres −0.0484 3.6989*** 56 0.2964
(0.221 5) (0.807 1)

29 Rubber 0.0268 3.8619*** 72 0.5036
(0.150 5) (0.482 2)

30 Plastics −0.1204 3.9038*** 72 0.6577
(0.161 7) (0.378 0)

31 Non-metallic mineral products −0.3606*** 4.1649*** 240 0.5951
(0.084 7) (0.272 5)

32 Ferrous metals −0.0450 4.5735*** 32 0.6546
(0.285 9) (0.475 1)

33 Non-ferrous metals −0.4032** 4.6229*** 120 0.4659
(0.149 9) (0.546 3)

34 Metal products −0.3197* 4.0841*** 144 0.5394
(0.148 5) (0.328 2)

35 General purpose machinery −0.5464*** 4.4158*** 248 0.5979
(0.152 5) (0.377 1)

36 Special purpose machinery −0.4970** 3.7850*** 336 0.4167
(0.165 8) (0.344 7)

37 Transport equipment −0.3200 4.0589*** 184 0.2140
(0.199 2) (0.782 2)

39 Electrical machinery −0.4117*** 4.4734*** 192 0.5207
(0.105 1) (0.306 3)

40 Communication equipment, computers etc. −0.7244*** 5.8529*** 125 0.5119
(0.215 6) (0.685 5)

41 Measuring instruments etc. −0.5966*** 4.7346*** 200 0.3378
(0.170 4) (0.719 9)

42 Artwork and other manufacturing 0.0542 4.1972*** 96 0.3776
(0.191 0) (0.569 1)

OLS regression without constant. Robust standard errors are in parenthesis. ∆Yjt 4-digit sectoral sales growth;
∆RULCjt 4-digit sectoral manufacturing relative unit labour cost growth; ∆WorldIncomet world income growth.
2-digit sectoral dummies are included in the “all manufacturing” estimation. *** p < 0.01, ** p < 0.05, * p < 0.10.

equipment and computers, electric machinery, measuring instruments, transport equipments.

We also estimated the effects of the variations of RULC and world income on export growth. Table 6

shows the results. Again, income elasticity dominates price elasticity in determining Chinese sectoral

export growth. The most income elastic sectors include metal products, machinery, transport equipments,

electrical machinery, communication equipments, computers and measuring instruments.

Third, we estimated the sales/or exports dynamics equation augmenting with the variation of sectoral

innovativeness (Equation 6), proxied by the growth of the share of Chinese patents in the non-US as-
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Table 6: Sectoral-level export growth (∆EXPORTjt) Equation (5).

CIC SECTOR ∆RULCjt ∆WorldIncomet # Obs. R2

All manufacturing −0.2861** 1.3538 2494 0.1185
(0.099 1) (0.736 9)

