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Abstract

Unmanned aerial vehicles (UAVs) have been used in a wide range of appli-

cations and become an increasingly important radar target. To better model

radar data and to tackle the curse of dimensionality, a three-step classifica-

tion framework is proposed for UAV detection. First we propose to utilize the

greedy subspace clustering to handle potential outliers and the complex sample

distribution of radar data. Parameters of the resulting multi-Gaussian mod-

el, especially the covariance matrices, could not be reliably estimated due to

insufficient training samples and the high dimensionality. Thus, in the second

step, a multi-Gaussian subspace reliability analysis is proposed to handle the

unreliable feature dimensions of these covariance matrices. To address the chal-

lenges of classifying samples using the complex multi-Gaussian model and to

fuse the distances of a sample to different clusters at different dimensionalities,

a subspace-fusion scheme is proposed in the third step. The proposed approach

is validated on a large benchmark dataset, which significantly outperforms the

state-of-the-art approaches.
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clustering, multi-Gaussian subspace reliability analysis, subspace fusion

1. Introduction1

Unmanned aerial vehicles have become an increasingly important radar tar-2

get because of the low cost, wide applications and potential threats to public3

security. According to Grand View Research [1], the global market for com-4

mercial UAVs will grow by 17% every year. UAVs have been used for many5

different applications, e.g., package delivery, land surveillance, traffic monitor-6

ing and chasing birds in airport. However, UAVs may impose threats to public7

security, e.g., UAVs near airport may jeopardize the safety of airplanes [2], or8

UAVs may carry bombs or dangerous chemicals in a terrorist attack. Thus, it9

has become increasingly important to reliably detect UAVs using radars.10

Early techniques using kinematic and radar cross-section characteristics [3]11

could not reliably differentiate UAVs from birds, as the both kinds are small and12

slow-moving targets. Many representations of micro-Doppler signature (mDS)13

have been explored, e.g., spectrogram [4–11], cepstrogram [12], cadence velocity14

diagram [13–15], others [16–19], and combinations of the aforementioned [20–15

22]. Particularly in [22], a rich source of features including spectrogram, cepstro-16

gram and CVD are utilized. Most of the representations are closely related to17

spectrogram. mDS has been utilized in many radar-target-recognition tasks [23],18

e.g., airplane classification [24], ship detection [25], human detection [5], gait19

recognition [8, 9], action classification [10, 14] and vehicle classification [26].20

Recently, Wi-Fi communication signals between UAVs and remote controllers21

have been utilized to detect UAVs [27]. However, when a UAV flies in an au-22

tonomous mode without Wi-Fi communication, such a technique will not work.23

Machine-learning techniques have been utilized to automatically detect/classify24

UAVs using radars [6, 11, 15, 17–22, 28]. Artificial neural networks were applied25

on spectrum directly to classify different types of UAVs [28]. Support vector26

machine (SVM) and naive Bayes classifier were applied on the first five principal27

components extracted from spectrogram to differentiate UAVs from birds [6].28
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Huizing et al. employed Alexnet and LSTM-RNN on spectrograms to classify1

mini-UAVs [11], whereas Kim et al. utilized GoogLeNet on the image merged2

from spectrogram and CVD [20]. Similarly, SVM was applied on the feature3

vector obtained from spectrogram and CVD [21]. Patel et al. applied Alexnet4

on four time-frequency representations including spectrogram, cepstrogram and5

CVD for UAV classification [22]. Zhao and Su developed a cyclostationary6

analysis on the phase term of the radar signal to extract the mDS for UAV7

detection [18]. Very recently, empirical mode decomposition was employed to8

extract intrinsic mode functions for UAV classification [19]. Instead of detect-9

ing/classifying one UAV at a time, Zhang and Li detected multiple UAVs by10

using a k-means classifier on the mean CVD averaged along the Doppler fre-11

quency [15]. Most of these approaches utilized spectrogram or time-frequency12

representations that are derived from spectrogram, e.g., cepstrogram and CVD.13

Thus, the proposed approach also utilizes features derived from spectrogram.14

However, most approaches utilized the magnitude spectrogram only. As shown15

in [17], both phase and magnitude spectrograms are useful for classifying the16

radar signal.17

The authors recently developed an automated UAV-detection system utiliz-18

ing the regularized 2-D complex-log Fourier transform to extract spectrogram-19

like features and the subspace reliability analysis to remove unreliable feature20

dimensions [17]. Despite the success, three challenges remain. 1) The com-21

plex sample distribution of radar data. Subspace approaches utilizing up to22

the second-order statistics work well for Gaussianly distributed data [17, 29].23

However, the high-dimensional mDS features deviate largely from Gaussian. 2)24

Outliers in radar data. Due to the poor signal-to-noise ratio of radar signal,25

it is error-prone for human to label the data, which leads to mislabeled data26

(outliers). The outliers are harmful for training classifiers. 3) The curse of di-27

mensionality. It is difficult to robustly model the complex data distribution in28

a high-dimensional feature space.29

In literature, these three challenges have been partially addressed. To model30

the complex distribution of radar data, Regev et al. utilized artificial neural31
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network to classify drones [28]. Zhao et al. utilized stacked auto-encoder and1

extreme learning machine for radar target recognition [30]. To be robust to the2

outliers in radar data, Dong et al. developed a joint sparse representation based3

on multi-task learning [31]. Many approaches have been devoted to address the4

curse of dimensionality. Specifically for radar target recognition, kernel joint5

discriminant analysis [32], sparse representation [31], subspace reliability analy-6

sis [17] and multiple kernel project subspace fusion [33] have been developed for7

dimensionality reduction. In this paper, an integrated three-step classification8

framework is proposed to address these three challenges.9

In the first step, to handle the complex data distribution (Challenge 1) and10

the outliers (Challenge 2), the authors propose to utilize a greedy version of the11

sparse subspace clustering (SSC) algorithm [34, 35], the greedy subspace clus-12

tering (GSC) algorithm [36]. Gaussian mixture model (GMM) [37–39] is often13

used to model the complex data distribution, and the expectation-maximization14

(EM) algorithm [37] is often used to derive the mixture model. One critical chal-15

lenge of the EM algorithm is that the GMM could not be reliably estimated due16

to insufficient training samples and the high feature dimensionality.17

The sparse subspace clustering [34, 35] handles the complex distribution by18

clustering data according to the underlying subspace structure, which leads to19

a multi-Gaussian model if each cluster of samples follow the Gaussian distri-20

bution. The SSC algorithm is robust to outliers owing to the l1 optimization21

when building the similarity matrix. As the SSC is slow, the authors propose to22

utilize the greedy subspace clustering [36]. Instead of the time-consuming l1 op-23

timization in the SSC, the GSC algorithm utilizes a nearest-subspace-neighbor24

algorithm to sequentially find the nearest neighbors to form linear subspaces.25

The neighborhood matrix is then used as the similarity matrix for subsequen-26

t spectral clustering. Similar outliers may form a cluster. Thus, a drop-off27

technique is proposed to remove samples in the smallest cluster as outliers.28

In the second step, to tackle the curse of dimensionality (Challenge 3), a29

multi-Gaussian subspace reliability analysis (MGSRA) is proposed to remove30

the unreliable feature dimensions of the multi-Gaussian model derived in the first31

