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Abstract
We study the existence and uniqueness (i.e., order independence) of any arbitrary
form of iterated elimination procedures in an abstract environment. By allowing
for a transfinite elimination, we show a general existence of the iterated elimination
procedure. Inspired by the seminal work of Gilboa, Kalai and Zemel (1990), we iden-
tify a fairly weak suffi cient condition of Monotonicity* for the order independence
of iterated elimination procedure. Monotonicity* requires a monotonicity property
along any elimination path. Our approach is applicable to different forms of iterated
elimination procedures used in (in)finite games, for example, iterated elimination of
strictly dominated strategies, iterated elimination of weakly dominated strategies,
rationalizability, and so on. We introduce a notion of CD* games, which incorpo-
rates Jackson’s (1992) idea of “boundedness,” and show the iterated elimination
procedure is order independent in the class of CD* games. In finite games, we also
formulate and show an “outcome”order-independence result suitable for Marx and
Swinkels’s (1997) notion of nice weak dominance. JEL Classification: C70, D70.

Keywords: Iterated elimination procedures; order independence; Monotonicity*;
CD* games; “outcome”order independence

∗We are grateful to the Editor, an Associate Editor and an anonymous referee for very helpful comments
and suggestions. We thank Geir Asheim, Yi-Chun Chen, Amanda Friedenberg, Yossi Greenberg, Chiu Yu Ko,
Shravan Luckraz, Andrés Perea, Yongchuan Qiao, Yang Sun, Yeneng Sun, Satoru Takahashi, Chih-Chun Yang, and
seminar participants at National University of Singapore and BI Norwegian Business School for helpful comments
and discussions. This paper was presented at the 3rd Microeconomics Workshop at Nanjing Audit University,
China, 2016, and the 17th SAET Conference, Faro, Portugal, 2017. Financial supports from National University of
Singapore and University of Nottingham Ningbo China are gratefully acknowledged. The usual disclaimer applies.
†Corresponding author. Fax:+65 6775 2646. E-mail: ecslx@nus.edu.sg (X. Luo), Xuewen.Qian@nottingham.

edu.cn (X. Qian), Chen.Qu@nottingham.edu.cn (C. Qu).

1



1 Introduction
Defining solution concepts by using iterated elimination procedures is important and useful
in game theory and economics. Notably, iterated elimination of strictly dominated strategies
(IESDS), iterated elimination of weakly dominated strategies (IEWDS), iterated elimination
of never-best responses (IENBR)/rationalizability, and backward induction are extensively
studied in game theory. The iterated elimination procedures are profoundly related to the
assumption of “common knowledge of rationality”; cf., e.g., Tan and Werlang (1988), Bran-
denburger (2007), Brandenburger, Friedenberg and Keisler (2008), and Dekel and Siniscalchi
(2015).1

In this paper, we consider any form of iterated elimination procedures from a choice-
theoretic viewpoint: the choice rule alludes to the choice set of the desirable/undominated
elements at each stage of elimination.2 The elimination relation specifies a feasible reduction
from an arbitrary given set X, that is, a deletion of some of the undesirable elements outside
the choice set of X. Most of the research in the literature has been restricted to some specific
form of iterated elimination procedures in the subclass of finite or CC games (where strategy
sets are compact and payoff functions are continuous). In this paper, we consider all possible
finite and transfinite sequences of elimination in an abstract environment; for example, the
IESDS procedure can be viewed as an (in)finite sequence of elimination in an abstract choice
problem associated with the strict domination relation.
We study the existence of the iterated elimination procedure in any arbitrary abstract

environment. We show a general existence of the iterated elimination procedure possibly by
using a transfinite elimination (Theorem 1(a)). Except for the ZF axioms of set theory, our
proof of the existence requires neither the Axiom of Choice nor the Well-Ordering Principle.
Our existence theorem implies a well-defined iterative elimination procedure always exists
for any arbitrary game. Under a (strong) condition of Monotonicity, the iterated elimination
procedure is order independent and preserves all “fixed-points”(Theorem 1(b)).
Following Gilboa, Kalai and Zemel’s (1990) pioneering work, we take a general approach

to the uniqueness of final outcomes (i.e., order independence) of the iterated elimination
procedure; in particular, we seek weak suffi cient conditions for order independence that can
be used for various forms of iterated elimination procedures including finite and infinite
elimination procedures used in game theory. The major feature of this paper is that we
impose no restrictions on the structure of choice problems, for example, games possibly
with infinite strategy spaces and discontinuous payoff functions. In the literature on game
theory, most of the discussions on order independence focus on finite elimination sequences
(in finite games); see, for example, Gilboa, Kalai and Zemel (1990), Osborne and Rubinstein
(1994), Marx and Swinkels (1997), Apt (2004, 2011), Ambrus (2006, 2009), Tercieux (2006),

1Equilibrium solution concepts are based on circular fixed-point reasoning, but as stressed by Selten
(1998), humans have a tendency to avoid circular concepts. A natural way of problem solving is to use step-
by-step reasoning processes. In contrast to the fixed-point method, the alternative approach develops solution
concepts by using iterative procedures, for example, Dekel and Fudenberg’s (1990) iterative procedure,
Borgers’s (1993) iterated pure-strategy dominance, Gul’s (1996) τ -theories, Ambrus’s (2006) definition of
coalitional rationalizability, Cubitt and Sugden’s (2011) reasoning-based iterative procedure, Halpern and
Pass’s (2012) iterated regret-minimization procedure, and Hillas and Samet’s (2018) iterative elimination of
flaws of weakly dominated strategies. See also Moulin (1979, 1984), Cho (1994), Borgers (1992), and Watson
(1998) for fruitful applications in economics.

2Duggan and Le Breton (2014) modeled a player’s decision as a choice set and analyzed set-valued solution
concepts in finite games.
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Oyama and Tercieux (2009), Cubitt and Sugden (2011), Chen and Micali (2013), Asheim
and Perea (2017), Perea (2018), and Hillas and Samet (2018). Only a few of the research
papers, for example, Lipman (1994), Ritzberger (2002), Dufwenberg and Stegeman (2002),
Green (2011), Chen, Long and Luo (2007), and Chen, Luo and Qu (2016) deal with order
independence for infinite elimination sequences in infinite games, but with restrictions to
iterated strict dominance or rationalizability.3

In this paper, we identify a fairly weak condition of Monotonicity* for the order indepen-
dence of any kind of iterated elimination procedure on an arbitrary abstract choice problem
(Theorem 2). Roughly speaking, Monotonicity* requires that, along an elimination sequence,
no undesirable alternative (which is outside a choice set) be changed to a desirable alternative
after removing some of the undesirable alternatives —that is, choice sets never expand along
an elimination path. In finite games, for instance, the commonly used IESDS procedure is an
order-independent elimination procedure and satisfies Monotonicity* (because each strictly
dominated strategy in any finite game remains to be strictly dominated in a reduced game
after eliminating some of the strictly dominated strategies). However, IESDS might not be
order independent outside the class of finite games; in particular, Monotonicity* may fail
to be satisfied in the infinite case: a strictly dominated strategy in an infinite game can be
changed to a strictly undominated strategy after eliminating some of the strictly dominated
strategies.4 Our main result of Theorem 2 implies that, if Monotonicity* holds, iterated strict
dominance must be order independent in infinite games. Exploring suffi cient conditions for
order independence for any kind of finitely and transfinitely iterated elimination procedure
is the main focus of our paper.
We also provide an alternative characterization of Monotonicity* by Hereditarity* (The-

orem 3). In contrast to the Monotonicity* property on choice sets of desirable alternatives,
Hereditarity* is a dual property for complementary sets of undesirable alternatives —that is,
dominated elements under an abstract dominance relation—which is often easy to be used
in the context of games. In finite games, Apt (2011) offered a uniform proof of order in-
dependence for various strategy elimination procedures based on Newman’s (1942) Lemma
(see also Apt (2004)). Because Apt’s (2011) approach relies on a stronger suffi cient condi-
tion of “Hereditarity,”we can obtain his main result as a corollary of Theorem 2 (Corollary
1). In Appendix A, we demonstrate how to apply our analysis of this paper to a number
of iterated elimination procedures discussed in the literature, including IESDS, IEWDS, ra-
tionalizability, Borgers’s (1993) pure-strategy dominance, and Cubitt and Sugden’s (2011)
reasoning-based expected utility procedure.
Along the lines of Jackson’s (1992) idea of “boundedness,”which requires any eliminated

strategy to be justified by an undominated dominator, we introduce a novel and useful
definition of “closed under dominance* (CD*)”games to escape from the problem of order
dependence. In CD* games, we show the iterated elimination procedure is order independent;
under strict dominance, CD* games include all compact and own-uppersemicontinuous games
(Theorem 4). Moreover, Gilboa, Kalai and Zemel’s (1990) procedure is an order-independent
iterated elimination procedure (Corollary 2).

3See also Arieli (2012), Halpern and Pass (2012), Jara-Moroni (2012), Weinstein and Yildiz (2017), and
Yu (2014) for related discussions on (infinitely) iterative elimination procedures.

4For instance, consider a simple one-person game in which the strategy space is X = (0, 1) and the payoff
function is u(x) = x for every strategy x ∈ X. Obviously, every strategy is strictly dominated and the choice
set c (X) = ∅. The IESDS procedure is order dependent in this game, e.g., one can elaborately eliminate all
strategies except a particular strategy x0 ∈ X. Observe {x0} = c ({x0}) * c (X), violating Monotonicity*.
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We also extend our analysis to the order independence in terms of the final payoff-
profile outcomes. In particular, we formulate and show an “outcome”order-independence
result (Theorem 5) that is applicable to Marx and Swinkels’s (1997) notion of nice weak
dominance (Theorem 6). Our approach provides a general way to study the “outcome”order
independence.
The rest of the paper is organized as follows. In Section 2, we provide examples to

illustrate the main idea and results in this paper. In Section 3, we define the iterated elimi-
nation procedure on an abstract choice problem and establish its existence. We investigate
the uniqueness of the iterated elimination procedure and show the order-independence re-
sult under Monotonicity*. We provide an alternative characterization of Monotonicity* by
Hereditarity*. In Section 4, using Jackson’s (1992) idea of “boundedness,”we introduce the
notion of CD* games and show an order-independence result for CD* games. In Section
5, in the class of finite games, we formulate and show an “outcome” order-independence
result suitable for Marx and Swinkels’s (1997) nice weak dominance. Section 6 concludes. In
Appendix A, we collect a number of examples of iterated elimination procedures presented
in our analytical framework. To facilitate reading, all the proofs are relegated to Appendices
B1 and B2.