13 Food from agriculture products −0.1733 2.1071 90 0.0301
(0.574 8) (1.379 0)

14 Food −0.6468 3.1172** 112 0.1458
(0.344 1) (0.999 4)

15 Beverages −0.9427** 0.6623 72 0.0747
(0.350 5) (1.814 7)

16 Tobacco 0.0087 1.7506 18 0.0596
(0.317 3) (2.243 8)

17 Textile −1.0004 3.3597*** 120 0.1431
(0.600 6) (0.881 2)

18 Textile wearing apparel etc. −0.0854 2.6872*** 18 0.5824
(0.292 8) (0.548 9)

19 Leather etc. −0.0731 2.5289*** 60 0.1782
(0.233 9) (0.689 2)

20 Timber, wood, bamboo 0.2777 5.0083*** 48 0.2534
(0.563 1) (1.140 1)

21 Furniture 0.1025 4.7932*** 30 0.3124
(0.577 6) (1.292 6)

22 Paper products −0.5685 −0.9199 30 0.0248
(0.619 8) (2.670 3)

23 Printing, reproduction and recording media 0.2193 3.3716** 30 0.1829
(0.519 3) (1.132 2)

24 Articles for culture, education, sports −0.5368*** 3.2427*** 84 0.3335
(0.114 7) (0.680 7)

25 Petroleum, coking, nuclear power −0.7607 2.4491 18 0.2496
(0.595 1) (1.520 6)

26 Raw chemical materials and chemical products 0.2848 4.1778*** 178 0.1362
(0.297 5) (0.739 9)

27 Medicines −0.1460 3.3119*** 36 0.3458
(0.243 3) (0.699 1)

28 Chemical fibers −0.3386 3.3711* 42 0.1484
(0.326 7) (1.501 0)

29 Rubber −0.8314 2.6221 49 0.1148
(0.851 4) (1.838 0)

30 Plastics −0.4792** 3.8852*** 54 0.5501
(0.167 2) (0.401 0)

31 Non-metallic mineral products 0.3800* 3.3200*** 176 0.0895
(0.158 9) (0.830 6)

32 Ferrous metals 0.0872 4.4827** 24 0.3353
(0.325 9) (1.405 9)

33 Non-ferrous metals 0.1449 0.5339 87 0.0038
(0.445 5) (2.294 5)

34 Metal products −0.1287 4.7038*** 108 0.4462
(0.195 4) (0.500 4)

35 General purpose machinery −0.6804 4.0836*** 186 0.2018
(0.448 2) (0.555 5)

36 Special purpose machinery −0.4601 5.1026*** 247 0.1221
(0.308 9) (0.900 2)

37 Transport equipment −0.0706 4.8187** 126 0.0520
(0.563 7) (1.649 3)

39 Electrical machinery −0.0697 4.8119*** 144 0.2286
(0.424 3) (0.581 6)

40 Communication equipment, computers etc. −1.2105** 7.4075*** 93 0.5180
(0.414 5) (0.968 2)

41 Measuring instruments etc. −0.6679** 5.9891*** 142 0.2106
(0.229 3) (1.236 4)

42 Artwork and other manufacturing 0.3236 2.9500*** 72 0.2794
(0.233 3) (0.570 6)

OLS regression without constant. Robust standard errors are in parenthesis. ∆EXPORTjt 4-digit sectoral exports
growth; ∆RULCjt 4-digit sectoral manufacturing relative unit labour cost growth; ∆WorldIncomet world income
growth. 2-digit sectoral dummies are included in the “all manufacturing” estimation. *** p < 0.01, ** p < 0.05, *
p < 0.10.

signee’s ones. The estimates are shown in Table 7. Together, Table 8 shows the OLS estimates for the

export dynamics equation. The variation of innovativeness in Chinese manufacturing sectors seems neither

contribute to sales growth nor exports growth, but, to repeat, our data refer to a stage of catching-up

which by now is mostly over.
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Table 7: Sectoral-level sales growth (∆Yjt) Equation (6).

ISIC SECTOR ∆RULCjt ∆WorldIncomet ∆Patentjt # Obs. R2

All manufacturing −0.3251*** 3.1001*** 0.0018 908 0.6464
(0.094 9) (0.220 9) (0.008 2)

15 Food products and beverage −0.0383 3.7216*** −0.0110 127 0.6745
(0.099 9) (0.259 1) (0.011 7)

16 Tobacco 0.2575 0.6598 0.0113 8 0.1972
(0.245 3) (0.847 9) (0.066 5)

17 Textile −0.0801 3.5598*** 0.0054 56 0.6666
(0.199 8) (0.410 2) (0.022 5)

18 Wearing apparel, dressing and dyeing of fur −0.1416 3.1763** 0.0872 16 0.7623
(0.213 8) (1.084 7) (0.131 6)

19 Tanning and dressing of leather; manuf. of luggage, handbags etc. 0.0930 3.4483*** 0.0495 23 0.8839
(0.151 3) (0.369 0) (0.030 4)

20 Wood and wood products 0.1891 4.5522*** −0.0006 30 0.7958
(0.284 3) (0.432 5) (0.012 8)

21 Paper and paper products −0.0764 3.9369*** 0.0405* 16 0.9154
(0.202 8) (0.511 0) (0.020 5)

22 Publishing, printing and reproduction of recorded media −0.2566 1.4286 0.0908 24 0.1662
(0.470 1) (1.482 0) (0.153 2)

23 coke, refined petroleum products and nuclear fuel −0.2619* 3.5028*** 0.0623*** 24 0.7316
(0.126 2) (0.568 4) (0.018 1)

24 Chemical and chemical products −0.1876** 3.4560*** 0.0313 72 0.7468
(0.065 0) (0.272 2) (0.019 2)

25 Rubber and plastic products −0.3250* 3.9810*** 0.0018 23 0.9173
(0.161 8) (0.321 2) (0.015 9)

26 Other non-metallic mineral products −0.1509 4.2416*** 0.0194 63 0.8914
(0.105 3) (0.230 5) (0.012 5)

27 Basic metals −0.3589* 4.3760*** 0.0512 32 0.8390
(0.147 9) (0.527 7) (0.068 7)

28 Fabricated metal products −0.4095 4.5638*** −0.0152 40 0.8029
(0.225 9) (0.417 6) (0.019 4)

29 Machinery and equipment −0.6351*** 4.0282*** −0.0359* 118 0.6197
(0.192 9) (0.306 0) (0.017 1)

30 Office, accounting and computing machinery −0.0345 4.3684* 0.3837 8 0.8219
(0.107 9) (1.794 9) (0.301 3)

31 Electrical machinery and apparatus n.e.c. −0.3737** 4.6059*** 0.0314 48 0.8543
(0.121 2) (0.365 2) (0.021 0)

32 Radio, tv and communication equipment and apparatus −0.4287*** 4.7009*** 0.0788 24 0.8815
(0.093 3) (0.868 8) (0.089 8)

