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Abstract. The advances of 5G, sensors, and information technologies enabled 

proliferation of smart pervasive sensor networks. 5G mobile networks provide 

low-power, high-availability, high density, and high-throughput data capturing 

by sensor networks and continuous streaming of multiple measured variables. 

Rapid progress in sensors that can measure vital signs, advances in the 

management of medical knowledge, and improvement of algorithms for decision 

support, are fueling a technological disruption to health monitoring. The increase 

in size and complexity of wireless sensor networks and expansion into multiple 

areas of health monitoring creates challenges for system design and software 

engineering practices. In this paper, we highlight some of the key software 

engineering and data-processing issues, along with addressing emerging ethical 

issues of data management. The challenges associated with ensuring high 

dependability of sensor network systems can be addressed by metamorphic 

testing. The proposed conceptual solution combines data streaming, filtering, 

cross-calibration, use of medical knowledge for system operation and data 

interpretation, and IoT-based calibration using certified linked diagnostic 

devices. Integration of blockchain technologies and artificial intelligence offers 

a solution to the increasing needs for higher accuracy of measurements of vital 

signs, high-quality decision-making, and dependability, including key medical 

and ethical requirements of safety and security of the data. 

Keywords: Health data streaming, Health monitoring, Metamorphic testing, 

Smart Health, Mobile Health, Big Data  

1 Introduction 

Wireless sensor networks (WSNs) are spatially distributed sensor systems that 

concurrently measure targeted variables. The WSNs monitor variables, record and 

communicate the data for immediate processing or for processing and storage. 

Distributed WSNs monitor air quality in a defined broader location such as building, 

airport, or other geographic areas. Localized WSNs are more limited and may include 

personal health monitoring systems or in-vehicle sensor systems [1]. The main 

problems restricting WSNs deployment are hardware constraints and limited energy 
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resources. With the miniaturization and proliferation of cheap consumer-grade sensors, 

WSNs are producing increasing quantities of data. The ability to capture, process, store, 

synchronize, and manage multiple data streams from large dynamic WSNs a continual 

challenge. This limits our ability to respond in real-time, when needed [2]. Data 

accumulation rate is accelerating, and there is a great need for ultra-efficient algorithms 

that can process data at the source enabling rapid decision-making support. Popular 

estimates state that the total amount of data generated from various sources doubles 

every two years. The 5G mobile infrastructure is already experimentally rolled out. This 

will rapidly increase data capacity and usage (Table 1) [3].  

Table 1. 5G mobile network capabilities [3]. 5G supports multi-sensor body area networks with 

and their real-time connectivity with multiple devices, while 4G networks require data storing 

and subsequent synchronization and transmission of the data between devices.  

5G Capabilities Range Improvement over 4G 

Point-to-point data latency 1 ms 10 times 

Simultaneous connections 5/m2 100 times 

Peak data rates 50Gbit/s 50 times 

Normal user data rates 1 Gbit/s 100 times 

Traffic volume  50 Tbits/s 100-1000 times 

 

Increases in volume, speed, and coverage of data communication require new hardware, 

system design, and software solutions. The challenges include needs to improve sensor 

accuracy, synchronization, miniaturization, and reliability of sensors, much higher 

energy efficiency, robustness of sensors, and improved connectivity and performance 

of the Internet of Things (IoT) devices. New software solutions are needed for filtering, 

compression, and real-time decision-making. The increased complexity of WSN 

systems as well as increased dependence on these systems for monitoring, control, 

optimization, and decision-making requires software engineering (SE) solutions. The 

safety, security, governance, privacy, and right to access and use the data are among 

the societal and ethical issues that need to be considered. 

5G connectivity enables rapid expansion of WSNs, both in physical scope and 

complexity. A 5G mobile phone can support not less than 40 wide area network (WAN) 

bands as well as multiple radio frequencies for wireless local area networks (WLANs) 

[4]. Different types of LANs have been defined by size, such as personal (PAN), home 

(HAN), and storage (SAN) area networks, as well as larger ones, such as campus area 

(CAN) or metropolitan area (MAN) area networks. Some network types, according to 

their physical scope are listed in Table 2. 

Table 2. Network types, by physical scope. Health monitoring may involve sensor systems and 

measurements of data at all scales. 