2 Illustrative Examples
In this section, we give examples to illustrate the main idea of the paper. For simplicity,
we restrict attention to iterated elimination of strictly dominated strategies (IESDS) and
iterated elimination of weakly dominated strategies (IEWDS). The first example shows how
the existence of IESDS in an infinite game can be restored by allowing for a transfinite
elimination.5

Example 1 (Cournot competition with outside wager): Consider a three-firm game
G =

(
N, {Si}i∈N , {ui}i∈N

)
, whereN = {1, 2, 3}, S1 = S2 = [0, 1], S3 = {α, β}, u1(s1, s2, s3) =

s1(1− s1 − s2), u2(s1, s2, s3) = s2(1− s1 − s2), and{
u3(s1, s2, α) > u3(s1, s2, β), if (s1, s2) = (1/3, 1/3)

u3(s1, s2, α) < u3(s1, s2, β), otherwise
.

5This example is taken from Dufwenberg and Stegeman (2002). Lipman (1994) first demonstrated that in
infinite games, there is a nonequivalence between countably infinite iterated elimination of never-best replies
and the strategic implication of “common knowledge of rationality.” Lipman (1994, Theorem 2) showed
the equivalence can be restored by “removing never best replies as often as necessary” —i.e., by allowing
for a transfinitely iterated elimination of never best replies. The requirement of transfinite eliminations is
related to the epistemic assumption of “common knowledge of rationality.” In the case of infinite states of
nature, transfinite hierarchies of beliefs/knowledge are generally needed to provide a complete description of
the uncertainty facing each agent; see, e.g., Lipman (1991), Fagin, Geanakoplos, Halpern and Vardi (1992),
and Heifetz and Samet (1998). An “iterative” formalism of “common knowledge” is more restrictive than
the alternative “fixed-point” definition of “common knowledge.”The “fixed-point” definition of “common
knowledge”can be equivalent to the “iterative”notion of “common knowledge”possibly by using transfinite
levels of mutual knowledge; see Heifetz (1996, 1999) and Fagin, Geanakoplos, Halpern and Vardi (1999) for
more discussions.
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Firms 1 and 2 are in Cournot competition, whereas 3 does not influence the firms’prof-
its but has an opportunity to wager on the Cournot outcome (1/3, 1/3). In this example,
no IESDS exists for the-first-infinite-ordinal rounds of elimination, because the limit of a
sequence of elimination goes to X∞ = {1/3} × {1/3} × {α, β} (where ∞ is the lowest
transfinite ordinal number), which needs to be further eliminated. However, by allowing
for a transfinite elimination, we obtain a well-defined IESDS that yields the Nash equilib-
rium outcome (1/3, 1/3, α). That is, a transfinite sequence {Xn}n≤∞+1 of elimination yields
X∞+1 = {1/3}×{1/3}×{α}. By allowing transfinite iterations, we establish a very general
existence for any form of iterated elimination procedures (Theorem 1(a)).

In this paper, we seek weak suffi cient conditions for the uniqueness (or order indepen-
dence) of the iterated elimination procedure. In finite games, it is well known that IESDS is
an order-independent elimination procedure, but IEWDS may not be order independent in
general. Observe that, contrary to weak dominance, strict dominance satisfies the property
that a dominated strategy remains to be dominated in a small domain after eliminating
some strategies. In this respect, the order independence is related to a natural property of
Monotonicity:

[Y ⊆ X]⇒ [c (Y ) ⊆ c (X)] ,

where c (·) is the choice rule that specifies the scope of choosable/undeletable elements in
any arbitrary given set. Under Monotonicity, the iterated elimination procedure is indeed an
order-independent procedure that preserves all “fixed-points”(Theorem 1(b)). For instance,
Milgrom and Roberts’s (1990) definition of IESDS, Chen, Long and Luo’s (2007) definition
of IESDS*, and Borgers’s (1993) notion of pure-strategy dominance satisfy this Monotonicity
property and are order-independent elimination procedures that preserve Nash equilibria (cf.
also Ritzberger (2002, Section 5.1)).

The monotonicity property is a rather strong requirement for order independence; it
appears to be unnecessary under the circumstances that never occur in performing an elimi-
nation. For instance, the usual definition of IESDS fails to satisfy this monotonicity property
(because a strictly dominated strategy is never strictly dominated in the situation in which
this dominated strategy is the only available choice). In fact, the strict dominance satisfies
a weaker Monotonicity in a “hereditary”manner:

[X → Y ]⇒ [c (Y ) ⊆ c (X)] ,

where X → Y denotes “X is reduced to a subset Y ⊆ X.” That is, the monotonicity
property holds true only for the one-step-ahead-deletion case. In finite games, Apt (2011,
Theorem 1) showed an order-independence result under Hereditarity: a dual form of this
weaker monotonicity for the complements of choice sets.

However, the above weaker Monotonicity/Hereditarity is still a strong requirement for
order independence. As Example 2 below demonstrates, although IEWDS is in general, not
an order-independent elimination procedure, it can be order independent in some particular
game, in which monotonicity holds only along the elimination path. That is, the monotonic-
ity requirement can be further relaxed for the circumstances that never occur in the process
of iterated elimination.
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Example 2 (Monotonicity*): Consider a two-person game (in which player 1 chooses a
row and player 2 chooses a column):

y1 y2 y3

x1 1, 1 1, 1 0, 0

x2 0, 1 1, 1 2, 1

x3 0, 0 0, 0 2, 1

For any product subset X of strategy profiles, the choice set c (X) consists of all weakly un-
dominated strategy profiles in the reduced game with the strategy-profile space X. IEWDS
yields a unique elimination outcome: {x1, x2, x3} × {y1, y2, y3} → {x1, x2} × {y1, y2, y3} →
{x1, x2}×{y1, y2} → {x1}×{y1, y2}, along which the choice rule c satisfies the monotonicity
property. The choice rule c does not satisfy the monotonicity property off the elimination
path; for example, c ({x2} × {y2, y3}) 6⊆ c ({x2, x3} × {y2, y3}). That is, the game of this
example satisfies the Monotonicity* property: monotonicity is valid only along the elimina-
tion path. The central result of the paper shows that, under Monotonicity*, the iterated
elimination procedure must be order independent in any arbitrary game (Theorem 2).

3 Iterated Elimination Procedure

3.1 Definition and existence
Consider an arbitrary set S of alternatives.6 A choice rule on S is a function c : 2S → 2S

that designates a choice set c (X) ⊆ X for each subset X ⊆ S. (We do not require the
nonemptiness of choice sets.) We interpret that, when faced with the set X of alternatives,
all elements in the choice set c (X) are regarded as “choosable/acceptable”outcomes —the
alternatives that can be chosen (cf. Sen (1993, p.499)). Throughout this paper, we denote
by X and Y typical subsets of S. A choice rule c is said to satisfy Monotonicity if

[Y ⊆ X]⇒ [c (Y ) ⊆ c (X)] ;

that is, acceptable outcomes are kept unchanged within a wider scope of feasible alternatives.
We define the elimination relation → for the choice problem (S, c) as follows:

X → Y iff c (X) ⊆ Y ⊆ X.

That is, X can be reduced to Y iff no element in c (X) is eliminated by the reduction from
X to a subset Y of X. (Apparently, we allow X → X for any X ⊆ S.) We define the
iterated elimination procedure on the choice problem (S, c), possibly by using a transfinite
elimination, as follows.7 Let 0 denote the first element in an ordinal Λ, and let λ+ 1 denote
the successor to λ in Λ.

6Throughout this paper, we assume sets satisfy the ZF axioms (cf., e.g., Jech 2003, p.3).
7Because the set S may be infinite, it is natural and necessary for us to consider a transfinite sequence of

reduction on (S,→). Lipman (1994) demonstrated that in infinite games, we need the transfinite induction
to deal with the strategic implication of “common knowledge of rationality”(see also Chen, Long and Luo
(2007, Example 1) and Green (2011)).
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Definition 1. An iterated elimination process (IEP) for the choice problem (S, c) is an
elimination sequence {Xλ}λ≤Λ such that

(a) X0 = S,

(b) Xλ → Xλ+1 (and Xλ = ∩λ′<λXλ′ for a limit ordinal λ), and

(c) XΛ → X only if XΛ = X.

Let L∗ (S, c) denote the class of IEPs for the problem (S, c), which is referred to as the iterated
elimination procedure for the problem (S, c). Let Lκ (S, c) ⊆ L∗ (S, c) denote the subclass of
finite IEPs

{
Xk
}
k≤K (where K is a finite ordinal) for the problem (S, c). Apparently, for

the case of finite set S it is natural to consider the finitely iterated elimination processes in
Lκ (S, c).

That is, the iterated elimination procedure for the choice problem (S, c) allows to adopt
a transfinite sequence of deletions. In Definition 1(c), the “stopping” condition XΛ → X
only if XΛ = X expresses the idea that no elements in XΛ can be eliminated for further
consideration; that is, XΛ = c

(
XΛ
)
. Note that Definition 1 does not require the elimination

of all elements outside the choice set: c
(
Xλ
)
⊆ Xλ+1 ⊆ Xλ; in particular, it allows us to

eliminate no element for some round of elimination: Xλ+1 = Xλ. An IEP {Xλ}λ≤Λ is “fast”
if Xλ+1 = c

(
Xλ
)
and XΛ 6= Xλ for all λ < Λ. The iterated elimination procedure for the

choice problem (S, c) is called order independent if all the iterated elimination processes for
the choice problem (S, c) yield a unique set of final outcomes; that is, for a subset Z ⊆ S,
XΛ = Z for all elimination sequences {Xλ}λ≤Λ in L∗ (S, c).
The following theorem implies that the iterated elimination procedure can always be

defined, and therefore exist; that is, L∗ (S, c) 6= ∅ for each and every choice problem (S, c).
Under Monotonicity, the iterated elimination procedure is order independent; furthermore,
every IEP leads to the unique union of all “fixed points” of c, including all singleton sets
{x} = c ({x}) where x ∈ S.

Theorem 1. (a) For any arbitrary choice problem (S, c), a (fast) IEP exists in L∗ (S, c).
(b) Suppose c satisfies Monotonicity. Then the iterated elimination procedure for the choice
problem (S, c) is order independent; moreover, if

{
Xλ
}
λ≤Λ

is an IEP in L∗ (S, c), XΛ =

∪Z=c(Z)Z.

We would like to point out that, except for the ZF axioms, our proof of the existence
of the iterated elimination procedure does not require the Axiom of Choice. If applied to
iterated strict dominance and rationalizability in games, the proof improves the existence
proofs in Chen, Long and Luo (2007) and Chen, Luo and Qu (2016), which rely on either
the Axiom of Choice or the Well-Ordering Principle.