33 Medical, precision and optical instruments, watches and clocks −0.3791*** 3.9597*** 0.0920 40 0.8413
(0.078 5) (0.518 6) (0.077 8)

34 Motor vehicles, trailers and semi-trailers −0.2525 4.1594*** 0.0917* 24 0.8200
(0.136 1) (0.580 8) (0.045 6)

35 Other transport equipment −0.7190 3.9348*** −0.0630 44 0.4021
(0.371 1) (0.990 3) (0.055 7)

36 Furniture and others 0.1649 3.8030*** −0.0008 48 0.7276
(0.202 1) (0.352 0) (0.020 4)

OLS regression without constant. ∆Yjt 4-digit sectoral sales growth; ∆URLCjt 4-digit sectoral relative unit labour
costs growth; ∆WorldIncomet world income growth; ∆Patentjt growth of the percentage share of Chinese patents
in the foreign patent granted by the USPTO. 2-digit sectoral dummies are included in the “all manufacturing”
estimation. Robust standard errors are in parenthesis. *** p < 0.01, ** p < 0.05, * p < 0.10.

6.2. Firm-level evidence

6.2.1. The econometric strategies

Let us turn to firm-level data to analyze the drivers of manufacturing employment through a three-step

estimation in line with the theoretical framework of Section 3.2. In the first step, firm-level employment

dynamics is jointed determined by productivity growth and sales growth. In the second step, we estimate

the replicator-type dynamics linking firm’s relative competitiveness, the dynamics of the overall market

and firm’s sales growth. In the third step, we integrate replicator-type dynamics into the first step, directly

linking firm’s relative competitiveness, sectoral sales and productivity dynamics with employment growth

(adding also product innovation and investment). Finally, we estimate the dynamic version of Kaldor-

Verdoorn Law. We resort to an autoregressive distributed lag model, that enables us to estimate both

the short-run and the long-run effects. We estimate the models for each 4-digit sector in order to ideally
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Table 8: Sectoral-level export growth (∆EXPORTjt) Equation (6).

ISIC SECTOR ∆RULCjt ∆WorldIncomet ∆Patentjt # Obs. R2

All manufacturing −0.4294 1.6378** 0.0319 677 0.2654
(0.359 2) (0.623 9) (0.028 5)

15 Food products and beverage −0.5383* 1.3957* 0.0361 94 0.1327
(0.269 5) (0.688 3) (0.027 2)

16 Tobacco 0.4333* 0.5359 0.0057 6 0.4299
(0.220 2) (1.203 7) (0.100 7)

17 Textile −0.0434 1.9522*** 0.0066 42 0.4228
(0.184 1) (0.430 9) (0.029 5)

18 Wearing apparel, dressing and dyeing of fur −0.3001 0.0133 0.3537 12 0.6359
(0.254 9) (1.831 9) (0.190 8)

19 Tanning and dressing of leather; manuf. of luggage, handbags etc. −0.2040 2.1342*** 0.0865 17 0.7077
(0.259 1) (0.498 1) (0.054 2)

20 Wood and wood products 0.0537 3.7377*** 0.0470 22 0.4779
(0.667 0) (0.971 6) (0.047 5)

21 Paper and paper products −0.5528 4.0459* 0.0067 12 0.5360
(0.877 7) (1.824 9) (0.082 3)

22 Publishing, printing and reproduction of recorded media 0.6047 1.4024 0.1534 18 0.1408
(0.826 3) (1.986 7) (0.151 1)

23 coke, refined petroleum products and nuclear fuel −0.6215 1.8061 0.0706* 18 0.3310
(0.586 7) (1.613 6) (0.028 4)

24 Chemical and chemical products −0.4498** 3.4953*** 0.0285 54 0.6247
(0.174 5) (0.457 7) (0.018 2)

25 Rubber and plastic products −0.5963 3.9078*** −0.0211 17 0.8294
(0.352 0) (0.664 5) (0.030 5)

26 Other non-metallic mineral products −0.3627 2.9418*** −0.0200 47 0.1906
(0.444 8) (0.717 4) (0.038 9)

27 Basic metals −0.6460 3.6810*** 0.0795 24 0.5456
(0.349 7) (0.843 6) (0.145 8)

28 Fabricated metal products −0.4619 3.9784*** −0.0219 30 0.5330
(0.517 3) (0.725 6) (0.032 6)

29 Machinery and equipment −1.4630 3.9738*** 0.0144 88 0.4195
(0.891 3) (0.657 5) (0.043 0)

30 Office, accounting and computing machinery −0.0533 5.2227* 0.8330** 6 0.9224
(0.326 0) (2.137 7) (0.305 0)

31 Electrical machinery and apparatus n.e.c. −0.7022*** 4.6842*** −0.0109 36 0.7877
(0.195 2) (0.342 8) (0.025 1)

32 Radio, tv and communication equipment and apparatus −0.3681** 3.8336*** 0.2773*** 18 0.9029
(0.130 5) (0.993 6) (0.083 4)

