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ABSTRACT   

The dense deployment of the small base station (BS) in fifth-generation commination system can satisfy the user demand 

on high data rate transmission. On the other hand, such a scenario also increases the complexity of mobility management. 

In this paper, we developed a Q-learning framework exploiting user radio condition, that is, reference signal receiving 

power (RSRP), signal to inference and noise ratio (SINR) and transmission distance to learn the optimal policy for 

handover triggering. The objective of the proposed approach is to increase the mobility robustness of user in ultra-dense 

networks (UDNs) by minimizing redundant handover and handover failure ratio. Simulation results show that our proposed 

triggering mechanism efficiency suppresses ping-pong handover effect while maintaining handover failure at an acceptable 

level. Besides, the proposed triggering mechanism can trigger the handover process directly without HOM and TTT. The 

respond speed of triggering mechanism can thus be increased. 

Keywords: handover, reinforcement learning, ultra-dense networks 

 

1. INTRODUCTION  

The ultra-dense networks (UDNs) consisting of massive small base stations (BSs) is a promising approach to cope with 

the demand of mobile user for higher data transmission rate and broader bandwidth. On the other hand, the dense 

deployment of smalls BSs could increase the complexity of cellular networks and lead serious of new challenges. Handover 

management is one of the challenges, which has become one of the main barriers to overall network performance. During 

the movement of user equipment (UE), the UE needs to perform the handover process to enable seamless data connection. 

According to the third-generation partnership project (3GPP), the A3 event is defined as the triggering mechanism for UE 

handover in fourth (4G) [1] and fifth-generation communication system (5G) [2]. 

The triggering decision from the A3 event only relies on a single criterion known as reference signal received power 

(RSRP). As shown in Fig.1, the UE compares RSRP values between its serving and neighbouring BSs. The handover is 

triggered if UE’s RSRP from neighbouring BS is higher than servicing BS and remain a specific pre-defined condition, 

that is, handover margin (HOM) and time to trigger (TTT). The HOM and TTT are used in A3 event to avoid unnecessary 

and frequent handover that incurred by noise and interference. However, the A3 event is initially developed for handover 

in macro BS.  Since small BS with less coverage area and stronger inter-cell interference, simply apply A3 event in small 

BS could result in handover frequent occur between two BSs that is known as ping-pong effect. Moreover, with the 

increasing deployment of small BSs, the workload for configuration and optimization of HOM and TTT for BSs is also 

dramatically increased[3]. 

To address the challenges for handover in UDNs, many works try to adjust HOM and TTT dynamically based on different 

approaches. The work in [4] proposed a threshold comparison based approach to auto tune HOM and TTT on the basis of 

user speed and reference signal receiving power (RSRP). The proposed scheme can effectively increase mobility 

robustness of user in UDNs by minimizing frequent handover and handover failure ratio. Meanwhile, the authors in [5] 

also introduced a threshold comparison based approach to optimize HOM and TTT with the objective of mobility load 

balancing. Simulation results in [5] show that the proposed algorithm can provide a more balanced load among networks 

by considering network load status and load estimation.  
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Figure 1  A3 event with HOM and TTT 

On the other hand, since machine learning has robust learning and reasoning ability to enable an algorithm with the adaptive 

feature in many fields [6]–[9]. Some researches has also incorporated fuzzy logic or reinforcement learning to optimize 

handover parameter such as [10]–[15]. In [10], a fuzzy logic based adaptive handover optimization method was proposed.  

The user velocity, RSRP and reference signal receiving quality (RSRQ) are adopted as input for fuzzy logic to adjust HOM 

dynamically. The simulation results in [10] indicated that this fuzzy logic based solution could almost eliminate ping-pong 

handover and reduce unnecessary handover by comparing with the state of art algorithms. Some research has also 

incorporated reinforcement learning to optimize handover parameter such as [11]–[15]. The authors in [11], [12] developed 

a handover optimization algorithm based on Q-learning frameworks. The speed of UE is utilized as a state vector, and 

system key performance indicators (KPIs) such as throughput, latency and number of handovers are adopted to formulate 

reward function. Paper [13], [14] integrated both advantages of fuzzy logic and Q-learning into handover optimization. 