3.2 Monotonicity*: An order-independence theorem

The iterated elimination procedure is in general order dependent: iterated elimination processes
in Definition 1 may generate different sets of outcomes. For instance, some of the most
prominent iterated elimination procedures, such as iterated elimination of weakly dominated
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strategies (IEWDS), fail to be order independent. Under Monotonicity, Theorem 1(b) as-
serts the iterated elimination procedure must be order independent. Although this result
is simple, it is useful to determine the order independence for many iterated elimination
procedures used in game theory, which preserve “fixed-point”sets by Theorem 1(b). See, for
example, Apt’s (2004) related discussions on the order independence of various forms of iter-
ated dominance in finite games, Ritzberger’s (2002) Theorem 5.1 for the order independence
of iterated strict dominance in the subclass of CC games (where strategy sets are compact
and payoff functions are continuous), and Chen, Long and Luo’s (2007) Theorem 1 for the
order independence of IESDS* in arbitrary games.
Nevertheless, the Monotonicity property is not an unnecessarily strong requirement for

order independence; it appears to be unnecessary in the circumstances that never occur in
performing the iterated elimination, as illustrated by Example 2 in Section 2. We offer a
weaker version of monotonicity for order independence, which we call “Monotonicity*”: it
requires the monotonicity property only along the possible iterated elimination sequences
starting at S. Let →∗ denote the indirect elimination relation induced by →. That is,
X →∗ Y iff there is an elimination sequence {Xλ}λ≤Λ such that X0 = X, Xλ → Xλ+1 (and
Xλ = ∩λ′<λXλ′ for a limit ordinal λ), and XΛ = Y .

Monotonicity*. [S →∗ X →∗ Y ] ⇒ [c (Y ) ⊆ c (X)].

That is, Monotonicity* requires that, along an elimination sequence through X to Y , choice
sets not expand; that is, no undesirable alternative outside c (X) can be changed to a desirable
one in c (Y ) during the phase of eliminationX →∗ Y . WhenX →∗ Y via a finitely-many-step
elimination sequence

{
Xk
}
k≤K , we make use of the notation→

κ to represent such an indirect
elimination relation. We have a simpler version of Monotonicity*, called 1-Monotonicity*,
which requires the monotonicity property holds for the last phase of elimination in a finitely-
many-step-elimination case.

1-Monotonicity*. [S →κ X → Y ] ⇒ [c (Y ) ⊆ c (X)].

The central result of this paper is that, under Monotonicity*, the iterated elimination pro-
cedure is order independent. Moreover, 1-Monotonicity* is suffi cient for order independence
in the case of the finitely iterated elimination procedure. Thus, 1-Monotonicity* guarantees
the order independence of iterated elimination procedure for a finite set S.

Theorem 2. (a) Suppose c satisfies Monotonicity*. Then the iterated elimination procedure
for the choice problem (S, c) is order independent; that is, there exists Z ⊆ S such that
XΛ = Z for all IEPs {Xλ}λ≤Λ in L∗ (S, c). (b) If c satisfies 1-Monotonicity*, the finitely
iterated elimination procedure for the choice problem (S, c) is order independent; that is,
there exists Z ⊆ S such that XK = Z for all finite IEPs

{
Xk
}
k≤K in L

κ (S, c).

Remark. Monotonicity* implies 1-Monotonicity*, which is closely related to the Aizerman
property used in the choice-theoretic literature: [c (X) ⊆ Y ⊆ X]⇒ [c (Y ) ⊆ c (X)]; see, for
example, Moulin (1985). The Aizerman property requires that deleting some alternatives
outside the choice set cannot make new alternatives chosen. In 1-Monotonicity*, the Aizer-
man property holds along an elimination path; that is, the premise of the Aizerman property
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is made only for the sets X and Y resulting from a finite-elimination sequence starting at S.
Monotonicity* is an extension of the Aizerman property along a possible transfinite sequence
of elimination in the infinite case.

We next provide an example to demonstrate the main idea of our proof of Theorem 2.

Example 3. Consider a two-person game under weak dominance:

l r

t 2, 3 2, 4

m 2, 2 0, 1

b 0, 0 1, 0

In this example, the choice set c(X) is given by the set of weakly undominanted strategies in
the subset X of strategies, and all the possible IEPs lead to the unique outcome {t} × {r}.
The figure below depicts a 3 × 3 grid based on the two selected IEWDS processes: S00 →
S10 → S20 and S00 → S01 → S02.

l r
t 2,3 2,4
m 2,2 0,1
b 0,0 1,0

l r
t 2,3 2,4

r
t 2,4

S00

S10

S11 = c(S00)

S01

S02

S12 = c(S01)

l r
t 2,3 2,4
b 0,0 1,0

S21 = c(S10)

S20

r
t 2,4

S22 = c(S11)

l r
t 2,3 2,4

r
t 2,4

r
t 2,4

r
t 2,4

The key point is that, under 1-Monotonicity*, the 3× 3 grid has a “diamond”property:
X

Z=c(X)

Y1 Y2

That is, if a set X can be reduced to two sets Y 1 and Y 2, the reduced sets can be fur-
ther reduced to a “pivotal” set Z = c (X). For instance, consider S00 → S10 and S00

→ S01. By 1-Monotonicity*, c (S10) ⊆ c (S00) ⊆ S10 and c (S01) ⊆ c (S00) ⊆ S01. Thus,
S10 → S11 = c (S00) and S01 → S11 = c (S00). In the proof of Theorem 2, we show, un-
der Monotonicity*, the transfinite elimination procedure must satisfy the diamond property.
Our proof is inspired by Gilboa, Kalai and Zemel’s (1990) argument for order independence
of finite elimination sequences (cf. Section 4 for related discussions).
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We end this section by providing an example to show that, in the infinite-set case, 1-
Monotonicity* is not suffi cient for order independence.

Example 4. Let S = {0, 1, 2, ...} be the set of non-negative integers. The choice rule c is
defined as follows: for subsets X ⊆ S,

c (X) =

{
(X\{0}) \min (X\{0}) if |X| > 1

X if |X| ≤ 1
,

where |X| is the cardinality of the set X. In this example, two IEPs generate different
outcomes:

1. X0 = S, Xn = S\{0, 1, ..., n} for all n ≥ 1, and X∞ ≡ ∩n≥0X
n = ∅.

2. X̃0 = S, X̃n = S\{1, ..., n} for all n ≥ 1, and X̃∞ ≡ ∩n≥0X̃
n = {0}.

The choice rule c satisfies 1-Monotonicity*, but it does not satisfy Monotonicity*, because
S →∗ {0} and c ({0}) = {0} 6⊆ c (S). (Note: ∩n≥0c

(
X̃n
)
6= c

(
∩n≥0X̃

n
)
.)

3.3 Hereditarity*: An alternative characterization

We provide an alternative characterization for order independence by considering the com-
plement of c (X). This alternative condition is a dual form of the monotonicity* for comple-
mentary sets of undesirable alternatives under an abstract dominance relation, which can be
conveniently used in the context of games. Define DOM(X) ≡ X\c (X).

Hereditarity*. [S →∗ X →∗ Y ]⇒ [(Y ∩DOM (X)) ⊆ DOM (Y )].

Hereditarity* says if x is dominated but not eliminated (i.e., x ∈ DOM (X) ∩ Y ) along
the elimination path S →∗ X →∗ Y , it remains to be dominated in the final set Y . When
we restrict attention to finitely-many-step elimination →κ, we have a simpler version of
Hereditarity*:

1-Hereditarity*. [S →κ X → Y ]⇒ [(Y ∩DOM (X)) ⊆ DOM (Y )].

The following result shows Hereditarity* provides an alternative characterization for
Monotonicity*, and 1-Hereditarity* provides an alternative characterization for 1-Monotonicity*.

Theorem 3. (a) Hereditarity* and Monotonicity* are equivalent. (b) 1-Hereditarity* and
1-Monotonicity* are equivalent.

In the finite case, Apt (2011) presented a stronger condition called “Hereditarity”for order
independence, which require the domination relation holds true in a hereditary manner for the
one-step-ahead-deletion case. Apt (2011) demonstrated some order-independence results for
iterated elimination procedures in finite games can be obtained by checking the Hereditarity
property. We state Hereditarity in our setting as follows: for arbitrary subsets X, Y ⊆ S,

[X → Y ]⇒ [(Y ∩DOM (X)) ⊆ DOM (Y )] .

10



That is, if x is dominated but not eliminated, it is still dominated after eliminating some
of the dominated elements. Because Hereditarity implies 1-Monotonicity*, Apt’s (2011,
Theorem 1) order-independence result follows immediately from Theorem 2(b).8

Corollary 1. Under Hereditarity, the finitely iterated elimination procedure for the choice
problem (S, c) is order independent; that is, there exists Z ⊆ S such that XK = Z for all
finite IEPs

{
Xk
}
k≤K in L

κ (S, c).

4 CD* Games and Order Independence

In this section, we deal with a special class of iterated elimination procedures governed by
a dominance relation between elements. Under the commonly used strict dominance, for in-
stance, the problem of order dependence can occur in infinite games where some strategies are
eliminated only by strategies that are themselves dominated (cf. the example in Footnote 4).
Motivated by Jackson’s (1992) idea of “boundedness”that requires strategies be eliminated
only by undominated strategies, Dufwenberg and Stegeman (2002) introduced a definition of
“games closed under dominance (CD games)”to deal with the order-dependence problem of
IESDS in infinite games. Roughly speaking, CD games satisfy the property that at any point
in a finite-step sequence of deletions, any dominated strategy has an undominated dominator.
Dufwenberg and Stegeman (2002, Example 8) showed the class of CD games fails to satisfy
the order independence property, and pointed out “requiring that strategies be eliminated
only by undominated strategies (a variation on Jackson’s (1992) idea of ‘boundedness’) does
not solve the problem of order dependence.”
It is worth noting that the original definition of CD games cannot be expected to solve the

problem of order dependence, because any finite game is automatically a CD game under the
usual weak dominance, as noticed by Jackson (1992, p.763). In this section, we thereby offer
a stronger notion, called “CD* games”that escape from the problem of order dependence,
regardless of what dominance relation is used. The concept of CD* games is designed to
capture not only Jackson’s (1992) idea of “boundedness”that strategies are eliminated only
by undominated strategies, but also it is immune from the problem of “discontinuity” at
limit points as demonstrated in Example 4 (see also Example 6 below). The key point here
is that the novel concept of CD* games implies Monotonicity*/Hereditarity* which in turn
implies the order dependence. In finite games, observe that the usual strict domination
relation indeed satisfies a slightly stronger property than “closed under dominance”: every
strictly dominated strategy x has a special kind of dominator y, which satisfies (i) x remains
to be dominated by y in a reduced game that keeps x and y but removes some other strictly
dominated strategies, and (ii) y is not strictly dominated in the reduced game. To put
it another way, any dominated element, which is not eliminated at some stage of deletion,
must admit an undominated dominator in the reduced game. One might conjecture that any
iterated elimination procedure, regardless of what dominance relation is used, performs well
in the class of CD* games that satisfy this stronger property of “closed under dominance*.”
The example below explains this point for the weak dominance.