4



step. The model cannot be reliably estimated due to insufficient samples in each1

cluster and the high dimensionality, especially the dimensions corresponding to2

the small eigenvalues of covariance matrices. As the inverse of covariance matrix3

is used to weigh the feature dimensions, those small eigenvalues will impose very4

large and problematic weights to the corresponding dimensions [17, 29, 40].5

Thus, the MGSRA algorithm is proposed to handle those unreliable feature6

dimensions separately at different subspaces.7

The proposed MGSRA is different from previous approaches [17, 41] in the8

following aspects: 1) Most subspace approaches are designed based on a uni-9

Gaussian model, whereas the MGSRA is built on a multi-Gaussian model, which10

could better model the distribution of radar data. 2) Most subspace approaches11

aim to find one linear subspace that meets a certain optimization criterion,12

whereas the proposed MGSRA aims to find a set of linear subspaces separately13

for each class. A problem thus arises naturally: how to optimally combine the14

results from different subspaces?15

In the third step, a subspace-fusion scheme is proposed to combine these16

results. More specifically, the Mahalanobis distances of a sample to each cluster17

center at a set of given feature dimensionalities are calculated. The rational of18

choosing multiple dimensionalities is that it is difficult to determine the optimal19

feature dimensionality for subspace approaches. Thus, a range of dimension-20

alities covering the optimal one are sampled and the Mahalanobis distances at21

these dimensionalities are evaluated. Then, the distances of a sample to differ-22

ent cluster centers of different classes at different subspace dimensionalities are23

treated as a feature vector, and a support vector machine is trained to combine24

these distances. The proposed subspace fusion works better than traditional25

approaches in which the distances are merged as a posterior probability, and26

evaluated only at some fixed dimensionality for each class [37, 38].27

The contributions of this study are summarized as follow: 1) Three chal-28

lenges for radar UAV detection are identified: the complex data distribution,29

the outliers and the curse of dimensionality. 2) A three-step classification frame-30

work is proposed to address these challenges, i.e. a) the greedy subspace clus-31
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tering is utilized to handle the complex distribution and the outliers of radar1

data; b) a multi-Gaussian subspace reliability analysis is proposed to tackle the2

unreliable feature dimensions of the derived model; c) a subspace-fusion scheme3

is proposed to combine the subspace distances. 3) The proposed approach is4

systematically evaluated on a large benchmark dataset, and demonstrates a5

superior performance compared with the state-of-the-art approaches.6

2. Proposed Three-Step Classification Framework7

2.1. Challenges of UAV Detection8

There are many challenges in detecting/classifying UAVs. Two of them,9

a robust feature representation and unreliable feature dimensions, were well10

addressed in the previous work [17]. Three others remain: the complex data11

distribution, the outliers and the curse of dimensionality.12

2.1.1. Complex Sample Distribution of Radar Data13

Subspace approaches often assume that data follow the Gaussian distribu-14

tion [17, 29, 40–44], as the Gaussian model can be built using only mean and15

variance (covariance for multivariate Gaussian), which can be estimated easily16

from the data. However, in [29], Ren et al. showed that for visual recognition17

the histogram-like features do not follow the Gaussian distribution.18

In this study, the authors find that it is insufficient to use a Gaussian distri-19

bution to model either the UAV class or the non-UAV class, as shown in Fig. 320

later in Section 7.2. This is primarily due to the following: 1) There are many21

different types of UAVs, e.g., helicopter, tricopter, quadcopter, hexacopter, oc-22

tocopter and fixed-wing plane. One Gaussian distribution is not sufficient to23

model all these UAVs, especially the fixed-wing plane is significantly different24

from the rest. 2) The non-UAV class cannot be modeled as one Gaussian model25

either, as it consists of distinct background samples and bird samples. 3) Even26

for the same type of UAVs, data may not be Gaussianly distributed. All these27

lead to a complex data distribution.28
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2.1.2. Outliers in Radar Data1

The radar micro-Doppler signatures are weak, much weaker than the main2

body Doppler. In addition, the thermal noise in a circuit and the noise/interference3

to radar receiver may contaminate radar signals. All these make it difficult to4

label radar targets. The labeling errors may come from different sources: 1)5

As the micro-Doppler signatures are weak, it is error-prone to manually la-6

bel the data by analyzing the radar recordings; 2) The radar may capture the7

micro-motions of background objects, which will distort the radar signals of the8

target; 3) Due to the narrow radar beam, the target may fly in and out of the9

radar beam irregularly, without the notice of operators. 4) The mDS of fixed-10

wing plane is similar to that of gliding birds, which may be wrongly labeled as11

non-UAV if the UAV flies too far away and is not clearly visible in the video12

recordings. Some radar targets thus may be wrongly labeled, and known as13

outliers.14

2.1.3. Curse of Dimensionality15

The curse of dimensionality arises mainly due to high feature dimensionality16

and insufficient data. The feature representation used in the proposed approach,17

regularized 2-D complex-log Fourier transform [17], leads to a high-dimensional18

feature vector. (Refer to Table 7 for more information.) As a result, it is difficult19

to precisely model the complex data distribution using the limited number of20

samples in such a high-dimensional feature space.21

More specifically, the high dimensionality leads to the following: 1) Tradi-22

tional approaches such as the EM algorithm for GMM [37] do not work well23

here. The Gaussian mixture models are often either over-simplified or poorly24

estimated. The authors thus propose to utilize the greedy subspace clustering25

to find the underlying linear subspaces. 2) After clustering, it is still difficult26