The handover ratio, call drop ration, and HOM are used as state vector in Q-learning to learn the fuzzy rules for fuzzy 

interference system. The fuzzy inference system is then considered handover ratio, call drop ratio and HOM as input to 

update HOM for each BS. The work in [15] proposed a reinforcement learning based handover policy to select optimal BS 

as a handover target for different UE density circumstances. The works in [11]–[15] shown that reinforcement learning 

could learn the characteristic from a different environment and obtain an optimal optimization policy for handover. The 

simulation results show that the proposed algorithm can minimize the number of handovers, ping-ping effect and call drop 

rate while improving system throughput. 

Since the coverage of small BS is much lower than the macro BS, the residence time of users in a small cell is relatively 

short. The handover procedure system also needs to complete in a short moment. Under the policy of A3 event with HOM 

and TTT, the handover process is only executed after these two pre-defined conditions. The existence of HOM and TTT 

reduces the response speed of the algorithm and hence can easily lead to handover failure. In this paper, we aim to develop 

a handover triggering mechanism with the adaptive feature that can trigger the handover process directly without HOM 

and TTT. The proposed algorithm should be able to increase mobility robustness of user by minimizing the number of 

handover and ping-pong effect while retaining the handover failure rate at a low level. To achieve these objectives, the 

reinforcement learning framework is adopted to learn the optimal handover triggering policy from a different environment. 

The trained policy from reinforcement learning is used to select the most suitable triggering point for UE. The performance 

of the proposed algorithm is evaluated and compared with the current A3 event and other algorithms. 

The remainder of this paper is organized as follows. Section 2 introduces the framework of Q-learning and formulation of 

the algorithm. Simulation environment and evaluation results are shown in Section 3. Finally, the paper is concluded in 

Section 4. 
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2. PROPOSED METHOD 

In the proposed environment, there are three parameters, that is, RSRP, SINR, and transmission distance used to form the 

states vector for the reinforcement learning framework and determine the triggering point of handover.  

 

Figure 2 the framework of Q-learning based handover 

One of reinforcement learning algorithm - Q-learning is adopted in this work. The core idea of Q-Learning is to acquire 

information from the environment and obtains feedback (reward) to improve the policy. The basic structure of Q-learning 

is shown at Fig.1. There are four elements in the Q-learning, including states, actions, a policy, and value functions. A 

policy, 𝜋 , is a set of rules of performing an action for an agent in each state. The value of performing action 𝑎  in 

state 𝑠 under the policy 𝜋 is denoted by 𝑄𝜋(𝑠, 𝑎), which is also called action-value function or Q-value. The main objective 

of Q-learning is to lean optimal policy from the environment that can select the action with the highest value in each state 

to receive a maximum accumulated reward [16].  

Due to the Q-learning only can store limited state-action pair, the state in this paper is defined by the combination of three 

indexed based on the level of UE’s RSRP, SINR and transmission distance. The value of the input parameter will be 

normalized between 0 to 1 by Eqs 1 and 2. 

 

     𝑍𝑖 =
[𝑥𝑖−𝑚𝑖𝑛{𝑥𝑖}]

[𝑚𝑎𝑥{𝑥𝑖}−𝑚𝑖𝑛{𝑥𝑖}]
      (1) 

     𝑍𝑖 =
[𝑚𝑎𝑥{𝑥𝑖}−𝑥𝑖]

[𝑚𝑎𝑥{𝑥𝑖}−𝑚𝑖𝑛{𝑥𝑖}]
      (2) 

 

where, 𝑥𝑖 is the value of the parameter in the data set. Eq.1 is for benefit parameter (higher is better), and Eq.2 is for cost 

parameter (lower is better). The RSRP and SINR are the benefit parameter, and transmission criteria is a cost parameter.  

Each parameter is divided into four levels with 0.25 as the interval and arranged in ascending order with 1-4 as the index. 