8Apt (2011) considered the class of finite sequences of reduction under a variety of dominance relations
in finite games. He showed this result by using Newman’s (1942) Lemma.
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Example 5.

x2 y2

x1 0, 1 0, 1

y1 1, 1 0, 0

x2 y2

x1 1, 0 0, 0

y1 1, 1 1, 0

G1 G2

InG1, the weak dominance is order independent and satisfies the CD* property: any (weakly)
dominated strategy (e.g., y2) has an undominated dominator (e.g., x2) in the reduced game
after eliminating some dominated element (e.g., x1). In G2, on the contrary, the weak dom-
inance is not order independent and fails to satisfy this property: the (weakly) dominated
strategy x1 has no dominator in the reduced game after eliminating y2.

We next introduce the concept of CD* games that satisfy the stronger property of “closed
under dominance”along the elimination path. Consider an arbitrary (strategic) game:

G ≡ (N, {Si}i∈N , {ui}i∈N),

where N is an (in)finite set of players, Si is an (in)finite set of player i’s strategies, and
ui : ×i∈N Si → R is player i’s arbitrary payoff function. Let S ≡ ×i∈NSi. For X ⊆ S, let
�X denote an abstract domination relation on S; that is, �X is a binary relation on S. For
x, y ∈ S, y �X x is interpreted to mean “y dominates x conditionally on X.”For instance,
y �X x can represent the strict domination relation: “y strictly dominates x given X;”that
is, y �X x iff there exists i ∈ N such that ui (yi, z−i) > ui (xi, z−i) for all z−i ∈ X−i (see
von Neumann and Morgenstern (1944, Chapter XII), Greenberg (1990), and Luo (2001) for
more discussions). Define

DOM(X) ≡ {x ∈ X : y �X x for some y ∈ X} .

In this section, we consider the choice problem (S, c) associated with the abstract domination
relation �X in game G, where c (X) = X\DOM(X). A game G (under an abstract domi-
nation relation �X) is said to be closed under dominance* (CD*) if, under S →∗ X →∗ Y ,
y �X x for y ∈ X and x ∈ Y implies that there exists z∗ ∈ Y such that z 6�Y z∗ �Y x for all
z ∈ Y .

CD*. [S →∗ X →∗ Y ]⇒
[
(Y ∩DOM (X)) ⊆ DOM c(Y ) (Y )

]
.9

That is, at any point in any valid sequence of deletions, any dominated element surviving the
deletion process has an undominated dominator at the end point of the deletion sequence.
In the finite case, we have a simpler version thereof.

1-CD*. [S →κ X → Y ]⇒
[
(Y ∩DOM (X)) ⊆ DOM c(Y ) (Y )

]
Apparently, a 1-CD* game must be a CD game because the latter one can be viewed as a
special case of the former one on the premise S →κ X → X.

9For X,Y ⊆ S, let DOMY (X) ≡ {x ∈ X : y �X x for some y ∈ Y }.
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Theorem 4 below asserts that under any arbitrary abstract domination relation, the
class of CD* games has no problem of order dependence and, moreover, the finitely iterated
elimination procedure is order independent in the case of 1-CD* games. Under the strict
dominance, all compact and own-uppersemicontinuous (COUSC) games are CD*.

Theorem 4. (a) Suppose G (under an abstract domination relation �X) is a CD* game.
Then the iterated elimination procedure for the choice problem (S, c) associated with the
abstract domination relation �X is order independent. In particular, under the strict domi-
nance relation, any COUSC game is a CD* game, and thus the IESDS procedure defined in
Definition 1 is order independent in L∗ (S, c). (b) Suppose G (under an abstract domination
relation �X) is a 1-CD* game. Then the finitely iterated elimination procedure for the choice
problem (S, c) associated with the abstract domination relation �X is order independent.

The notion of CD* games solves the problem of order dependence. That is, the class
of CD* games excludes all problematic games that are order dependent. The class of
CD* games under the usual strict dominance abounds, including all compact and own-
uppersemicontinuous games. Consequently, IESDS in Definition 1 is always well defined
and order independent in COUSC games. The following example shows the IESDS order-
dependence problem might occur outside CD* games.10

Example 6. Consider a two-person game: G ≡ (N, {Si}i∈N , {ui}i∈N), where N = {1, 2},
S1 = S2 = [0, 1]\{1/3}, and ui : Si × Sj → R for i, j ∈ N and i 6= j, defined by

ui(si, sj) =

{
si(1− si − sj), if sj ∈ Q
si(1− si − 1/3), if sj /∈ Q

,

where Q denotes the set of rational numbers in [0, 1]. The IESDS procedure fails to be order
independent; for instance, two IESDS processes generate different outcomes as follows. Let
〈a, b〉 ≡ [a, b]\{1/3} × [a, b]\{1/3}.

1. X0 = S = 〈a0, b0〉, Xn = 〈an, bn〉 (where an = 1
2

(1− bn−1) and bn = 1
2

(1− an−1)) for
n <∞, and X∞ = ∩n<∞Xn = ∅.

2. X̃0 = S, X̃n = Xn ∪ {(q, q)} for n < ∞, and X̃∞ = ∩n<∞X̃n = {(q, q)} (where
q /∈ Q).

Under the strict dominance, this example is not a CD* game. In particular, ∅ =

∩n<∞c
(
X̃n
)
+ c

(
X̃∞

)
= {(q, q)}. That is, the choice rule c explodes at the limit point of

deletions. (Like Example 4, the choice rule c displays “upward jumps”at the limit point:

∩n<∞c
(
X̃n
)
⊂ c

(
X̃∞

)
.)

The concept of CD* games is also related to the work of Gilboa, Kalai and Zemel (1990)
(GKZ). GKZ studied a variety of elimination procedures and provided suffi cient conditions

10This example is taken from Dufwenberg and Stegeman (2002). They showed that this game is a CD
game, but the IESDS procedure fails to be order independent in this CD game. On the contrary, this example
is not a CD* game under the strict dominance.
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for order independence. The key feature for the GKZ procedure is that for any element x
that is eliminated, there exists an uneliminated element y that dominates x. Comparing
with Jackson’s (1992) idea of “boundedness”that requires the dominator be undominated,
the GKZ procedure requires merely that the dominator not be eliminated. More precisely,
the GKZ procedure is a class of iterated elimination processes for game G (under an abstract
domination relation �X), where, for subsets X, Y ⊆ S,

X →GKZ Y iff Y ⊆ X and X\Y ⊆ DOMY (X) .

That is, X →GKZ Y if, and only if, every eliminated element x ∈ X\Y is required to have
a dominator y ∈ Y . Apparently, X →GKZ Y implies X → Y , because DOMY (X) ⊆
DOM (X); the GKZ procedure can be viewed as a special form of the iterated elimination
procedure in Definition 1. The following corollary asserts that in CD* games, the GKZ
procedure is precisely the iterated elimination procedure in Definition 1; in 1-CD* games,
the finite GKZ procedure is precisely the finitely iterated elimination procedure in Definition
1, which is an order-independent procedure as proved by GKZ.

Corollary 2. (a) Suppose G (under an abstract domination relation �X) is a CD* game.
Then the GKZ procedure is equivalent to the iterated elimination procedure in Definition 1.
(b) Suppose G (under an abstract domination relation �X) is a 1-CD* game. Then the finite
GKZ procedure is equivalent to the finitely iterated elimination procedure in Definition 1.

5 “Outcome”Order Independence

In this section, we extend our analytical framework to study the order independence in terms
of the final payoff-profile outcomes. More specifically, we show a very general “outcome”
order-independence result in the class of finite games. For simplicity, throughout this section
we restrict attention to finitely iterated elimination procedures. Our analysis is applicable to
Marx and Swinkels’s (1997) “outcome”order independence for nice weak dominance (NWD).
Consider a finite game G = (N, {Si}i∈N , {ui}i∈N). Let X = ×i∈NXi and Y = ×i∈NYi

denote product subsets of S. Let u (s) ≡ (ui (s))i∈N ∀s ∈ S. For two strategies xi, x′i ∈ Xi,
write xi 'X x′i for u (xi, x−i) = u (x′i, x−i) ∀x−i ∈ X−i; that is, xi is strategically equivalent
to x′i on X. In other words, for each player j ∈ N and for each profile x−i in X−i, the
strategically equivalent strategies xi and x′i yield the same payoff uj (xi, x−i) = uj (x′i, x−i).
Define the “outcome”inclusion Y v X as follows: for all i ∈ N and yi ∈ Yi, there exists

xi ∈ Xi such that xi 'XtY yi (where X t Y ≡ ×i∈N (Xi ∪ Yi)); that is, xi is strategically
equivalent to yi on X t Y . Obviously, Y ⊆ X implies Y v X. The transitive closure of
v generates a useful form of “outcome” relation X $ Y , which implies the usual sense of
“payoff-outcome”equivalence (see Observation in Appendix B2).
For our purposes, we consider a product-form choice rule c(X) ≡ ×i∈Nci(X), where

ci(X) ⊆ Xi ∀i ∈ N . The “outcome”elimination relation ` (w.r.t. v) is defined as follows:
for product subsets X and Y of S,

X ` Y iff c (X) v Y v X;
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that is, Y lies between X and c (X) in terms of the “outcome”inclusion v. Denote by `∗ the
indirect “outcome”elimination relation induced by the relation ` via a finitely-many-step
“outcome”elimination sequence.

1-Monotonicity* (w.r.t. v). [S `∗ X ` Y ]⇒ [c (Y ) v c (X)].

Theorem 5. For any finite game G, if the choice rule c satisfies 1-Monotonicity* (w.r.t.
v), the iterated elimination procedure for the choice problem (S, c) is “outcome”order inde-
pendent; that is, XK $ Y K′ for all {Xk}k≤K and {Y k}k≤K′ in Lκ (S, c).

In Appendix B2, we show a stronger “outcome”order-independence result for the gener-
alized iterated procedure by using the “outcome”elimination relation `. In the literature,
Marx and Swinkels (1997) and Chen and Micali (2013) adopted a distinctive form of elimina-
tion procedure in their analysis that allows the elimination or replacement of only one of the
equivalent strategies in each elimination step. By introducing the relation `, our approach
offers an extremely general way to study the “outcome” order independence by a variant
of iterated elimination procedure; for example, it allows to add back an equivalent strategy.
We provide an example to show this point.

Example 7. Consider a two-person game under weak dominance:

l r

t 2, 3 2, 3

m 1, 0 0, 1

b 0, 1 1, 0

In this example, for any two subsets of strategy profiles X and Y along an elimination
path S `∗ X ` Y , the choice sets c(X) and c(Y ) must yield the same “payoff outcome”
(2, 3). Therefore, 1-Monotonicity* (w.r.t. v) holds. By Theorem 5, the IEWDS procedure
is “outcome” order independent in this game. The figure below depicts a 3 × 3 grid of
generalized IEWDS processes, in which all the generalized iterated processes lead to the same
final “payoff outcome.”For instance, S00 → S10 → S20 ` S21 ` S22 is such a generalized
IEWDS process by using the relation `; in particular, it allows to replace an equivalent
strategy (e.g., S20 ` S21) or add back an equivalent strategy (e.g., S21 ` S22).

l r
t 2,3 2,3
m 1,0 0,1
b 0,1 1,0

l r
t 2,3 2,3
m 1,0 0,1

l r
t 2,3 2,3

l
t 2,3

r
t 2,3

l
t 2,3

S00

S10

S11

S01

S02

S12

l r
t 2,3 2,3
b 0,1 1,0

S21

S20

r
t 2,3

l r
t 2,3 2,3 S22

15



Remark. We note 1-Monotonicity* (w.r.t. v) is closely related to Perea’s (2018, Definition
3.2) notion of “monotonicity on reachable histories”in the context of extensive games. That
is, the choice rule c plays the role as the “reduction operator r”and the elements X and
Y residing in S `∗ X ` Y can be regarded as two sets of “plans of actions” along an
“elimination order”in Perea (2018) (cf. the table below).