to reliably estimate the multi-Gaussian model due to the high dimensionality,27

especially the dimensions corresponding to the small eigenvalues of the covari-28

ance matrices. Thus, a MGSRA algorithm is proposed to tackle these unreliable29

dimensions. 3) It is difficult to use the derived multi-Gaussian model to classify30
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samples in the high-dimensional feature space. Therefore, the authors propose1

to evaluate the Mahalanobis distances in the reduced subspaces at multiple2

dimensionalities and fuse them using the proposed subspace-fusion scheme.3

2.2. Overview of the Proposed Approach4

The block diagram of the proposed approach is shown in Fig. 1. The initial5

features are extracted by using the robust spectral analysis [17], and then the6

proposed three-step classification framework shown in Fig. 1 tackles the afore-7

mentioned three challenges. 1) To tackle the curse of dimensionality, among8

various clustering algorithms, the authors propose to utilize the greedy sub-9

space clustering, as it could model the complex data distribution and handle10

the outliers at the same time. 2) The covariance matrices of the derived multi-11

Gaussian model are important but difficult to be reliably estimated. Thus, a12

multi-Gaussian subspace reliability analysis is proposed to tackle the unreliable13

feature dimensions of the covariance matrices. 3) Finally, a subspace-fusion14

scheme is proposed to evaluate the Mahalanobis distances of a sample to mul-15

tiple cluster centers at different subspace dimensionalities. These distances are16

then fused by a support vector machine. In the following sections, the proposed17

approach will be illustrated in details.18

3. Robust Spectral Analysis19

The initial features are extracted using the regularized 2D complex-log-20

Fourier transform in [17]. The procedures are briefly summarized as follow:21

Firstly, the time-series radar signal s(t) is segmented into I overlapping22

frames {s0, s1, . . . , sI−1}, where si = {si[n], n = 0, 1, . . . , J − 1} is a vector23

of length J . These I frames form a synthetic image S = [s0, s1, . . . , sI−1] of24

size I × J . The discrete Fourier transform fi = [fi,0, fi,1, . . . , fi,J−1] of si,25

fi = F{si}, is computed as:26

fi,k =
J−1∑
n=0

si[n] exp{−j2π
kn

J
}, k = 0, 1, . . . , J − 1, (1)27

28
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Figure 1: The proposed three-step classification framework shown in the three red boxes.

where F{·} denotes the discrete Fourier transform.1

Secondly, the 2-D complex Fourier transform of S is derived, which is equiv-2

alent to two 1-D spectral analysis on S:3

F2D{S} = Ft{F{S}}, (2)4
5

where F{S} is the Fourier transform on S, and Ft{·} is the Fourier transform6

along the time axis. Previous approaches [12, 13] often utilize only the mag-7

nitude of F{S}, whereas both phase and magnitude of F{S} are utilized in8

Ft{·}, because phase spectrums also carry important discriminant information9

for classification [17].10

Thirdly, the weak micro-Doppler signatures are enhanced by taking the log-11

arithm of the spectrum [17]. For fi = F{si} = mi exp{jθi},12

log{fi} = log{mi}+ jθi, (3)13
14

where mi is the magnitude spectrum and θi is the phase spectrum. To balance15

the effects of log{mi} and θi, a weighting factor w is introduced:16

log{fi} = log{mi}+ jwθi. (4)17
18
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w is simply set as w = 1/π so that the phase term is normalized to [−1, 1].1

Fourthly, a regularization term is introduced to Eqn. (4) to reduce the noise,2

because taking the logarithm not only enhances the weak micro-Doppler signa-3

ture, but also enlarges the noise.4

log{fi} = log{mi + ci}+ jwθi, (5)5
6

where ci = med{mi}, i.e. the median value of mi. By adding such a regulariza-7

tion constant ci, the logarithm of the strong frequency component will not be8

significantly altered, whereas the logarithm of the weak frequency component9

will be regularized close to log ci. The variations of noise frequency components10

are hence greatly reduced. Readers may refer to [17] for more details on the11

noise robustness of the robust spectral analysis.12

Finally, the regularized 2-D complex-log-Fourier transform is derived as:13

FR{S} = Ft{log{F{S}}}, (6)14
15

where log{F{S}} is calculated according to Eqn. (5).16

4. Greedy Subspace Clustering17

4.1. Limitations of EM Algorithm for Gaussian Mixture Model18

The Gaussian mixture models [37, 38] have been widely used to handle19

complex data distributions. For D-dimensional feature x ∈ RD, the mixture20

probability density function (PDF) of the likelihood function is defined as:21

p(x|Θ) =

M∑
i=1

αipi(x). (7)22

23

This PDF is a weighted linear combination of M Gaussian densities pi(x), each24

parameterized by a mean vector µi ∈ RD and a covariance matrix Σi ∈ RD×D,25

pi(x) =
1

(2π)D/2|Σi|1/2
exp

{
−1

2
(x− µi)

TΣ−1
i (x− µi)

}
. (8)26

27

Collectively, the model is denoted as Θ = {αi,µi,Σi}, for i = 1, 2, . . . ,M .28
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The Expectation-Maximization algorithm [37] is often used to derive the1

mixture model. It starts with some initial estimation of Θ, and then updates2

Θ by iteratively altering the following: 1) Estimate the membership weights3

for each sample; 2) Estimate the cluster weight, the mean and the covariance4

matrix of each cluster. Due to the curse of dimensionality, it is difficult to use5

the EM algorithm to build a precise mixture model for radar data. Hence the6

model is often simplified, e.g., by sharing the same covariance matrix among7

different classes and/or different mixture components, or by assuming that the8

covariance matrix is diagonal [37]. All these may oversimplify the model so9

that the discrimination power of the GMM is greatly reduced. To address this10

problem, the authors propose to utilize the greedy subspace clustering [36].11

4.2. Motivations of Greedy Subspace Clustering12

The greedy subspace clustering [36] is a greedy version of the sparse subspace13

clustering [35, 45]. The subspace clustering problem is formally defined as:14

Given data points {yi ∈ RD}Ni=1 drawn from a union of independent linear15

subspaces {Si}ni=1, the target is to find dimensions {di}ni=1, subspace bases16

{Ai ∈ RD×di}ni=1 and permutation matrix Γ ∈ RN×N that segment the data,17

Y = [y1,y2, . . . ,yN ] = [Y1,Y2, . . . ,Yn]Γ, (9)18
19

where Yi ∈ RD×Ni are Ni data points drawn from Si and N =
∑n

i=1 Ni. If y is20

a new data point in Si, it can be represented as a linear combination of the di21