33 Medical, precision and optical instruments, watches and clocks −0.2136 1.3197 0.4252* 30 0.4150
(0.340 6) (2.257 7) (0.212 9)

34 Motor vehicles, trailers and semi-trailers 0.1333 5.8306*** 0.0386 18 0.6362
(0.400 4) (1.250 0) (0.038 8)

35 Other transport equipment 0.1404 10.0552*** 0.2117 32 0.1666
(1.900 9) (3.034 3) (0.357 9)

36 Furniture and others −0.1843 3.4836*** −0.0068 36 0.6323
(0.226 0) (0.486 4) (0.029 4)

OLS regression without constant. ∆EXPORTjt 4-digit sectoral exports growth; ∆URLCjt 4-digit sectoral relative
unit labour costs growth; ∆WorldIncomet world income growth; ∆Patentjt growth of the percentage share of
Chinese patents in the foreign patent granted by the USPTO. 2-digit sectoral dummies are included in the “all
manufacturing” estimation. Robust standard errors are in parenthesis. *** p < 0.01, ** p < 0.05, * p < 0.10.

identify the level of competition, where replicator dynamics operates. At least as important, this regression

framework also allows to control both for unobserved heterogeneity and for endogeneity of all our main

regressors through a “system GMM” estimation (Blundell and Bond, 1998).26

6.2.2. Step 1: employment dynamics

In the first step let us simply account for firm-level employment dynamics (∆ni,t) as the joint outcome of

productivity growth (∆πi,t) and sales growth (∆gi,t). Employment growth rates varies path-dependently

with contemporaneous and past productivity and sales dynamics which reads:

26The dynamic panel estimations were estimated using the Stata command xtabond2, written by David Roodman (Roodman,
2009). Blundell and Bond (1998) have experimented via Monte Carlo studies that this estimator is preferable to GMM
difference estimator.
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Figure 4: Employment growth model: system GMM results of Equation (10).
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Distributions of the estimated coefficients and the long-run effects of labour productivity growth and sales growth,
across 284 4-digit sectors. The shaded-violins denote the long-run effects. Only 4-digit sectors with a number of
firms greater than 160.

∆ni,t =
K∑
k=1

ηk∆ni,t−k +
L∑
l=0

αl∆πi,t−l +
L∑
l=0

βl∆gi,t−l + ρCONTROLi,t−1 + εi,t (10)

where control variables involve (lagged) firm size (in terms of employment) and age.27 The long-run

coefficients are calculated from the short-run ones according to formula

xlong−run =

∑L
l=0Xl

1−
∑K

k=1 ηk
(11)

where x ∈ α, β.

In order to decide how many lags in the dependent variable to be included into the model, we test the

autoregressive structure for employment growth for each 4-digit sector. Lags of employment growth of an

order higher than two are not significant.28 Hence, we choose K = 2 and L = 2 after some experiments.

We use system GMM to estimate Equation (10) for each 4-digit sector.29

Figure 4 shows the distributions of system GMM estimates and the corresponding long-run effects over

4-digit sectors. Table 9 shows the median of the distributions of coefficient estimates. As a robustness check,

27Here we do not control for year dummies, because we focus on the absolute employment growth, productivity growth and
sales growth. But we also test the model including year dummies as a robustness check. The results are very similar.

28The empirical evidences, in the literature, of the autocorrelation structure of growth rates are mixed: Coad and Hölzl
(2009) shows negative autocorrelation to the order 2 in terms of employment growth, which is very similar to the finding here.