1-Monotonicity* (w.r.t. v) Monotonicity on Reachable Histories

S `∗ X X is possible in an elimination order

X ` Y r (X) |H(Y ) ⊆ Y |H(Y ) ⊆ X|H(Y )

c (Y ) v c (X) r (Y ) |H(Y ) ⊆ r (X) |H(Y )

In this table, the notation X|H(Y ), for instance, denotes the set of “plans of actions”(in the
setX) restricted to “histories reachable under Y ”in Perea (2018). In the same vein, Theorem
5 in this paper is similar to Perea’s (2018) Theorem 3.2: the former shows 1-Monotonicity*
(w.r.t. v) is suffi cient for the order independence with respect to the “strategically-equivalent”
outcomes in normal form games, whereas the latter shows the monotonicity on reachable
histories is suffi cient for the order independence with respect to the “realization-equivalent”
outcomes in extensive form games. We thank an anonymous referee for drawing our attention
to this point.

Marx and Swinkels (1997, Theorem 1) showed iterated elimination of nicely weakly dom-
inated strategies is “outcome”order independent in (finite) strategic games. By applying
Theorem 5, we obtain this “outcome”order-independence result.

Definition (Marx and Swinkels (1997)). Strategy xi is nicely weakly dominated on X
by strategy x′i, denoted by xi ≺X x′i, if (i) ∀x−i ∈ X−i, either ui (xi, x−i) < ui (x

′
i, x−i) or

u (xi, x−i) = u (x′i, x−i), and (ii) xi 6'X x′i.

Define the NWD choice rule c as c(X) ≡ ×i∈Nci(X), where

ci(X) = {xi ∈ Xi : xi ⊀X x′i for all x
′
i ∈ Xi} .

That is, ci(X) consists of all strategies for player i that are not nicely weakly dominated on
X. We have the following lemma.

Lemma NWD. Suppose Y v X and xi, zi ∈ Xi. Then xi ≺X zi if and only if xi ≺XtY zi.

Theorem 5 and Lemma NWD imply the “outcome” order-independence result for the
nice weak dominance as follows.

Theorem 6. For any finite game G, the NWD choice rule c satisfies 1-Monotonicity* (w.r.t.
v). Therefore, the iterated elimination of nicely weakly dominated strategies is “outcome”
order independent.

Marx and Swinkels (1997) showed, if G satisfies the “transference of decisionmaker in-
difference”(TDI) condition,11 weak dominance is actually nice weak dominance. Thus, the
iterated elimination of weakly dominated strategies (IEWDS) is “outcome”order indepen-
dent in the class of TDI games (e.g., Example 7).
11The TDI condition requires that whenever the decision maker is indifferent between two profiles that

differ only in her action, the indifference is transferred to the other players as well.
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6 Concluding Remarks
In this paper, we have offered a definition of the iterated elimination procedure, by allow-
ing for a transfinite elimination, and established its general existence. Inspired by Gilboa,
Kalai and Zemel’s (1990) seminal work, we have identified a fairly weak suffi cient condition
of Monotonicity* for the order independence in an abstract environment. We have pro-
vided an alternative characterization of Monotonicity* by Hereditarity* in (in)finite games.
In addition, we have demonstrated our approach is applicable to different forms of iter-
ated elimination procedures in arbitrary strategic games. By using Jackson’s (1992) idea
of “boundedness,”we introduce a notion of CD* games to escape from the problem of or-
der dependence (cf. the figure below). The class of CD* games under the strict dominance
is abundant, including all compact and own-uppersemicontinuous (COUSC) games. As a
consequence, the IESDS procedure in Definition 1 is always well defined and order indepen-
dent in COUSC games. In our analytical framework, we have also formulated and shown
an “outcome”order-independence result suitable for Marx and Swinkels’s (1997) nice weak
dominance.

Order
Independence Monotonicity*1Monotonicity*

MonotonicityHereditarity

CD*1CD*

1Hereditarity* Hereditarity*

Theorem 4(b)

Theorem 2(b)

Theorem 1(b)

Theorem 2(a)

Corollary 1

Theorem 4(a)

Finite Games (In)finite Games

Theorem 3(b) Theorem 3(a)

Relationship between different conditions for order independence

We would like to emphasize that, except for the ZF axioms, the existence of the iterated
elimination procedure does not require the Axiom of Choice or the Well-Ordering Principle.
This result improves the previous existence results of the iterated elimination procedure in
infinite games (e.g., Arieli (2012), Ritzberger (2002), and Chen, Long and Luo (2007), and
Chen, Luo, and Qu (2016)). Our analysis of strategic games is completely topology free and
with no measure-theoretic assumption on the structure of the game, and it is applicable to
any kind of iterated dominance in arbitrary games. Our framework in this paper can also be
used to analyze the order independence of various forms of iterated elimination procedures
in mixed extensions of finite games or general preference models used in game theory.
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To close this paper, we would like to point out some possible extensions for future re-
search. In this paper, we mainly consider the order independence in terms of strategy profiles
resulting from iterated elimination procedures for strategic games. Several papers discuss a
slight variant of order independence in terms of “outcomes of play”in finite extensive games
(see, e.g., Chen and Micali (2013), Heifetz and Perea (2015), and Perea (2017, 2018)). The
extension of this paper to such a variant of order independence in extensive games is an im-
portant subject for further research. Our approach to the “outcome”order independence in
Section 5 can be useful for this purpose. As we have emphasized, in this paper, we focus on
the existence and order independence of the iterated elimination procedure. The exploration
of iterated elimination procedures from an epistemic perspective is also an intriguing topic
worth further investigation.
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7 Appendix A: Examples
In this appendix, we demonstrate how to apply our analytical framework to a number of iter-
ated elimination procedures discussed in the literature, including iterated strict dominance,
iterated weak dominance, rationalizability, and so on. For simplicity, we restrict attention
to a finite game: G ≡ (N, {Si}i∈N , {ui}i∈N). For any subset X of strategy profiles, we can
define the choice set c (X) in the following ways.

1. [strict dominance] c (X) = X\DOM (X), where12

DOM (X) =
{
x ∈ X : ∃i ∈ N ∃σi ∈ ∆ (Xi) s.t. ui

(
σi, x

′
−i
)
> ui

(
xi, x

′
−i
)
∀x′−i ∈ X−i

}
.

That is, c (X) consists of all strategy profiles in X where each player i’s strategy is strictly
dominated by no mixed strategy in ∆ (Xi). Because every strictly dominated strategy
xi in a finite game has an undominated dominator, remaining in a reduced game after
eliminating some of the strictly dominated strategies, which strictly dominates xi in that
reduced game, (Y ∩DOM (X)) ⊆ DOM (Y ) for c (X) ⊆ Y ⊆ X. Thus, Hereditarity
holds. By Corollary 1, IESDS is an order-independent procedure. (Under the strict
dominance relation, 1-CD* holds true, but Monotonicity fails to be satisfied; for example,
c (x) = x /∈ c (X) for x ∈ X\c (X).)

2. [weak dominance] c (X) = X\DOM (X), where

DOM (X) =

{
x ∈ X :

∃i ∈ N ∃σi ∈ ∆ (Xi) s.t. ui
(
σi, x

′
−i
)
≥ ui

(
xi, x

′
−i
)
∀x′−i ∈ X−i

and ui
(
σi, x

′
−i
)
> ui

(
xi, x

′
−i
)
for some x′−i ∈ X−i

}
.

That is, c (X) consists of all strategy profiles in X where each player i’s strategy is weakly
dominated by no mixed strategy in ∆ (Xi). The IEWDS procedure may not be order
independent in general.

3. [strict dominance*] c (X) = X\DOM (X), where

DOM (X) =
{
x ∈ X : ∃i ∈ N ∃s∗i ∈ Si s.t. ui

(
s∗i , x

′
−i
)
> ui

(
xi, x

′
−i
)
∀x′−i ∈ X−i

}
.

That is, c (X) consists of all strategy profiles in X where each player i’s strategy is strictly
dominated by no strategy in Si (see, e.g., Milgrom and Roberts (1990), Ritzberger (2002),
and Chen, Long and Luo (2007)). Since every strictly dominated strategy in a finite
game has an undominated dominator, which strictly dominates that dominated strategy
in each of subgames, (Y ∩DOM (X)) ⊆ DOM (Y ) for Y ⊆ X. Thus, c (Y ) ⊆ c (X) if
Y ⊆ X. That is, Monotonicity holds. By Theorem 1(b), The IESDS* procedure is order
independent and preserves Nash equilibria.

12We denote by ∆ (Xi) the probability space on Xi and by ui (σi, x−i) the expected payoff of player i
under a mixed strategy σi ∈ ∆ (X−i).
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4. [pure-strategy dominance] c (X) = X\DOM (X), where

DOM (X) =

{
x ∈ X :

∃i ∈ N ∀Z−i ⊆ X−i ∃s∗i ∈ Si s.t. ui (s∗i , z−i) ≥ ui (xi, z−i)

∀z−i ∈ Z−i and ui (s∗i , z−i) > ui (xi, z−i) for some z−i ∈ Z−i

}
.

That is, c (X) consists of all strategy profiles in X where each player i’s strategy is un-
dominated in the sense of Borgers (1993). Under the pure-strategy dominance relation,
because every dominated strategy in a finite game is clearly dominated in each subgame,
(Y ∩DOM (X)) ⊆ DOM (Y ) for Y ⊆ X. Thus, Hereditarity holds. By Corollary 1, the
iterated elimination of pure-strategy dominated strategy is an order-independent elimina-
tion procedure.

5. [rationalizability] c (X) = X ∩BR (X), where13

BR (X) = {s ∈ S : ∀i ∈ N ∃µi ∈ ∆ (X−i) s.t. ui (si, µi) ≥ ui (s
′
i, µi) ∀s′i ∈ Si} .

That is, c (X) consists of all elements inX where each player i’s strategy is a best response
to some probabilistic belief in∆ (X−i). Since BR (Y ) ⊆ BR (X) for Y ⊆ X, c (Y ) ⊆ c (X)
if Y ⊆ X. That is, Monotonicity holds. By Theorem 1(b), rationalizability is an order-
independent elimination of never-best-response strategies, which preserves Nash equilibria.