points in the same subspace.22

Let Yî ∈ RD×(N−1) denote the matrix obtained from Y by removing the23

i-th column yi, where î means “not i”. ci ∈ RN−1 derived by solving the l124

optimization problem,25

argminci
∥ci∥1 subject to yi = Yîci, (10)26

27

is a vector whose nonzero entries correspond to the points in Yî lying in the28

same subspace as yi. By inserting a zero entry at the i-th row of ci, it becomes29
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an N -dimensional vector c̃i ∈ RN . The l1 optimization is repeated for every yi,1

i = 1, 2, . . . , N . Then, the following coefficient matrix is obtained:2

C = [c̃1, c̃2, . . . , c̃N ] ∈ RN×N , (11)3
4

which can be seen as the similarity matrix for Y . Then, the spectral clustering5

algorithm [36] is applied on C to segment the data.6

The sparse subspace clustering is robust to noise and outliers owning to the7

l1 optimization, but l1 optimization is slow. On the collected UAV-detection8

dataset consisting of more than 10,000 training samples of 7236 dimensions,9

it takes more than 300 seconds for the l1 optimization of one sample. The10

total execution time for all samples is about 35 days, which is too long. In11

addition, memory of a few gigabytes is required for each l1 optimization, and12

hence parallel computing using a graphic card is not a feasible option. These13

are the motivations of using the greedy subspace clustering [36].14

4.3. Nearest-Subspace-Neighbor Algorithm15

The greedy subspace clustering [36] utilizes a nearest-subspace-neighbor (N-16

SN) algorithm to sequentially find nearest neighbors to the subspace spanned by17

point yi and existing neighbors. The spectral clustering algorithm [36] is then18

applied on the neighborhood matrix for clustering. Formally, let Ii denote the19

set of neighbors for data point yi, [N ] denote the set {1, 2, . . . , N}, U denote the20

subspace spanned by the set of neighbors Ii, U denote the set of orthonormal21

bases of subspace U , and I{·} denote an indicator function, which is one if the22

statement is true and zero otherwise. The NSN algorithm is summarized in23

Algorithm 1.24

By initializing Ii ← {i}, the first neighbor is chosen as yi. The NSN algo-25

rithm then finds K neighbors sequentially. At step k, a k-dimensional subspace26

U spanned by yi and the k − 1 neighbors is constructed, and the point closest27

to the subspace is selected. After k > kmax, the subspace U constructed at step28

kmax is used, and the points closest to the subspace U are chosen as neighbors29

for the rest of the process.30

12



Algorithm 1 Nearest-subspace-neighbor algorithm

Input: A collection of data points {yi ∈ RD}Ni=1, the number of expected

neighbors K, and maximum subspace dimension kmax.

Output: A neighborhood matrix W ∈ {0, 1}N×N .

yi ← yi/∥yi∥2, ∀i ∈ [N ]. ◃ Normalized to unit variance.

for i = 1, 2, . . . , N do ◃ Run NSN for each data point.

Ii ← {i}. ◃ Initialize Ii as {i}.

for k = 1, 2, . . . ,K do ◃ Iteratively add the closest point.

if k ≤ kmax then

U ← S{yj , j ∈ Ii}. ◃ Construct the subspace spanned by yj .

end if

j∗ ← argmaxj∈[N ]\Ii
∥UTyj∥2. ◃ j∗ is the nearest neighbor to U .

Ii ← Ii ∪ {j∗}. ◃ Add j∗ to the set of nearest neighbors.

end for

Wij ← I{j ∈ Ii or yj ∈ U}. ◃ Construct the neighborhood matrix.

end for

13



A brief time complexity analysis of the NSN algorithm is presented as fol-1

low: At step k of the inner loop, the time complexity is O(D2 + k3) to derive2

the spanned subspace U using Singular Value Decomposition. The time for3

argmaxj∈[N ]\Ii
∥UTyj∥2 is O(kDN). Thus, the time for the most inner loop in4

Algorithm 1 is O(D2+k3+kDN). The time complexity for the whole algorithm5

is O(N(KD2 +
∑K

k=1 k
3 +

∑K
k=1 kDN) = O(NKD2 + NK4 + NDK2). Note6

that when K ≪ D, the time complexity can be simplified as O(NKD2).7

The GSC algorithm clusters data according to the underlying subspace struc-8

ture. As a result, a multi-Gaussian model is derived for each class. The pro-9

posed MGSRA algorithm then removes the unreliable feature dimensions of the10

derived model, as illustrated in Section 5.11

4.4. Outlier Removal by Cluster Drop-off12

Although the GSC algorithm is robust to outliers to some extent, mislabeled13

data may be similar to each other and form a cluster, e.g., the UAV may fly14

out of the sight of a radar, but the radar recordings may be mislabeled as15

UAV samples, and these similar outliers may form a cluster. To tackle this16

problem, a simple heuristic is proposed to remove the outliers, i.e., the cluster17

with the smallest number of samples for each class is dropped off. In general,18

the mislabeled data only account for a small portion of the dataset. If they form19

a cluster, most likely they form the smallest cluster.20

5. Multi-Gaussian Subspace Reliability Analysis21

In [17], the subspace reliability analysis was utilized to remove the unreliable22

feature dimensions in the UAV and non-UAV classes separately in two different23

subspaces. The samples of each class are assumed to follow the Gaussian dis-24

tribution. However, one Gaussian is not sufficient to model the complex data25

distribution. The authors thus propose to utilize the greedy subspace cluster-26

ing to find the underlying subspace structure, as shown in the previous section,27

which naturally leads to a multi-Gaussian model.28
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The derived model could not be reliably estimated due to the curse of di-1

mensionality. For the i-th cluster of the j-th class, the PDF of the Gaussian2

model is given as:3

pij(x) =
1

(2π)D/2|Σij |1/2
exp

{
−1

2
(x− µij)

TΣ−1
ij (x− µij)