29The algorithm for choosing instruments is as follows. First, we treat lagged employment growth, productivity growth and
sales growth as endogenous variables. Their instruments are set from lag 2 to lag 5. We check the p values of AR(2) test and
Hansen test after running the system GMM. Second, if either of the two tests are rejected (AR(2) p < 0.1 or Hansen p <
0.45), we adopt further lags as instruments: lag 3∼lag 6 for lag employment growth, lag 2∼lag 5 for other variables. Then,
we check again the p values of AR(3) and Hansen tests. Third, if either of these two tests are rejected at the second step, we
instrument all independent variables using lag3∼lag6.
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Table 9: Summary statistics (median) of the distributions in Figure 4.

t t− 1 t− 2 Long-run

productivity growth -0.181*** -0.079*** -0.031*** -0.217 ***
sales growth 0.323*** 0.161*** 0.067*** 0.407 ***

Median of the distribution of estimates based on the baseline model. Wilcoxon signed-rank test for zero median.
Significant at *** p < 0.01, ** p < 0.05, * p < 0.10.

we estimate the same model including year dummies. The results are very similar.30 Contemporaneous

and lagged productivity growth display a remarkable labour-displacing effect. Conversely, contemporaneous

and lagged sales growth show significant contributions to employment growth.

6.2.3. Step 2: replicator dynamics

Firm’s sales can be obviously written as the product of the overall market size Mt and firm’s market

share Si,t. Firm’s sales growth is the log difference of sales of two consecutive years ∆gi,t = ln(Si,tMt) −
ln(Si,t−1Mt−1). Hence, ∆gi,t = ∆si,t + ∆mt. The growth rate of sales of firm i at time t is clearly the

sum of the growth rates of its market share and the growth rate of the overall market size. Here, we

measure market size at 4-digit sectoral level. In turn the dynamics of a firm’s market share (∆si,t) can be

interpreted using a replicator type process as driven by the firm’s relative competitiveness. Therefore,

∆gi,t =
K∑
k=1

ηk∆gi,t−k +
L∑
l=0

αlX̃i,t−l + γ∆mt + ρCONTROLi,t−1 + εi,t (12)

where ∆gi,t absolute sales growth of firm i at time t, X̃i,t is relative competitiveness which shall be defined

below, ∆mt is the growth of market size. We control for firm’s (lagged) size and age.31

In order to decide how many lags of dependent variable to be included into the model, we test the

autoregressive structure for sales growth for each 4-digit sector. Lags on sales growth of an order higher

than two are not significant.32

We use two measures to proxy firm’s relative competitiveness: relative productivity level (i.e. a broader

proxy for firm’s technological and organizational advantages) and relative productivity growth rate (i.e.

process innovation).

First, let’s estimate Equation (12) using relative productivity level as a proxy for relative competitive-

ness.33 Here, we choose K = 2 and L = 1 after some experiments. We use system GMM for each 4-digit

30The same applies in all estimations in this section. Distributions of GMM estimates are available upon request.
31Here, in our baseline estimation, we do not control for year dummies, because we include the growth of market size of

4-digit sector which is perfectly collinear with year dummies. However, in the robustness check, the estimates of the models
with year dummies are very similar to our baseline model.

32Notice that, a comparison of the estimation methods for the autoregressive structure of sales growth is available upon
request.

33In line with Bottazzi et al. (2010) and Dosi et al. (2015).
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Figure 5: Sales growth model: system GMM results of Equation (12) - productivity.
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Distributions of the estimated coefficients and the long-run effects of (relative) labour productivity level and sectoral
sales growth, across 284 4-digit sectors. The shaded-violins denote the long-run effects. Only 4-digit sectors with a
number of firms greater than 160.

Table 10: Summary statistics (median) of the distributions in Figure 5.

t t− 1 Long-run

relative productivity level 0.196*** -0.057*** 0.117***
sectoral sales growth 0.125***

Median of the distribution of estimates based on the baseline model. Wilcoxon signed-rank test for zero median.
Significant at *** p < 0.01, ** p < 0.05, * p < 0.10.

sector. Figure 5 shows the distribution of the estimates. Table 10 shows the median of the distribution of

coefficient estimates for the baseline model. The contemporaneous productivity level displays significant

positive effect on sales growth, however, the lagged one shows some negative effect (indeed as in Bottazzi

et al., 2010 and Dosi et al., 2015). The long-run effect of relative productivity level on sales growth is

positive and significant. The growth rate of the overall market reveals a mild positive effect on firm’s sales

growth.

Second, we use relative productivity growth as a proxy for relative competitiveness. Here, we choose

K = 2 and L = 2 after some experiments, and, again, system GMM to estimate Equation (12) for each

4-digit sector. Figure 6 shows the distribution of estimates across 284 4-digit sectors, and Table 11 the

median of the distributions. The positive effect of relative productivity growth on sales growth - in tune

with previous studies - is very significant both in the short-run and in the long-run. The effect of overall

market size growth on firm-level sales growth seems significant.
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Figure 6: Sales growth model: system GMM results of Equation (12) - productivity growth.
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Distributions of the estimated coefficients of (relative) labour productivity growth (left) and sectoral sales growth
(right), across 284 4-digit sectors. The shaded-violins denote the long-run effects. Only 4-digit sectors with a number
of firms greater than 160.