For example, if normalized RSRP, SINR and transmission distance equal to 0.2,0.7 and 0.3 receptivity, then the state will 

be represented by [1 3 2]. Moreover, the index in this state will be used to formulate reward value. For example, for the 

state [1 3 2], the reward value is the sum of index equal to 6. For each state, there are two actions “handover (HO)” or 

“maintain the current connection (NHO)” can be selected. If policy chooses action “handover” to perform at time step t, 
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the UE’s connection will be transferred to a BS with highest SINR at the time step t+1. Otherwise, UE will maintain its 

connection with its current serving BS at time step t+1. 

After define state, action and reward, the Q-value for each state-action pair is updated as, 

 

   𝑄𝑡+1(𝑠𝑡 ,  𝑎𝑡) = 𝑄𝑡(𝑠𝑡 ,  𝑎𝑡) + 𝛼 × {𝑟 + 𝜆 × Q (𝑠𝑡+1,  𝑎𝑡+1) − 𝑄𝑡(𝑠𝑡 ,  𝑎𝑡)}   (3) 

 

where 𝛼 is learning rate, 𝜆 is a discount factor, and 𝑟 is the reward that received after 𝑎𝑡 perform at 𝑠𝑡. 

Where, the 𝜖 greedy policy is utilized in Q-learning to trade-off between exploration and exploitation to obtain the best 

strategy. In this project, the value 𝜖 is reduced from 1 to 0.1 from the beginning of each episode, which means that the Q-

learning will pay more attention to exploration in the beginning. The learning stage of Q-learning is demonstrated in Table 

1. 

Table 1 Learning stage of Q-learning 

Input: the data sets of RSRP, SINR and transmission distance 

Output: Q table 

1: Convert the input parameters to state 

2: Initialize ∀ 𝑠 ∈ S, 𝑎 ∈ A, Q (𝑠, 𝑎) =0 

3: A = [HO, NHO] 

4: Initialize number_of_points_measured m 

5: episodes=0  

6: loop for n episodes (epochs) // Start learning 

7: 𝑠=0 

8: time_in_episode=0 

9:       loop for m time steps (points) 

10: Generate a random number 𝛿 (0 ≤𝛿 ≤ 1) at the time step t 

11:    if 𝛿 > 𝜖 then (𝜖-greedy policy) 

12:          Select an action randomly 

13:      else 

14:      Select the action with the maximum q-value 

15:      end if //choose action  

16:           Move to new time step t+1 and update Q-value Eq.3 

17:           Determine the action at the next state //choose_action 

18:           Update the Q table (Q (𝑠, 𝑎) and q-values) //update 

19:           time step+=1 

20:     end  

21:     episodes+=1 

22: end 

 

After the learning stage of Q-leaning, a table known as Q-table that store the Q-value for each state-action pair can be 

obtained. The trained Q-table is used to trigger the handover process for UE.  

The measured RSRP, SINR and transmission distance will first be converted to state vector to find the corresponding state 

at Q-table. The UE will then select an action with the highest Q-value to perform. If action“handover” is selected, then 

a handover request will be sent by UE to its serving BS. The connection of UE will thus subsequently be transferred to 

target BS. If action “maintain the current connection” is chosen, then UE will keep a connection with its serving BS. 
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3. SIMULATION SETUPS AND RESULTS 

3.1 Evaluation environment 

A communication environment with the dense deployment of 16 small BSs is developed to evaluate the performance of 

the proposed handover algorithm. There are 16 small BSs are evenly placed in a square area with a side length of 1200 

meters. There are 40 UEs randomly moving at a constant speed of 30 km/h. Three KPIs that is, the number of handovers, 

ping-pong handover ratio and handover failure ratio is adopted in this paper. The A3 event –RSRP based and fuzzy logic 

based handover algorithm are used as the competitive algorithms. Where, the A3 event only relies on RSRP to trigger the 

handover process, and fuzzy logic uses RSRP, SINR and transmission distance as inputs. The other simulation setups are 

shown in Table 2. 