}
, (12)4

5

where µij ∈ RD andΣij ∈ RD×D are the mean vector and the covariance matrix6

for the i-th cluster of the j-th class, respectively. The key issue here is to reliably7

estimate the covariance matrices Σij ∈ RD×D so that the Mahalanobis distance8

(x − µij)
TΣ−1

ij (x − µij) could be evaluated reliably. The small eigenvalues of9

the covariance matrices could not be reliably estimated. As the inverse of Σij10

is used to weigh the feature dimensions, those small eigenvalues are harmful for11

classification [40]. If the number of samples N < D, some eigenvalues of Σij will12

be zero and induce infinitely large weights. Even in the case that Σij has full13

rank, the small eigenvalues of Σij still cause trouble, as their inverses introduce14

problematic large weights to the feature dimensions. To tackle this problem, a15

multi-Gaussian subspace reliability analysis is proposed.16

Denote the Mahalanobis distance of x to the i-th cluster of the j-th class as17

dij(x) =
1

2
(x− µij)

TΣ−1
ij (x− µij). (13)18

19

The targets are to remove the small eigenvalues of Σij so that dij(x) could be20

evaluated reliably, and to preserve the discriminant information among different21

classes, which mainly resides in the between-class scatter matrix22

Σb =
c∑

j=1

(µj − µ)(µj − µ)T , (14)23

24

where µj is the mean vector for the j-th class, µ is the global mean and the25

number of class c = 2 for UAV detection. To remove the unreliable feature26

dimensions of Σij , and preserve the discriminant information in Σb, the eigen-27

decomposition is applied on Sij = Σij +Σb as:28

Sij = ΦijΛijΦ
T
ij , (15)29

30
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whereΦij andΛij are the eigenvector and eigenvalue matrices of Sij , respective-1

ly. Then, the eigenvectors are chosen corresponding to the leadingm eigenvalues2

of Sij , i.e., Φijm, as the projection matrix. The Mahalanobis distance dij(x) in3

the projected m-dimensional subspace becomes:4

dijm(x) = (x− µij)
TΦijm(ΦT

ijmΣijΦijm)−1ΦT
ijm(x− µij). (16)5

6

The optimal feature dimensionality cannot be easily determined. Thus,7

many subspace approaches report the classification accuracies at different di-8

mensionalities to show how the accuracies vary with the dimensionality, without9

determining the optimal dimensionality in advance. In the proposed approach,10

the distances are evaluated at a range of dimensionalities that probably will11

cover the optimal one. As these distances are evaluated in different subspaces,12

their scalings are different, and they should be properly weighted before fusion.13

Most importantly, a proper classification scheme needs to be developed for the14

derived multi-Gaussian model. To address these challenges, a subspace-fusion15

scheme is proposed as illustrated in the next section.16

6. Proposed Subspace-Fusion Scheme17

The proposed subspace-fusion scheme aims to combine the Mahalanobis dis-18

tances defined in Eq. (16) and to build a classifier for the derived multi-Gaussian19

model. These Mahalanobis distances form a feature vector,20

d(xk) = [dijm(xk)], (17)21
22

where i = 1, 2, . . . ,Mj is the index of clusters, j = 1, 2, . . . , c is the index of23

classes, and m is the index of subspace dimensionalities. Assume that all class-24

es have the same number of clusters M , and the Mahalanobis distances are25

evaluated at L different subspace dimensionalities for each cluster, the distance26

vector d(xk) ∈ RMcL. A support vector machine is trained using the derived27

feature vector d(xk), k = 1, 2, . . . , N . For a new testing sample t, d(t) is e-28

valuated and the class label is predicted using the trained SVM. The proposed29

subspace-fusion scheme has the following advantages:30

16



1. For many subspace approaches [17, 29, 40–44], it is difficult to find the op-1

timal feature dimensionality. In the proposed approach, the Mahalanobis2

distances are evaluated at a given set of dimensionalities, without the need3

of selecting the optimal dimensionality. It is much easier to choose a range4

of dimensionalities covering the optimal one, than to precisely determine5

it in advance.6

2. The proposed scheme determines the optimal weights for the Mahalanobis7

distances through the trained SVM, which solves the problem of optimally8

combining these distances. It definitely outperforms other approaches in9

which the distances are evaluated at a single (optimal) dimensionality [37].10

3. The proposed scheme addresses the challenge of developing a proper classi-11

fier for the multi-Gaussian model. Traditional maximum-a-posterior clas-12

sifier for the GMM [37] cannot work properly here as the posterior prob-13

abilities cannot be reliably estimated due to the curse of dimensionality.14

The proposed approach tackles the problem by evaluating the distances in15

many reduced subspaces, and fusing them using a support vector machine.16

7. Experimental Evaluation17

7.1. Experimental Setup18

The measurement data were collected by Thales using a low-power continuous-19

wave radar operating at X-band (9.7 GHz radio frequency). Some signals were20

sampled at 192 kHz and others at 96kHz. They are all normalized to 96kHz21

in the experiments. A horn antenna was manually adjusted toward the nearby22

target object. Bird samples were collected within the distance of 5-50 meters to23

the radar, and UAV samples were collected within the distance of 3-150 meters24

to the radar.25

The dataset used in [17] consists of multiple radar recordings of UAVs and26

birds, varying in length. The total length of all recordings reaches 1058 seconds,27

including 854 seconds of UAV recordings and 204 seconds of non-UAV record-28

ings. To better evaluate the performance of the proposed system, the dataset29

17



is extended using additional data provided by Thales. The extended dataset1

consists of 48 radar recordings, including 2087-second recordings of UAVs and2

322-second recordings of non-UAVs. The dataset covers a wide range of UAVs3

such as single-rotor, multi-rotor and fixed-wing types, and non-UAVs including4

background and targets most similar to UAVs such as birds. Hence the data5

distribution well represents the data population for UAV detection after filtering6

out targets obviously different from UAVs by other means. The model built on7

the dataset could be applied in practical scenarios. The sample spectrograms8

of UAVs and birds are shown in Fig. 2.

(a) Spectrogram of Easystar glider (b) Spectrogram of Trex 450 helicopter

(c) Spectrogram of a bird (d) Spectrogram of a group of birds

Figure 2: Sample spectrograms of UAVs and birds.