Table 11: Summary statistics (median) of the distributions in Figure 6.

t t− 1 t− 2 Long-run

relative productivity growth 0.186*** 0.078*** 0.031*** 0.255***
sectoral sales growth 0.109***

Median of the distribution of estimates based on the baseline model. Wilcoxon signed-rank test for zero median.
Significant at *** p < 0.01, ** p < 0.05, * p < 0.10.

6.2.4. Step 3: integrate replicator dynamics into employment dynamics model

Finally, we plug the model of step 2 into step 1 and add other variables (product innovation and invest-

ment intensity) to estimate directly the effect of firm’s relative competitiveness, product innovation and

investment intensity on employment growth

∆ni,t =

K∑
k=1

ηk∆ni,t−k +

L∑
l=0

αlX̃i,t−l +

L∑
l=0

γlNEWPRODi,t−l +

L∑
l=0

θlIi,t−l

+ γ∆mt + ζ∆Πt−1 + ρCONTROLi,t−1 + dt + εi,t (13)

where X̃i,t is relative competitiveness, either in terms of relative productivity level or relative productiv-

ity growth. We also include sectoral productivity growth ∆Πt−1 and sectoral sales growth ∆mt to control

for sector-wide dynamics in process technology and market size.
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First, let us consider relative productivity levels as proxy for competitiveness (see Figure 7 and Ta-

ble 12). Firm’s relative productivity levels display significant contemporaneous negative effect on employ-

ment growth. However, the lagged and long-run effects are significantly positive. Product innovation does

not show significant effect on employment growth (but recall the caveats above). Investment intensity

seems display a significant positive effect on employment growth. Sectoral sales growth shows a mild

positive effect on employment growth while sectoral productivity growth does not display any role.

Figure 7: Employment growth model: system GMM results of Equation (13) - productivity level.
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Distributions of the estimated coefficients and the long-run effects of (relative) labour productivity level (top left),
new product ratio (top right), investment intensity (bottom left), sectoral sales growth and productivity growth
(bottom right), across 177 4-digit sectors. The shaded-violins denote the long-run effects. Only 4-digit sectors with
a number of firms greater than 160.

Second, let us use relative productivity growth as proxy for competitiveness (results see Figure 8 and

Table 13). Such a variable has a negative and significant effect on employment growth both in the short-run

and in the long-run. Product innovation displays a very mild positive effect in the short-run. Investment

intensity has a significant positive effect on employment growth. Sectoral sales growth display a very mild

positive effect on employment growth while sectoral productivity growth does not show any effect at all.

According to our matching results between our firm-level dataset and firm’s patenting activities in the

USPTO, 99% of Chinese patents granted in the USPTO is from the manufacturing of communication
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Table 12: Summary statistics (median) of the distribution in Figure 7.

t t− 1 t− 2 Long-run

relative productivity level -0.070*** 0.089*** 0.027*** 0.041***
new product 0.044** -0.012 -0.007 0.024*
investment intensity 0.023*** 0.004** 0.008*** 0.029***
sectoral sales growth 0.025***
sectoral productivity growth 0.007

Median of the distribution of estimates based on baseline model. Wilcoxon signed-rank test for zero median. Signif-
icant at *** p < 0.01, ** p < 0.05, * p < 0.10.

Figure 8: Employment growth: system GMM results of Equation (13) - productivity growth.
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Distributions of the estimated coefficients and the long-run effects of (relative) labour productivity growth (top left),
new product ratio (top right), investment intensity (bottom left), sectoral sales growth and productivity growth
(bottom right), across 177 4-digit sectors. The shaded-violins denote the long-run effects. Only 4-digit sectors with
a number of firms greater than 160.

equipments computers etc. (CIC 40) during the period 1998-2007. We further investigate the effect of

patenting activities on firm’s employment growth for each 4-digit sector within the broad CIC 40 sector.
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Table 13: Summary statistics (median) of the distribution in Figure 8.

t t− 1 t− 2 Long-run

relative productivity growth -0.100*** -0.020*** -0.007*** -0.095***
new product 0.089*** -0.005 0.007 0.043***
investment intensity 0.022*** 0.002 0.007*** 0.024***
sectoral sales growth 0.034***
sectoral productivity growth 0.004

Median of the distribution of estimates based on the baseline model. Wilcoxon signed-rank test for zero median.
Significant at *** p < 0.01, ** p < 0.05, * p < 0.10.

(There are 16 4-digit sectors in CIC 40.) We create a time invariant dummy variable distinguishing

patenting firms from the others, which equals to one if a firm has been granted a patent for at least one year.