6. [c-rationalizability] Ambrus (2006) proposed a solution concept of “coalitional ratio-
nalizability (c-rationalizability)” in finite games by an iterative procedure of restrictions
of strategies. The procedure is analogous to iterative elimination of never best response
strategies, but operates on implicit agreements by coalitions. More specifically, let X and
Z be product-form subsets of strategy profiles. Z is a supported restriction by coalition
J ⊆ N given X if (i) Zj ⊆ Xj for j ∈ J and Zi = Xi for i /∈ J and (ii) for j ∈ J ,
xj ∈ Xj\Zj implies

max
f−j∈∆(X−j)

uj (xj, f−j) < max
sj∈Sj

uj (sj, g−j) ∀g−j ∈ ∆ (Z−j) with g−J−j = f−J−j ,

where f−J−j and g
−J
−j are the marginal distributions of f−j and g−j over S−J , respectively.

Let F (X) be the set of all the supported restrictions given X. We define the choice rule
c for c-rationalizability by

c (X) = ∩Z∈F(X)Z.

Ambrus (2006) defined c-rationalizability by a (fast) iterated elimination procedure as-
sociated with this choice rule c; that is, in each elimination round, the intersection of
all supported restrictions is retained (see also Ambrus (2009) and Luo and Yang (2012)
for more discussions). Ambrus (2006, Proposition 5) showed an order-independence re-
sult, under the restriction that each elimination round must be an intersection of some
supported restrictions. Because the choice rule c satisfies 1-Monotonicity* (see Lemma

13We denote by ∆ (X−i) the probability space on X−i and by ui (xi, µi) the expected payoff of player i
under a probabilistic belief µi ∈ ∆ (X−i).
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4 in Appendix A), by Theorem 2(b), Ambrus’s (2006) notion of c-rationalizability is an
order-independent procedure, without the aforementioned restriction.

7. [HS-weak dominance] c (X) = X\DOM (X), where

DOM (X) =

{
x ∈ X :

∃i ∈ N ∃σi ∈ ∆ (Si) s.t. ui (σi, x−i) > ui (x)

and ui
(
σi, x

′
−i
)
≥ ui

(
xi, x

′
−i
)
∀x′−i ∈ X−i

}
.

That is, c (X) consists of all strategy profiles in X where each player i’s strategy is not
weakly undominated in the sense of Hillas and Samet (2018, Definition 3). Under the
HS-weak dominance relation, because every dominated strategy in a finite game has an
undominated dominator, which dominates that dominated strategy in each of subgames,
(Y ∩DOM (X)) ⊆ DOM (Y ) for c (X) ⊆ Y ⊆ X. That is, Hereditarity holds. By
Corollary 1, the HS-weak dominance is an order-independent procedure; see Hillas and
Samet’s (2018) Proposition 1.

8. [RBEU] Cubitt and Sugden (2011) offered an iterative procedure of “reasoning-based
expected utility procedure (RBEU)”for solving finite games. RBEU uses a sequence of
“accumulation”and “elimination”operations to categorize strategies as permissible and
impermissible; some strategies remain uncategorized when the procedure halts. Cubitt
and Sugden (2011) demonstrated RBEU can delete more strategies than IESDS, while
avoiding the order-dependence problem associated with IEWDS. Formally, the choice rule
c (·) ≡ ×i∈Nci (·) is defined for each product subset X × Y ⊆ S × S such that

ci (X × Y ) =
(
Si\S+

i (X × Y )
)
×
(
Si\S−i (X × Y )

)
for all i ∈ N ,

where

S+
i (X × Y ) = {si ∈ Si : ∀µ ∈ ∆∗i (X × Y ) , ui (si, µ) ≥ ui (s

′
i, µ) for all s′i ∈ Si} ,

S−i (X × Y ) = {si ∈ Si : ∀µ ∈ ∆∗i (X × Y ) , ui (s′i, µ) > ui (si, µ) for some s′i ∈ Si} , and

∆∗i (X × Y ) = {µ ∈ ∆ (S−i) : µ (×j 6=i (Sj\Yj)) = 0 and µ (s−i) > 0 ∀s−i ∈ ×j 6=i (Sj\Xj)} .

The choice rule c can be viewed as the aggregate categorization function in Cubitt and Sug-
den (2011), with the “permissible”set S+

i (X × Y ) and “impermissible”set S−i (X × Y ).
Cubitt and Sugden’s (2011) Lemma implies Monotonicity holds for c. By Theorem 1(b),
RBEU is an order-independent elimination procedure.
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8 Appendix B1: Proofs
Proof of Theorem 1. (a) By transfinite recursion (see, e.g., Jech 2003, p.22), we define a
sequence

{
Xλ
}
λ∈Ord (where Ord is the class of all ordinals) by

X0 = S, Xλ+1 = c
(
Xλ
)
, and Xλ = ∩λ′<λXλ′ for a limit ordinal λ. (1)

By the Axiom Schema of Separation (see, e.g., Jech 2003, p.7),
{
Xλ : λ ∈ Ord

}
is a set

because it is a subclass of the power set of S. Suppose, to the contrary, Xλ 6= Xλ′ for
any λ 6= λ′; then there is a bijection from

{
Xλ : λ ∈ Ord

}
to Ord. By the Axiom Schema

of Replacement (see, e.g., Jech 2003, p.13), Ord is a set, contradicting the fact that Ord
is not a set. By (1), it follows that XΛ = XΛ+1 = c

(
XΛ
)
for some Λ ∈ Ord. Let Λ0 =

inf
{

Λ ∈ Ord : XΛ = XΛ+1 = c
(
XΛ
)}
. Then the sequence

{
Xλ
}
λ≤Λ0

is a fast IEP on (S,→).

(b) Let Z = c (Z). Obviously, Z ⊆ X0. Assume, by induction, Z ⊆ Xλ′ for all λ′ < λ.
By monotonicity, c (Z) ⊆ c

(
Xλ′
)
for all λ′ < λ. Therefore, Z = c (Z) ⊆ Xλ. That is,

Z ⊆ Xλ for all λ ≤ Λ. Therefore, XΛ ⊇ ∪Z=c(Z)Z. Since XΛ = c
(
XΛ
)
, XΛ = ∪Z=c(Z)Z. �

To prove Theorem 2, we need the following three lemmas.
Lemma 1. If S →∗ X and S →∗ Y imply there exists T such that X →∗ T and Y →∗ T ,
the iterated elimination procedure is order independent.
Proof. Assume, by absurdity, two IEPs S →∗ X = c (X) and S →∗ Y = c (Y ), but X 6= Y .
Then there exists T such that X →∗ T and Y →∗ T . Therefore, X = T = Y , which is a
contradiction. �
Lemma 2. If c satisfies Monotonicity*, S →∗ X → Y implies Y → c (X).
Proof. Let S →∗ X → Y . Since c satisfies Monotonicity*, c (Y ) ⊆ c (X). Since X → Y ,
c (Y ) ⊆ c (X) ⊆ Y ⊆ X. By the definition of →, Y → c (X). �
Lemma 3. Suppose S →∗ X via an elimination sequence

{
Xλ
}
λ≤Λ
. Then c (X) ⊆

∩λ<Λc
(
Xλ
)
if c satisfies Monotonicity*.

Proof. Since c satisfies Monotonicity*, c (X) ⊆ c
(
Xλ
)
for all λ < Λ. Therefore, c (X) ⊆

∩λ<Λc
(
Xλ
)
. �

Proof of Theorem 2. (a) Let S →∗ X via an elimination sequence
{
Xλ
}
λ≤Λ

and S →∗ Y
via an elimination sequence

{
Y λ
}
λ≤Λ
. We say the “diamond property holds (for

{
Xλ
}
λ≤Λ

and
{
Y λ
}
λ≤Λ
)”if there exists an Λ× Λ-diamond grid

{
Sαβ

}
α≤Λ; β≤Λ

such that

1. for all λ ≤ Λ, Sλ0 = Xλ and S0λ = Y λ;

2. for all α, β ≤ Λ,
{
Sαλ
}
λ≤Λ

and
{
Sλβ
}
λ≤Λ
are elimination sequences.

That is, the diamond structure spreads over a grid of Λ× Λ fractals (cf. Figure 1).
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Fig. 1

Observe that S →∗ X and S →∗ Y iff there exists an ordinal Λ such that S →∗ X via
an elimination sequence

{
Xλ
}
λ≤Λ

and S →∗ Y via an elimination sequence
{
Y λ
}
λ≤Λ
. By

Lemma 1, it suffi ces to show the diamond property holds true. We show it by (transfinite)
induction on Λ. If Λ = 1, then S → X and S → Y . By Lemma 2, X → c (S) and Y → c (S).
Now assume the diamond property holds for all λ < Λ. We distinguish two cases.
Case 1: Λ is a limit ordinal. Define SΛ0 ≡ XΛ and SΛβ ≡ ∩α<ΛS

αβ for all β < Λ and
β 6= 0. Since XΛ = ∩λ<ΛX

λ, SΛ0 = ∩α<ΛS
α0. By the induction hypothesis, for all β < Λ,

we have [
Sαβ → Sα(β+1) ∀α < Λ

]
⇔
[
c
(
Sαβ

)
⊆ Sα(β+1) ⊆ Sαβ ∀α < Λ

]
⇒
[
∩α<Λc

(
Sαβ

)
⊆ ∩α<ΛS

α(β+1) ⊆ ∩α<ΛS
αβ
]

⇔
[
∩α<Λc

(
Sαβ

)
⊆ SΛ(β+1) ⊆ SΛβ

]
.

By Lemma 3, c
(
SΛβ

)
⊆ ∩α<Λc

(
Sαβ

)
⊆ SΛ(β+1) ⊆ SΛβ. Therefore, SΛβ → SΛ(β+1) for all β <

Λ. (If β is a limit ordinal, SΛβ = ∩α<ΛS
αβ = ∩α<Λ∩β′<βSαβ

′
= ∩β′<β∩α<ΛS

αβ′ = ∩β′<βSΛβ′.)
Define SΛΛ ≡ ∩β<ΛS

Λβ = ∩β<Λ ∩α<Λ Sαβ. We find an elimination sequence
{
SΛβ

}
β≤Λ

.