9

As a longer duration is needed for the dynamic time warping (DTW) [4], the10

recordings are chopped into 1-second samples when evaluating DTW. For other11

approaches, the recordings are chopped into 50-ms samples, unless otherwise12

18



stated. As a result, there are in total 2409 samples when evaluating DTW, and1

48180 samples when evaluating others. This is a relatively large dataset for a2

two-class classification problem. Half of the dataset is randomly chosen as train-3

ing samples, and the other half is chosen as testing samples. The experiments4

are repeated 10 times, and the average performance is reported.5

Denote the number of UAV samples being correctly classified and falsely6

classified as nTP and nFN , and the number of non-UAV samples being cor-7

rectly classified and falsely classified as nTN and nFP , respectively. The false8

acceptance rate (FAR) and the false rejection rate (FRR) are defined as follow:9

FAR =
nFP

nFP + nTN
, (18)10

FRR =
nFN

nFN + nTP
. (19)11

12

By varying the decision threshold, different combinations of FAR and FRR13

could be derived. When these two error rates are the same, it is defined as the14

equal error rate (EER). Three evaluation criteria are reported in this paper:15

EER, the FAR at the FRR of 1% (denoted as FARFRR=1%) and the FAR at16

the FFR of 0.1% (denoted as FARFRR=0.1%). These three criteria are chosen17

because: 1) The EER is commonly used in detection tasks. 2) To evaluate how18

the system performs at a low missing detection rate of UAVs (i.e., a low FRR),19

FARFRR=1% and FARFRR=0.1% are reported.20

The regularized 2-D complex-log Fourier transform [17] is utilized as the21

initial feature representation, in which the spectrum utilizes 256 data points22

and the windows have 50% overlapping. After removing the clutter and some23

unreliable high-frequency components, the initial feature vectors have 201×36 =24

7236 dimensions for 50-ms samples.25

7.2. Analysis of Data Distribution26

The distribution of the dataset is examined how far it deviates from the27

Gaussian. The feature vectors have 7236 dimensions. It is infeasible to visualize28

the data distribution in such a high-dimensional space. Thus, the first two29

principal components of the UAV/non-UAV class are extracted. Then, the30
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(a) 3 clusters for UAV samples (b) 4 clusters for UAV samples

(c) 3 clusters for non-UAV samples (d) 4 clusters for non-UAV samples

Figure 3: The feature dimension is 7236. The first two principal components are extracted

and used to plot the distribution of UAV/non-UAV samples in the subspace built from the

first two principal components, and the clustering results with 3 and 4 clusters for UAV and

non-UAV classes, respectively. The figure shows that the distributions of both UAV class and

non-UAV class are far away from the Gaussian.

clustering results using the GSC algorithm with 3 and 4 clusters for the UAV1

class and the non-UAV class are plotted respectively in the subspace built from2

the first two principal components, as shown in Fig. 3. Take note that the results3

are plotted in two different subspaces, as they utilize the first two principal4

components of UAV samples and non-UAV samples, respectively.5

The following can be observed from the plots:6

1. The distributions of both UAV and non-UAV classes are far away from7

20



the Gaussian. This is consistent with the previous analysis that neither1

UAV nor non-UAV samples follow the Gaussian distribution.2

2. The data distribution of the UAV class is difficult to model, as there are3

many different kinds of UAVs. In addition, due to the pose variations, the4

micro-Doppler signatures of UAVs may appear very different.5

3. For the non-UAV class, there are roughly two clusters, which correspond6

to background samples and bird samples, two main types of non-UAVs in7

the current dataset.8

4. For both UAV and non-UAV samples, there are some outliers, which are9

far away from any cluster. Both the complex data distribution and the10

outliers are the motivations of using the greedy subspace clustering to11

handle these two challenges.12

7.3. Comparison to State-of-the-Art Approaches13

In literature, not many approaches are specifically designed for classifying14

UAVs from birds, except support vector machine on the integrated feature vector15

derived from spectrogram and cadence velocity diagram [21] and the authors’16

previous approach [17]. The dynamic time warping [4] and the robust principal17

component analysis (PCA) [7] are two recent approaches published in reputable18

journals, but designed for other radar-target-recognition tasks. They are hence19

modified for UAV detection and compared with the proposed approach.20

7.3.1. Classification Results Using Dynamic Time Warping21

The dynamic time warping1 [4] is applied on the spectrogram to align the22

possible time variations. The recordings are chopped into 1-second samples due23

to computational complexity constraints. The optimal path derived by DTW is24

treated as the distance between two samples. The distances from one sample to25

all others are treated as the feature vector. A linear support vector machine with26

1The matlab code of DTW can be downloaded from http://labrosa.ee.columbia.edu/

matlab/dtw/.
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the cost parameter C = 40 is trained as the classifier. The average classification1

errors over 10 trials are shown in Table 1.

EER FARFRR=1% FARFRR=0.1%

18.69% 92.93% 99.36%

Table 1: Classification errors using the dynamic time warping [4].

2

It can be seen that the dynamic time warping does not well solve the UAV-3

detection problem. The equal error rate is quite high. If the false rejection rate4

is expected to be low, the false acceptance rate is very high, as high as 92.93%.5

7.3.2. Classification Results Using Robust PCA6

The same procedures as in [7, 17] are utilized to implement the robust PCA.7

The feature vector is obtained by averaging the spectrogram over time. The8

minimum covariance determinant (MCD) estimator implemented using “rrcov”9

package in R programming is used to remove the outliers. PCA is then used to10

reduce the feature dimensionality. Finally, the feature vectors are normalized to11

zero mean with unit variance, and classified by a linear support vector machine12

with the cost parameter C = 40.13

The error rates at various dimensionalities are shown in Fig. 4. These three14

figures follow the same trend, i.e., the error rates at very low dimensionality are15

high, drop with increasing dimensionality, and stabilize at high dimensionality.16

The lowest error rates in these three figures are achieved at 80 dimensions. The17

error rates at this optimal dimensionality are shown in Table 2. The robust18

PCA performs better than the DTW.

EER FARFRR=1% FARFRR=0.1%

10.15% 53.41% 81.34%

Table 2: Classification performance using the robust PCA [7].

19
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Figure 4: Error rates vs. feature dimensionalities for the robust PCA [7].