We re-estimate Equation (13) including also the patenting dummies. The patenting one displays significant

positive effect on firm’s employment growth only in two 4-digit sectors, which are the manufacturing of

communication exchange equipment (CIC 4012) and semiconductor discrete devices (CIC 4052).34

6.2.5. Verdoorn-Kaldor Law: increasing returns from increasing absolute competitiveness

We have shown a very significant contribution of sales growth to firm-level employment growth for narrowly

defined sectors. Here, let us consider the reverse relation and estimate the Verdoorn-Kaldor coefficients,

that is the effect of sales growth on productivity growth due to increasing returns:

∆πi,t =
K∑
k=1

ηk∆πi,t−k +
L∑
l=0

βl∆gi,t−L + ρCONTROLi,t−1 + εi,t (14)

where control variables involve (lagged) firm size (in terms of employment) and age.35 Here, we take K = 3

and L = 3. Three lags of productivity growth are included in the model to obtain consistent estimates,

while the controlled lagged dependent variables display significant negative effects. Sales growth contributes

significantly to productivity growth both in the short and long run (the distribution of coefficient estimates

are shown in Figure 9 and the median values are shown in Table 14). To summarize, the result shows very

significant increasing returns just mitigated by some regression-to-the-mean.

7. Conclusions

This paper contributes to the analysis of employment dynamics both at the sectoral level and at the

firm-level for Chinese manufacturing during the period of a striking economic boom.

34Results are available upon request.
35We do not include year dummies in order to address the association between absolute growth of sales and absolute growth

of productivity. As a robustness check, the estimates for models with year dummies are shown at the bottom panel of Table 14.
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Figure 9: Dynamic Verdoorn-Kaldor Law: system GMM results of Equation (14).
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Distributions of the coefficients and the long-run effects of growth rates of sales across 193 4-digit sectors. The
shaded-violins denote the distribution of long-run effects. Only 4-digit sectors with a number of firms greater than
160.

Table 14: Summary statistics (median) of the distribution in Figure 9.

t t− 1 t− 2 t− 3 Long-run

sales growth 0.677*** 0.261*** 0.103*** 0.056*** 0.599***

Median of the distribution of estimates based on the baseline model. Wilcoxon signed-rank test for zero median.
Significant at *** p < 0.01, ** p < 0.05, * p < 0.10.

First, employment dynamics at the sectoral level is the joint outcome of the dynamics of labour produc-

tivity growth, which we take as a broad measure of technological progress on the one hand, and absolute

competitiveness in the international markets, proxied by exports growth, on the other. The results reveal

both a powerful labour-displacement effect of productivity growth and a significant positive contribution of

sales and export growth to employment. Together, Chinese sectoral absolute competitiveness is primarily

associated with specialization profile characterized by high elasticities to world income growth. In turn

such specialization patterns have been shaped by long-term industrial policies (Dahlman, 2009) and are

rooted in profound processes of catching-up, imitation, ‘creative adaptation’ and organizational innovation

(more in Yu et al., 2015 and Yu et al., 2017.)

Second, we considered employment dynamics at the firm level as jointly affected by (relative) produc-

tivity level/growth, product innovation, investment intensities, as well as sectoral sales and productivity

dynamics. We found that relative productivity levels (i.e. a higher relative competitiveness of the firms)

contributes to employment growth in the long-run, while process innovation (proxied by productivity

growth) displays significant labour-displacement effect.36 Firm’s investment positively contributes to em-

36Recall our quite expansive notion of “process innovation” which implicitly captures also various forms of technological
and organizational catching-up and changes in management and organizational routines.
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ployment growth. Moreover, firm’s sales growth plays a two-sided role: while it contributes directly to

employment growth, it also drives productivity growth (through increasing returns) thus moderating its

labour-creating effect.

Third, the insignificant role of innovativeness (proxied by product innovation and patenting activities)

suggests that in the period covered by our data China had not yet reached the technological frontier in

most sectors. It is a condition, we conjecture, which has been rapidly changing thereafter.
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A. Table Appendix

Table A.1: Summary statistics (total) of the Chinese manufacturing firm-level dataset.