Similarly, we find an elimination sequence
{
SαΛ

}
α≤Λ

with SΛΛ = ∩α<Λ∩β<ΛS
αβ = ∩α<ΛS

αΛ.
Case 2: Λ is a successor ordinal. By the induction hypothesis, there exists (Λ− 1) ×

(Λ− 1)-diamond grid
{
Sαβ

}
α≤Λ−1; β≤Λ−1

for
{
Xλ
}
λ≤Λ−1

and
{
Y λ
}
λ≤Λ−1

. Define SΛ0 ≡ XΛ
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and SΛ(β+1) ≡ c
(
S(Λ−1)β

)
(and SΛβ ≡ ∩β′<βSΛβ′ if β is a limit ordinal) for all β ≤ Λ−1. Since

XΛ−1 → XΛ, by the induction hypothesis, S →∗ S(Λ−1)0 → SΛ0 and S →∗ S(Λ−1)0 → S(Λ−1)1.
By Lemma 2, SΛ0 → SΛ1 and S(Λ−1)1 → SΛ1. Again by induction on β ≤ Λ − 1, we have
SΛβ → SΛ(β+1) for all β ≤ Λ−1 and S(Λ−1)β → SΛβ for any β ≤ Λ−1 (if β is a limit ordinal,
the proof is similar to Case 1). Therefore,

{
SΛβ

}
β≤Λ

and
{
Sαβ

}
α≤Λ

for any β ≤ Λ − 1 are

elimination sequences. Similarly, we can find an elimination sequence
{
SαΛ

}
α≤Λ

such that{
Sαβ

}
β≤Λ

for any α ≤ Λ − 1 is an elimination sequence. That is, there exists an Λ × Λ-

diamond grid
{
Sαβ

}
α≤Λ; β≤Λ

for
{
Xλ
}
λ≤Λ

and
{
Y λ
}
λ≤Λ
. Therefore, the diamond property

holds.
(b) Let S →κ X via a finite elimination sequence

{
Xk
}
k≤K and S →κ Y via an elimi-

nation sequence
{
Y k
}
k≤K . By 1-Montonicity*, we can similarly show the diamond property

for
{
Xk
}
k≤K and

{
Xk
}
k≤K . �

Proof of Theorem 3. Suppose S →∗ X →∗ Y . Then Y ⊆ X. Thus, we have

[(Y ∩DOM (X)) ⊆ DOM (Y )]⇔ [Y \ (Y ∩DOM (X)) ⊇ Y \DOM (Y )]

⇔ [Y \DOM (X) ⊇ Y \DOM (Y )]

⇔ [X\DOM (X) ⊇ Y \DOM (Y )] .

That is, (Y ∩DOM (X)) ⊆ DOM (Y ) iff c (X) ⊇ c (Y ). Therefore, Hereditarity* and
Monotonicity* are equivalent. If S →κ X → Y , we similarly obtain that 1-Hereditarity* and
1-Monotonicity* are equivalent.�

Proof of Corollary 1. Suppose X → Y . That is, c(X) ⊆ Y ⊆ X. By Hereditarity, we
have

[(Y ∩DOM (X)) ⊆ DOM (Y )]⇔ [Y \ (Y ∩DOM (X)) ⊇ Y \DOM (Y )]

⇔ [Y \DOM (X) ⊇ Y \DOM (Y )]

⇒ [X\DOM (X) ⊇ Y \DOM (Y )] .

That is, c (Y ) ⊆ c (X) if X → Y . By Theorem 2(b), the finitely iterated elimination
procedure for G is order independent. �

Proof of Theorem 4. (a) Suppose S →∗ X →∗ Y . SinceG is a CD* game, (Y ∩DOM(X)) ⊆
DOM c(Y )(Y ) ⊆ DOM(Y ). That is, Hereditarity* holds. By Theorem 2(a) and Theorem
3(a), the procedure is order independent in L∗ (S, c).
Now consider a COUSC game G under the strict dominance relation. Suppose S →∗

X →∗ Y via an elimination sequence {Xλ}λ≤Λ. Let y �X x for some y ∈ X and x ∈ Y .
Then, ∃i ∈ N such that ui (yi, x−i) > ui (xi, x−i) for all x−i ∈ X−i. Since G is a COUSC
game, by the proof of Dufwenberg and Stegeman’s (2002) Lemma, ∃z∗ ∈ S such that for all
y′ ∈ Y , (i) ui

(
z∗i , y

′
−i
)
> ui

(
xi, y

′
−i
)
and (ii) uj(z∗j , x−j) ≥ uj (sj, x−j) for all j ∈ N and all

sj ∈ Sj. Since x ∈ Y ⊆ Xλ, z∗ ∈ Xλ for all λ < Λ. Thus, z∗ ∈ ∩λ<ΛX
λ = Y . By (i) and

(ii), z∗ �Y x and z∗ ∈ c (Y ). Therefore, (Y ∩DOM(X)) ⊆ DOM c(Y )(Y ); that is, G is a
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CD* game, and hence, the IESDS procedure is order independent in L∗ (S, c). By Theorem
1(a), the IESDS procedure defined in Definition 1 exists in L∗ (S, c).
(b) S →κ X → Y . Since G is a 1-CD* game, (Y ∩DOM(X)) ⊆ DOM c(Y )(Y ) ⊆

DOM(Y ). That is, 1-Hereditarity* holds. By Theorem 2(b) and Theorem 3(b), the finitely
iterated elimination procedure is order independent. �

Proof of Corollary 2. (a) Suppose S →∗ X →∗ Y . Then c (X) ⊆ Y ⊆ X. Since G is
CD* and S →∗ X → X, DOM (X) = DOM c(X) (X). Thus, DOM (X) = DOMY (X) =
DOM c(X) (X). Therefore, we obtain

[X → Y ] ⇔ [Y ⊆ X and X\Y ⊆ DOM (X)]

⇔
[
Y ⊆ X and X\Y ⊆ DOMY (X)

]
⇔
[
X →GKZ Y

]
.

That is, for any CD* game, the GKZ procedure is equivalent to the iterated elimination
procedure in Definition 1.
(b) Suppose S →κ X → Y . We similarly obtain [X → Y ] ⇔

[
X →GKZ Y

]
. That is, for

any 1-CD* game, the finite GKZ procedure is equivalent to the finitely iterated elimination
procedure in Definition 1. �

Lemma 4. The choice rule c for c-rationalizability satisfies 1-Monotonicity*.
Proof. Let X ↘J Z denote “supported restriction Z by coalition J given X.”Consider
X → Y . Then X ⊇ Y ⊇ c (X) = ∩Z∈F(X)Z 6= ∅ by Ambrus’s (2006) Proposition 1. Since
Y ∩Z ⊇ Y ∩c (X) 6= ∅ for Z ∈ F (X), by Ambrus’s (2006) Lemmas 1 and 2, Y ↘J (Y ∩ Z).
Then Y ∩ Z ∈ F (Y ) for all Z in F (X). Thus, c (Y ) = ∩Z∈F(Y )Z ⊆ ∩Z∈F(X) (Y ∩ Z) ⊆
∩Z∈F(X)Z = c (X). �

9 Appendix B2: “Outcome”Order Independence
Let v∗denote the transitive closure of v; that is, Y v∗ X iff Y = Y 0 v Y 1 v · · · v Y K = X
for an integer K. Define the “outcome” equivalence relation X $ Y as Y v∗ X and
X v∗ Y . The following observation asserts that X $ Y implies there is an outcome-
invariant bijection between the “strategy” equivalence classes of X and of Y . Let Z'Zi
denote the set of the equivalence classes of Zi under the “strategy”equivalence relation 'Z ;
that is, Z'Zi = {z'Zi : zi ∈ Zi}, where z'Zi ≡ {z′i ∈ Zi : z′i 'Z zi}.

Observation. Suppose X $ Y . For each i ∈ N , there is a bijection φi from X'Xi to
Y 'Yi such that u (x) = u (y) whenever y'Yi = φi (x

'X
i ) ∀i ∈ N . Subsequently, the “outcome”

relation $ implies the usual outcome equivalence in Chen and Micali (2013, Definition 5).

In order to show Observation, we need Lemma 5.
Lemma 5. (i) Suppose xi 'X x′i ∀i ∈ N . Then u (x) = u (x′). (ii) Suppose Y v X. For
each i ∈ N , there is an injection φi from Y 'Yi to X'Xi such that u (x) = u (y) whenever
x'Xi = φi (y

'Y
i ) ∀i ∈ N .
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Proof. (i) Since x1 'X x′1, u (x) = u
(
x
′
1, (xj)j 6=1

)
. Since x2 'X x′2, u (x) = u

(
x
′
1, x

′
2, (xj)j 6=1,2

)
.

Continue to do this replacement, we obtain u (x) = u (x′).
(ii) For all i ∈ N and y'Yi ∈ Y 'Yi , consider the representative strategy yi ∈ y'Yi . Since

Y v X, for the representative yi, there is xi ∈ Xi such that yi 'XtY xi. Define φi (y
'Y
i ) =

x'Xi . For any ŷ ∈ Y and x̂ ∈ X. If ŷi 'Y yi and x̂i 'X xi ∀i ∈ N , by (i), u (x̂) = u (x) =
u (y) = u (ŷ). Suppose φi (y

'Y
i ) = φi (ŷ

'Y
i ) = x'Xi . Then yi 'XtY xi and ŷi 'XtY xi. Thus,

yi 'Y y′i; that is, y'Yi = ŷ'Yi . Therefore, φi is an injection from Y 'Yi to X'Xi . �

Proof of Observation. Suppose Y v∗ X. Then Y = Y 0 v Y 1 v · · · v Y K = X for
an integer K. Let i ∈ N and k = 1, ..., K. By Lemma 5(ii), there is an injection φki from(
Y k−1
i

)'
Xk−1 to

(
Y k
i

)'
Xk such that u

(
yk
)

= u
(
yk−1

)
whenever

(
yki
)'

Y k = φi

((
yk−1
i

)'
Y k−1

)
∀i ∈ N . Define φi = φKi ◦ φK−1

i ◦ · · · ◦ φ1
i . Then φi is an injection from Y 'Yi to X'Xi such

that u (x) = u (y) whenever x'Xi = φi (y
'Y
i ) ∀i ∈ N . Similarly, there is an injection from

X'Xi to Y 'Yi because X v∗ Y . Since Y 'Yi and X'Xi are finite, φi must be a bijection. �

Proof of Theorem 5. We show a stronger result: the finitely iterated procedure (by using
the relation `) is “outcome”order independent. Because 1-monotonicity* (w.r.t. v) holds,
by the proof of Theorem 2(a), for two finite “outcome” elimination sequences {Xk}k≤K
and {Y k}k≤K on system (S,`), we have K ×K-grid {Skl}k≤K;l≤K such that XK = SK0 =
c
(
SK0

)
and Y K = S0K = c

(
S0K

)
. Now, consider an auxiliary K×K-grid {S(K+k)l}k≤K;l≤K

for two sequences (starting from SK0)
{
S(K+k)0

}
k≤K and

{
SKl
}
l≤K , where S

(K+k)0 ≡ SK0

for k = 1, ..., K. Since SK0 = c
(
SK0

)
and S(K+k)k = c

(
S(K+k−1)(k−1)

)
for k = 1, ..., K,

S(K+K)K = SK0. Therefore, S0K `∗ SKK `∗ S(K+K)K = SK0 (cf. Figure 2), and hence
XK v∗ Y K . Similarly, Y K v∗ XK . Consequently, XK $ Y K . �

Fig. 2
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Proof of Lemma NWD. Let xi, zi ∈ Xi, w ∈ X tY . Since Y v X, for each j 6= i, there is
x∗j ∈ Xj such that wj 'XtY x∗j . By Lemma 5 (i), u (xi, w−i) = u

(
xi, x

∗
−i
)
and u (zi, w−i) =

u
(
zi, x

∗
−i
)
, where x∗−i =

(
x∗j
)
j 6=i ∈ X−i. Thus, for all w ∈ X t Y , ui (xi, w−i) < ui (zi, w−i)⇔

ui
(
xi, x

∗
−i
)
< ui

(
zi, x

∗
−i
)
and u (xi, w−i) = u (zi, w−i)⇔ u

(
xi, x

∗
−i
)

= u
(
zi, x

∗
−i
)
.