7.3.3. Support Vector Machine on Spectrogram and Cadence Velocity Diagram1

A support vector machine was applied on spectrogram and cadence velocity2

diagram to differentiate UAVs from birds [21]. The implementation described3

in [21] is strictly followed. The feature vector consists of three parts: 1) The4

average spectrogram over time; 2) The first left singular vector of the spec-5

trogram after the Singular Value Decomposition on the spectrogram; 3) The6

average cadence velocity diagram over cadence frequency. These three are then7

concatenated as the final feature vector and classified by a linear support vector8

machine with the cost parameter C = 40. This approach is named as SVM-S-9

CVD. The classification results are shown in Table 3. SVM-S-CVD performs10

better than DTW and RPCA, as it utilizes both spectrogram and CVD.

EER FARFRR=1% FARFRR=0.1%

7.46% 41.30% 90.24%

Table 3: The error rates for a support vector machine on the integrated feature vector ex-

tracted from spectrogram and cadence velocity diagram [21].

11

7.3.4. Performance Evaluation of Proposed Approach12

Now the proposed approach (greedy subspace clustering, multi-Gaussian13

subspace reliability analysis and subspace-fusion scheme, denoted as GSC-MGSRA-14

SF) is compared with the subspace reliability analysis based on the uni-Gaussian15

model (denoted as SRA) [17]. Both utilize the robust spectral analysis in Sec-16
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tion 3 to extract the initial feature representation. In addition, GMM-MGSRA-1

SF is implemented to evaluate the performance gain over the GMM, where GSC2

is replaced by the Gaussian mixture model and the rest procedures are the same3

as the proposed approach.4

SRA: The subspace reliability analysis is applied on two covariance matrices5

separately in two different subspaces, and a ratio test is employed to differentiate6

UAVs from non-UAVs. The dimensionality of these two subspaces is reduced7

using SRA to {1, 2, . . . , 10, 20, 30, . . . , 200}, respectively, and the performance8

at the optimal combination of these two dimensionalities is reported.9

Proposed GSC-MGSRA-SF: As SRA is evaluated for at most 200 dimen-10

sions, the principal component analysis is applied to reduce the dimensionality11

from 7236 to 200 for a fair comparison. Then, the greedy subspace clustering12

is applied on the UAV class and the non-UAV class, respectively. To evaluate13

how the performance varies with the number of clusters, the number of clusters14

is explicitly chosen as 5, 10 and 20 for both classes. For the nearest-subspace-15

neighbor algorithm [36], the number of nearest neighbors is set as 40 2 and the16

number of feature dimensions of the linear subspace is set to the default value17

20. To remove the outliers that may form a cluster, the samples in the smallest18

cluster for each class are removed.19

The Mahalanobis distances at dimensions of {1, 2, . . . , 10, 20, 30,. . . ,200}20

are evaluated for both UAV and non-UAV classes. These dimensionalities are21

well spread across the possible optimal dimensionality within 200. These dis-22

tances are treated as the feature vector and classified by a linear support vector23

machine. The cost parameter for the SVM is explicitly set to 20. The proposed24

approach is denoted as GSC-MGSRA-SF-M , where M denotes the number of25

clusters used.26

GMM-MGSRA-SF: To show the performance gain against the Gaussian mix-27

2The default value is 20. As there are thousands of samples, the similarity matrix is large.

It will lead to a very sparse similarity matrix if utilizing only 20 nearest neighbors, and lead

to numerical instability for the subsequent spectral clustering. Thus it increases to 40.
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ture model, the GSC algorithm is replaced by GMM and the rest procedures are1

kept the same as the proposed approach. Due to the curse of dimensionality,2

the same diagonal matrix is used for all clusters of each class when building the3

mixture model using the EM algorithm. The number of mixture components is4

set to 5 for each class. The experimental results are summarized in Table 4.

Method EER FARFRR=1% FARFRR=0.1%

SRA [17] 5.56% 25.20% 44.80%

GMM-MGSRA-SF 4.76% 16.15% 43.52%

GSC-MGSRA-SF-5 3.95% 14.50% 44.37%

GSC-MGSRA-SF-10 3.13% 7.91% 40.77%

GSC-MGSRA-SF-20 3.05% 7.55% 30.01%

Table 4: Comparison to SRA and GMM-MGSRA-SF, and evaluation of the proposed approach

on different number of clusters used in the greedy subspace clustering algorithm.

5

The following can be observed from Table 4. The proposed GSC-MGSRA-6

SF outperforms SRA, which shows the advantages of modeling the complex7

data distribution as the multi-Gaussian model over the uni-Gaussian one. The8

proposed approach also outperforms GMM-MGSRA-SF, which shows the effec-9

tiveness of the GSC algorithm over the Gaussian mixture model. In general,10

the error rates decrease with the increase of the number of clusters used in11

GSC-MGSRA-SF. The multi-Gaussian model better models the complex data12

distribution by using more clusters. The performance gain becomes marginal13

when the number of clusters is large. When more clusters are used, the number14

of samples falling into each cluster becomes smaller. Thus, the distribution of15

each cluster may not be well estimated using a limited number of samples. As a16

result, the performance gain is small, or the performance may even drop if the17

number of clusters increases further. For the rest of experiments, the number18

of clusters is set to 20.19

The performance comparisons to the state-of-the-art approaches are summa-20

rized in Table 5. The proposed approach significantly outperforms the others.21
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Method EER FARFRR=1% FARFRR=0.1%

DTW [4] 18.69% 92.93% 99.36%

RPCA [7] 10.15% 53.41% 81.34%

SVM-S-CVD [21] 7.46% 41.30% 90.24%

SRA [17] 5.56% 25.20% 44.80%

GMM-MGSRA-SF 4.76% 16.15% 43.52%

Proposed GSC-MGSRA-SF 3.05% 7.55% 30.01%

Table 5: Summary of the comparisons to the state-of-the-art approaches.