 

Table 2 Simulation Setup 

Parameters Specification 

Carrier frequency (GHz) 28 

Subcarrier spacing (KHz) 30 

System bandwidth (MHz) 100 

Physical resource block 275 

Number of BSs 16 

BS transmitted power (dBm) 35 

Subcarriers per PRB 12 

Duration of simulation 10000 s 

Mobility model Random direction 

Number of UE 40 

UE speed (km/h) 30  

Type of noise AWGN, Rayleigh 

HOM 5dB 

TTT 50ms 

 

3.2 Simulation results 

The first KPI in Fig.3 the number of handovers per UE during the entire simulation. The second KPI in Fig. 4 is the ping-

pong handover ratio, which is used to quantify the occurrence of unnecessary handovers. The ping-pong handover will be 

detected if UE repeatedly triggers handover between two base stations within 10s. The triggering mechanism should 

minimize the number of unnecessary handovers while maintaining high service quality for the user. According to the Fig.1 

and 2, the traditional RSRP based triggering mechanism has the highest number of handovers and ping-pong handover 

ratio. The A3 event –RSRP based only relies on a single metric, that is, RSRP in handover decision making. Due to the 

existence of noise and interference, RSRP always fluctuates, which will reduce the accuracy of handover decision and lead 

to many unnecessary handovers. 

Compared with RSRP based approach, the fuzzy logic based handover triggering mechanism has a lower number of 

handovers and ping-pong handover rate. The fuzzy logic can effectivity incorporate multiple inputs to estimate a suitable 

triggering point. The triggering decision made by fuzzy logic is under the restriction of several fuzzy rules, and it can 

reduce unnecessary handovers. However, the reliability of fuzzy logic is difficult to guarantee, because its fuzzy 

membership function and fuzzy rules in fuzzy logic need to be designed based on the practical experience. It is hard to 

establish optimal membership function and rule for different application scenario.  

The proposed Q-learning based handover triggering mechanism has the lowest number of handovers and ping-pong 

handover ratio. These results indicate that the Q-learning framework can effectivity learn the optimal handover policy 

based on the characteristic of the environment. The Q-learning framework could enable the proposed handover triggering 

mechanism with an adaptive feature to update its policy with the changes of environment. The adaptive feature allows the 

proposed method to select the best triggering point under noise and interference 
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Figure 3 Number of handovers under different approaches 

 

Figure 4 Ping-ping handover rate under different approaches 

The last KPIs in Fig.4 is the handover failure ratio and used to test the reliability of the handover triggering algorithm. The 

handover failure is detected when SINR of UE is lower than a certain threshold, which occurs when the handover process 

is triggered too early or too late.  

According to the Fig.4, the traditional RSRP based triggering mechanism has the lowest handover failure rate. The RSRP 

based is always select the BS with highest RSRP to connect. RSRP is the critical factor to affect SINR, and high SINR 

could ensure the link connection as well as the success of handover. Moreover, the HOM and TTT are set as 5dB and 50ms 

in this paper. Under these setups, the handover triggering condition can easily be satisfied.  

6



 

 
 

 

 

 

The fuzzy logic based triggering mechanism has the highest handover failure rate. Under the restriction of several fuzzy 

rules, the handover decision is easily triggered late by fuzzy logic, resulting in a higher handover failure rate. In this 

condition, the fuzzy rules need to be carefully designed to balance the number of handover and handover failure rate.  

The handover failure ratio of proposed Q-learning based triggering mechanism is around 1%, which is slightly lower than 

the RSRP- based approach. Due to Q-learning framework considers the multiple metrics as input, the weights of RSRP 

and SINR are weakened. Therefore, the handover failure of Q-leaning is slightly lower (0.5%) than the RSRP based 

approach, but it is still at a low level. 

 

Figure 5 Handover failure rate under different approaches 

4. CONCLUSION 

In order to minimize the redundant handover and increase the mobility robustness of UE in UDNs, this paper adopted Q-

learning framework to establish a triggering mechanism with the adaptive feature. The Q-learning framework can 

incorporate multiple parameters to learn the optimal handover triggering policy from the environment. Under the Q-

learning framework, the proposed algorithm could adaptively update its triggering policy with the changes of environment. 

Simulation results show that the proposed triggering mechanism can reduce approximately 90% redundant handover 

caused by noise and interference. The proposed approach outperforms the other two competitive algorithms in terms of 

the number of handovers and ping-ping handover. In addition, the proposed method can also retain the handover failure 

rate at a low level.   
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