[“only if”part] Suppose xi ≺X zi. Then, (i) ∀x−i ∈ X−i, either ui (xi, x−i) < ui (zi, x−i)
or u (xi, x−i) = u (zi, x−i), and (ii) xi 6'X zi. Therefore, (i) ∀w ∈ X tY , either ui (xi, w−i) =
ui
(
xi, x

∗
−i
)
< ui

(
zi, x

∗
−i
)

= ui (zi, w−i) or u (xi, w−i) = u
(
xi, x

∗
−i
)

= u
(
zi, x

∗
−i
)

= u (zi, w−i),
and (ii) xi 6'XtY zi. That is, xi ≺XtY zi.
[“if” part] Suppose xi ≺XtY zi. Then ∀x ∈ X, either ui (xi, x−i) < ui (zi, x−i) or

u (xi, x−i) = u (zi, x−i) . Since xi 6'XtY zi, ui (xi, w−i) < ui (zi, w−i) for some w ∈ X t Y .
Therefore, ui

(
xi, x

∗
−i
)

= ui (xi, w−i) < ui (zi, w−i) = ui
(
zi, x

∗
−i
)
where x∗−i ∈ X−i. Thus,

xi 6'X zi. That is, xi ≺X zi.�

Proof of Theorem 6. Suppose X ` Y . Then c (X) v Y and Y v X. Let i ∈ N .
By Theorem 5, it suffi ces to show that for each yi ∈ ci (Y ), there is zi ∈ ci (X) such that
zi 'c(X)tc(Y ) yi. Since yi ∈ ci (Y ) ⊆ Yi and Y v X, yi 'XtY xi for some xi ∈ Xi. If
xi ∈ ci (X), we are done by letting zi = xi. If xi /∈ ci (X), by finiteness and transitivity of
NWD, xi ≺X zi for some zi ∈ ci (X). By Lemma NWD, xi ≺XtY zi. Therefore, yi ≺XtY zi.
Since c (X) v Y , zi 'c(X)tY z̃i for some z̃i ∈ Yi. Since yi ∈ ci (Y ) and yi 6≺Y z̃i, again
by Lemma NWD, yi 6≺c(X)tY z̃i. Therefore, yi 6≺c(X)tY zi. Thus, zi 'c(X)tY yi, and hence
zi 'c(X)tc(Y ) yi. �

27



References

1. Ambrus, A.: Coalitional rationalizability. Q. J. Econ. 121, 903-929 (2006)

2. Ambrus, A.: Theories of coalitional rationality. J. Econ. Theory 144, 676-695 (2009)

3. Apt, K.R.: Uniform proofs of order independence for various strategy elimination procedures. B.E.
J. Theoretical Econ. 4, Article 5 (2004)

4. Apt, K.R.: Direct proofs of order independence. Econ. Bull. 31, 106-115 (2011)

5. Asheim, G.B., Perea, A.: Algorithms for cautious reasoning in games. Mimeo, University of Oslo
(2017)

6. Arieli, I.: Rationalizability in continuous games. J. Math. Econ. 46, 912-924 (2012)

7. Bernheim, B.D.: Rationalizable strategic behavior. Econometrica 52, 1007-1028 (1984)

8. Borgers, T.: Iterated elimination of dominated strategies in a Bertrand-Edgeworth model. Rev.
Econ. Stud. 59, 163-176 (1992)

9. Borgers, T.: Pure strategy dominance. Econometrica 61, 423-430 (1993)

10. Brandenburger, A.: The power of paradox: some recent developments in interactive epistemology.
Int. J. Game Theory 35, 465-492 (2007)

11. Brandenburger, A., Friedenberg, A., Keisler, H.J.: Admissibility in games. Econometrica 76,
307-352 (2008)

12. Chen, J., Micali, S.: The order independence of iterated dominance in extensive games. Theoretical
Econ. 8, 125-163 (2013)

13. Chen, Y.C., Long, N.V., Luo, X.: Iterated strict dominance in general games. Games Econ. Behav.
61, 299-315 (2007)

14. Chen, Y.C., Luo, X., Qu, C.: Rationalizability in general situations. Econ. Theory 61, 147-167
(2016)

15. Cho I.-K.: Stationarity, rationalizability and bargaining. Rev. Econ. Stud. 61, 357-374 (1994)

16. Cubitt, R.P., Sugden, R.: The reasoning-based expected utility procedure. Games Econ. Behav.
71, 328-338 (2011)

17. Dekel, E., Fudenberg, D.: Rational behavior with payoff uncertainty. J. Econ. Theory 52, 243-267
(1990)

18. Dekel, E., Siniscalchi, M.: Epistemic game theory. In: H.P. Young and S. Zamir (eds.), Handbook
of Game Theory with Economic Applications, Volume 4, pp.619-702, Elsevier (2015)

19. Dufwenberg, M., Stegeman, M.: Existence and uniqueness of maximal reductions under iterated
strict dominance. Econometrica 70, 2007-2023 (2002)

20. Duggan, J., Le Breton, M.: Choice-theoretic solutions for strategic form games. Mimeo, University
of Rochester (2014)

28



21. Fagin, R., Geanakoplos, J., Halpern, J.Y., Vardi, M.Y.: The expressive power of the hierarchical
approach to modeling knowledge and common knowledge. In: M.Y. Vardi (ed.), Proceedings of
the Fourth Conference on Theoretical Aspects of Reasoning about Knowledge, pp.229-244, Morgan
Kaufman (1992)

22. Fagin, R., Geanakoplos, J., Halpern, J.Y., Vardi, M.Y.: The hierarchical approach to modeling
knowledge and common knowledge. Int. J. Game Theory 28, 331-365 (1999)

23. Gilboa, I., Kalai, E., Zemel, E.: On the order of eliminating dominated strategies. OR Lett. 9,
85-89 (1990)

24. Green, E.: Iterated elimination of dominated strategies in countable-strategy games. Mimeo, Penn
State University (2011)

25. Greenberg, J.: The Theory of Social Situations: An Alternative Game-theoretic Approach. Cam-
bridge University Press, Cambridge (1990)

26. Gul, F.: Rationality and coherent theories of strategic behavior. J. Econ. Theory 70, 1-31 (1996)

27. Halpern, J.Y., Pass, R.: Iterated regret minimization: a new solution concept. Games Econ.
Behav. 74, 184-207 (2012)

28. Heifetz, A.: Common belief in monotonic epistemic logic. Math. Soc. Sci. 32, 109-123 (1996)

29. Heifetz, A.: Iterative and fixed point common belief. J. Philosophical Logic 28, 61-79 (1999)

30. Heifetz, A., Perea, A.: On the outcome equivalence of backward induction and extensive form
rationalizability. Int. J. Game Theory 44, 37-59 (2015)

31. Heifetz, A., Samet, D.: Knowledge spaces with arbitrarily high rank. Games Econ. Behav. 22,
260-273 (1998)

32. Hillas, J., Samet, D.: Weak and strict dominance: a unified approach. Mimeo, Tel Aviv University
(2018)

33. Jackson, M.: Implementation in undominated strategies: a look at bounded mechanisms. Rev.
Econ. Stud. 59, 757-775 (1992)

34. Jara-Moroni, P.: Rationalizability in games with a continuum of players. Games Econ. Behav.
75, 668-684 (2012)

35. Jech, T.: Set Theory. Springer-Verlag, Berlin (2003)

36. Lipman, B.L.: How to decide how to decide how to...: modeling limited rationality. Econometrica
59, 1105-1125 (1991)

37. Lipman, B.L.: A note on the implication of common knowledge of rationality. Games Econ. Behav.
6, 114-129 (1994)

38. Luo, X.: General systems and ϕ-stable sets —a formal analysis of socioeconomic environments. J.
Math. Econ. 36, 95-109 (2001)

39. Luo, X., C.C. Yang: Bayesian coalitional rationalizability. J. Econ. Theory 144, 248-263 (2009)

29



40. Marx, L.M., Swinkels, J.M.: Order independence for iterated weak dominance. Games Econ.
Behav. 18, 219-245 (1997)

41. Milgrom, P., Roberts, J.: Rationalizability, learning, and equilibrium in games with strategic
complementarities. Econometrica 58,1255-1278 (1990)

42. Moulin, H.: Dominance solvable voting schemes. Econometrica 47, 1337-1351 (1979)

43. Moulin, H.: Dominance solvability and Cournot stability. Math. Soc. Sci. 7, 83-102 (1984)

44. Moulin, H.: Choice functions over a finite set: a summary. Soc. Choice Welf. 2, 147-160 (1985)

45. Newman, M.H.A.: On theories with a combinatorial definition of “equivalence”. Annals of Math.
43, 223-243 (1942)

46. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. The MIT Press, MA (1994)

47. Oyama, D., Tercieux, O.: Iterated potential and the robustness of equilibria. J. Econ. Theory
144, 1726-1769 (2009)

48. Pearce, D.G.: Rationalizable strategic behavior and the problem of perfection. Econometrica 52,
1029-1051 (1984)

49. Perea, A.: Order independence in dynamic games. EPICENTER Working paper No. 8 (2017).

50. Perea, A.: Why forward induction leads to the backward induction outcome: a new proof for
Battigalli’s theorem. Games Econ. Behav. 110, 120-138 (2018)

51. Ritzberger, K.: Foundations of Non-Cooperative Game Theory. Oxford University Press, Oxford
(2002)

52. Selten, R., Features of experimentally observed bounded rationality. Eur. Econ. Rev. 42, 413-436
(1998)

53. Sen, A.: Internal consistency of choice. Econometrica 61, 495-521 (1993)

54. Tercieux, O.: p-best response set. J. Econ. Theory 131, 45-70 (2006)

55. Tan, T., Werlang, S.: The Bayesian foundations of solution concepts of games. J. Econ. Theory
45, 370-391 (1988)

56. von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton Univer-
sity Press, Princeton (1944)

57. Watson, J.: Alternating-offer bargaining with two-sided incomplete information. Rev. Econ. Stud.
65, 573-594 (1998)

58. Weinstein, J., Yildiz, M.: Interim correlated rationalizability in infinite games. J. Math. Econ.
72, 82-87 (2017)

59. Yu, H.: Rationalizability in large games. Econ. Theory 55, 457-479 (2014)

30