1

7.4. Performance Evaluation on Noise Robustness2

Noise is injected into the radar return signal to evaluate the noise robustness3

of the proposed approach. The signal-to-noise ratio (SNR) is calculated as:4

SNR = 10 log10

(
Px

Pn

)
, (20)5

6

where Pn is the power of the injected Gaussian noise and Px is the power of the7

radar signal after removing the clutter. Gaussian noise is used as it is one of8

the most common noise types. The clutter is removed before injecting the noise9

as it is not relevant to the radar target but much stronger than the Doppler10

signatures. Note that the main body Doppler is much stronger than the micro-11

Doppler signatures. Thus, the actual SNR w.r.t. mDS is much lower than the12

reported SNR. The error rates for different SNRs are summarized in Table 6.13

Table 6 shows that when the noise is small or even comparable to the micro-14

Doppler signatures, the proposed approach achieves a fairly good performance.15

The error rates do not change significantly when the noise level is low. The16

proposed approach is shown robust to noise. Even when the noise level is high,17

the error rates of the proposed approach remain at a reasonable level.18

7.5. Performance Evaluation by Varying Observation Durations19

Here, the proposed approach is evaluated for various observation durations.20

Intuitively, if there is a longer observation duration, more information about the21
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SNR EER FARFRR=1% FARFRR=0.1%

-10 12.79% 39.12% 66.35%

0 5.87% 21.56% 57.79%

10 3.37% 8.39% 47.35%

20 3.10% 8.10% 51.81%

clean 3.05% 7.55% 30.01%

Table 6: The classification errors vs. different SNRs. The proposed approach is robust to

noise to a large extent.

radar target can be obtained, and hence a higher classification accuracy can be1

achieved, but the extracted feature vector will become larger.2

In the previous experiments, the observation duration is set as 50 ms, as3

suggested by Thales. In this experiment, the system is evaluated for the obser-4

vation durations of 10, 25, 50, 100 and 200 ms. Table 7 summarizes the initial5

feature dimensionality and the number of samples for different observation du-6

rations. If the number of samples is large, the NSN algorithm used in the greedy7

subspace clustering will take a long time to execute as it needs to loop through8

all samples to find the nearest subspace neighbors, and the subsequent spectral9

clustering requires a large amount of memory and a long execution time. On the10

other hand, if the initial feature dimensionality is large, the covariance matrix11

of the initial feature vector will be large and require a huge amount of memory.12

13

The error rates and the average execution time of one sample vs. the ob-14

servation durations are shown in Table 8. The proposed approach is trained15

and tested on a Dell PC with Intel Xeon Silver 4108 CPU @1.80 GHz. The16

experimental results are consistent with the previous analysis, i.e., longer the17

observation window, better the classification performance. When the duration18

is very short, e.g., 10 ms, the classification errors significantly increase because19

not even one full rotation cycle of the rotor blade of a UAV could be captured in20

such a short time. The intra-class variations of the UAV class greatly increase,21
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Observation

duration (ms)

Initial feature

dimensionality

The number

of samples

10 1,206 240,900

25 3,417 96,360

50 7,236 48,180

100 14,874 24,090

200 29,949 12,045

Table 7: The initial feature dimensionality and the number of samples vs. the observation

durations. If the duration is long, the feature dimensionality will be large. On the other hand,

if the duration is short, the number of samples will be large.

and hence the error rates significantly increase. On the other hand, when the1

observation duration is sufficiently long, the error rates do not significantly de-2

crease with a further increase of the duration, e.g., the performance gain from3

100 ms to 200 ms is not as significant as others. In terms of execution time,4

although the proposed approach looks complicated, it could predict one sample5

in real time.

Observation

duration (ms)

EER FARFRR=1% FARFRR=0.1% Execution

time (ms)

10 8.45% 37.87% 65.39% 3.61

25 4.20% 15.08% 56.42% 4.06

50 3.05% 7.55% 30.01% 4.76

100 2.02% 3.50% 22.57% 7.99

200 1.72% 2.31% 13.41% 20.81

Table 8: Classification error rates and average prediction time of one test sample for different

observation durations.

6

7.6. Demo of UAV Detection7

A live demo for UAV detection is implemented using Matlab. The demo8

GUI is shown in Fig. 5. The sub-figure shown at the top is the spectrogram of9
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the radar signal. The sub-figure on the bottom-left is the video capture of the1

target and the real-time classification result for the current sample of 50 ms is2

shown on the right. The cumulative classification results as UAVs or non-UAVs,3

and the classification time for the current sample are shown in bottom-middle.4

Once the demo starts execution, the user will be prompted to choose a radar5

recording for analysis. The overlapping ratio of 50% is preset in the demo, as6

the model needs to be re-trained if the key parameters change. The overlapping7

ratio controls the time resolution of the spectrogram. Larger overlapping ratio8

means higher resolution and hence higher classification accuracy at a cost of9

higher computational complexity. For a speed-accuracy trade-off, it is set to10

50%. It takes about 15.33 ms to classify a sample using Matlab 2019a, on a11

Dell PC with Intel Xeon Silver 4108 CPU @1.80 GHz. This demo shows that12

the proposed system can detect UAVs reliably in real time.

Figure 5: GUI of the UAV-detection demo. It shows that the proposed system could detect

UAVs reliably in real time.

13
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8. Conclusion1

In this paper, a three-step classification framework is proposed to address2

three challenges in radar UAV detection: outliers in the data, complex data3

distribution and the curse of dimensionality. In the first step, the authors pro-4

pose to utilize the greedy subspace clustering to handle the outliers and model5

the complex data distribution. The expectation-maximization algorithm to de-6

rive the Gaussian mixture model could not well cluster the samples due to the7

curse of dimensionality. To circumvent this problem, a multi-Gaussian sub-8

space reliability analysis is proposed in the second step to handle the unreliable9

feature dimensions of the derived multi-Gaussian model. In the third step, a10

subspace-fusion scheme is proposed to combine the distances of a sample to d-11

ifferent clusters of different classes at different dimensionalities. The proposed12

system is compared with existing approaches on a large benchmark dataset, and13

significantly outperforms the state-of-the-art approaches.14

The proposed three-step classification framework could well handle the com-15

plex distribution of radar data. However, a potential problem here is that the16

model in the early stage is optimized without considering the later ones. The17

future plan is to integrate these three steps as one unified algorithm, e.g., con-18

sidering the reliability of newly added subspace during the GSC algorithm. The19

second potential research direction is to integrate the proposed subspace fusion20

with other subspace approaches, where the optimal dimension is difficult to de-21

termine or a single optimal dimension is not sufficient. Thirdly, it is still an open22

question how to optimally model the complex data distribution. The proposed23

framework demonstrates the effectiveness of the multi-Gaussian model. The24

plan is to explore other ways to construct the model, or extend this research to25

other pattern-recognition tasks, e.g., from UAV detection to UAV classification.26

Lastly, as a new dataset has been collected using SQUIRE radar (a FMCW27

radar) from Thales, the authors will explore the feasibility of not only detecting28

UAV, but also determining the direction and the distance of the UAV to the29

radar.30
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