Year
Number of

Firms
Value Added Sales Output Employment Sales Value Export (%) Original value of

fixed assets

1998 148 661 1.52 5.48 5.94 50.72 5.72 18.34 4.48
1999 146 075 1.68 5.96 6.37 47.36 6.17 18.14 4.85
2000 147 246 1.96 7.14 7.48 45.83 7.29 19.43 5.17
2001 155 659 2.22 7.99 8.40 44.95 8.18 19.38 5.54
2002 165 793 2.62 9.37 9.79 45.87 9.58 20.51 5.95
2003 181 001 3.40 12.38 12.72 48.71 12.44 21.30 6.59
2004 258 869 4.80 17.14 17.74 56.52 NA NA 7.82
2005 250 952 5.71 21.34 21.74 59.21 21.29 22.11 9.02
2006 278 644 7.23 26.99 27.40 63.32 26.85 22.29 10.54
2007 312 284 9.37 34.70 35.27 68.38 34.56 21.08 12.35

Source: our original firm-level dataset (only after adjustment of sectors changes between 2002/03). Note: all values
are denoted in trillion RMB and employment in millions of workers. All manufacturing firms are included. Exports
is the percentage of export in total sales value. Output and value added in year 2004 are not available. We proxy
output as the sum of sales and the difference of inventories between year-end and year-beginning.

Table A.2: Summary statistics (mean) of the Chinese manufacturing 4-digit sectoral-level dataset.

Year

Number
of

4-digit
Sectors

Employment Sales

Labour
Produc-
tivity

Exports
Wage per
Employee

Employment
Growth

Sales
Growth

Labour Pro-
ductivity
Growth

Exports
Growth

Growth of
(nominal)
wage per
employee

1998 424 96711 11 36 2 7 NA NA NA NA NA
1999 423 103649 13 40 3 8 0.067 0.186 0.120 0.095 0.060
2000 424 100313 16 47 3 9 -0.030 0.125 0.141 0.247 0.126
2001 423 100470 18 53 4 10 0.010 0.136 0.126 0.114 0.086
2002 424 102602 21 61 5 11 0.043 0.178 0.141 0.152 0.077
2003 424 108984 28 71 6 12 0.075 0.242 0.153 0.287 0.098
2004 424 117450 37 89 NA 13 0.064 0.202 0.200 NA 0.139
2005 424 135751 49 93 11 15 0.160 0.303 0.089 NA 0.144
2006 424 145965 62 108 14 18 0.081 0.239 0.158 0.218 0.141
2007 424 143572 75 129 16 21 -0.025 0.158 0.178 0.059 0.189

Source: the cleaned firm-level dataset. Note: values of sales and exports are denoted in billion RMB; labour
productivity and wage per employee are denoted in 1000 RMB. Labour productivity is in 1998 constant price.
Growth rates re calculated as log differences of real value.
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B. The procedure for constructing firm-level and sectoral proxies for

innovativeness

In order to identify whether the firms in the NBS database hold patents in the USPTO or not during 1998-2007

(according to the application filing dates), we match several databases as follows. 1) The PATSTAT (version 2014a)

has been matched with Orbis to sort out patents filed in the USPTO by Chinese firms during 1998-2007. The firms

are identified by the BvD ID. We have identified 2828 patents (exclude design patents) in the USPTO which are

filed by Chinese firms. 2) We get the BvD ID and NBS ID matches from the Oriana database (version 2017 January,

BvD Asian-pacific regions). 3) We match NBS firm-level database with PATSTAT through the NBS ID and BvD ID.

Finally, as shown in Table B.3, we get the the annual number of patents filed by NBS Chinese firms in the USPTO.

We successfully matched 2496 patents with NBS firms (matching rate 88%), among which 2464 patents (99%) are

filed by firms in the telecommunication equipments and computers manufacturing (CIC 40).37 Therefore, we only

include patent dummy as an additional explanatory variable in the firm-level employment growth model for each

4-digit sectors in telecommunication manufacturing (CIC 40).

Table B.3: Number of patents in the USPTO filed by Chinese firms. Note: Years refer to the application filing year.
Exclude design patents.

Year
Number of Patents in

PATSTAT
Number of Matched Patents

between PATSTAT and NBS firms

1998 3 0
1999 0 0
2000 0 0
2001 21 8
2002 36 25
2003 104 92
2004 290 270
2005 481 412
2006 870 779
2007 1023 910

Total 2828 [96 firms] 2496 [52 firms]

To estimate the effect of innovativeness at sectoral level, we merge our 4-digit aggregated Chinese manufacturing

dataset with the patent dataset (source: PATSTAT version 2014a, USPTO patents only) based on the procedures:

1) convert 4-digit Chinese Industry Classification into 4-digit ISIC (Rev3) codes; 2) match the 4-digit patent IPC

code with the 4-digit ISIC (Rev3) code using the Lybbert and Zolas (2014) method (we use the probability weight)

and count the number of Chinese, non-US and world patents in each 4-digit ISIC sector respectively; 3) merge the

above two datasets by the unique ISIC code.

37Among the others, 12 patents are from medicines (CIC 27); 9 are from electrical machinery (CIC 39); 9 are from measuring
instruments (CIC 41); 1 is from printing, reproduction and recording media (CIC 23); 1 is from special purpose machinery
(CIC 36).
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