Type of network (area) Acronym Range* References 

Nanoscale – MCF [5] 

Near field NFC D2D [6] 

Body BAN D2D [7] 

Personal PAN D2D [7] 
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Near-me NAN D2D [8] 

Home HAN LAN [9] 

Airport  – LAN [9] 

Storage SAN LAN [10] 

Campus CAN WAN [11] 

Metropolitan MAN WAN [11] 

Cloud – IAN [12] 

*MCF – molecular communication framework, D2D – device to device communication, LAN – local area 

network, WAN – wide area network, IAN – Internet area network. 

 

Connectivity and communication between devices, objects, systems, and living 

beings provide data for monitoring health. Data are collected by embedded sensors, 

devices or instruments, and transferred by communication devices to analytical devices 

for processing. Analytical devices process, exchange and store the data. Decision 

support algorithms, as part of data processing, provide for appropriate actions or 

responses to certain situations. These actions or responses involve sensing of the 

environment and bodily functions and alerting or prompting people to respond to 

various situations and conditions or triggering automated responses. Devices and 

systems that involve sensors, data communication, and real-time responses are known 

as smart technologies. Such systems include smartphones, clocks, cameras, or 

appliances. More complex smart systems include smart cars, homes, buildings, 

hospitals or broader geographic areas, such as smart cities [13,14]. The convergence of 

hardware (sensor systems, embedded electronics, information and communications 

technology (ICT)) and software (real-time data analytics, machine learning, and 

artificial intelligence methods for decision-making) advances enabled the emergence 

of the Internet of Things (IoT). IoT is a network of devices and systems, such as 

vehicles, home appliances, or health monitoring systems. They interact, exchange data, 

respond, and make decisions about the system operation in response to changes or 

respond to changes in variables [15].  

Sensor systems and IoT produce amounts of data that are growing exponentially 

[16]. The size and complexity of these data are so large that traditional methods for 

capturing, processing, transferring, analyzing and storing are not adequate. These data 

are termed Big Data – they have high volume and are generated and processed at high 

speed, making them not suitable for storage into relational databases [17]. Big Data 

properties are popularly described by Vs: volume, velocity, variety, variability, 

veracity, visualization, and value [18]. Traditional data analytics mainly employs 

statistics, while Big Data analytics employs a broader set of methods including machine 

learning (ML), mathematical modeling, and other artificial intelligence (AI) techniques 

[19]. Big Data accumulation, fueled by sensor networks and IoT devices, produces 

bottlenecks. This creates a need for a) real-time pre-processing of Big Data to reduce 

them to a workable size; b) synchronization of multiple data streams, extraction of 

critical information, and context awareness; c) new algorithms for real-time responses; 

and d) management of knowledge and its real-time deployment [20]. 

The WSNs field is growing rapidly leaving, some fundamental questions yet 

unanswered, while guidelines and standards are weak. In this work, we deliberate some 

of the key questions and provide guidelines for some Software Engineering (SE) 

aspects for practical applications of WSNs for personal health monitoring. We have 
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analyzed data types generated by sensor networks and IoT devices and discussed data 

management issues: filtering, synchronization, and knowledge management. We 

looked at practical examples and analyzed key issues using health monitoring and 

wellbeing enhancement as examples. We critically assessed the use of SE, including 

new requirements for software testing for the design, management and use of sensor 

systems for personal monitoring of health using wearables and mobile devices. Finally, 

we analyzed applications of these principles to pregnancy monitoring using WSNs and 

IoT devices. 

Sensor networks are used in healthcare as emergency response applications, smart 

home applications, and continuous monitoring applications in telemedicine [21]. 

Although SE is essential for the development of software systems and software 

components of complex systems, the literature on SE applications for sensor networks 

applications in health and their applications is sparse [20]. This article defines the basics 

of SE requirements and issues in this field.  

This article provides a discussion of data issues for personal health monitoring 

including emerging data types such as multi-sensor data streams or blockchain data, 

and the issues related to the management of knowledge for decision making. Further 

we discuss the issues related to the process of monitoring health and wellbeing, 

including the integration and interpretation and functionality of monitoring. The main 

part of this article is about software engineering challenges including testing, 

implementation issues, requirement engineering, and ethics. We described the 

principles of metamorphic testing, that offers an advantage for testing complex systems 

and critical application. We have provided and extension to the concept of 

dependability. Dependability is essential for health-related applications and is an 

essential part of requirements. These issues were discussed in the context of pregnancy 
monitoring using sensor networks, mobile devices, and IoT devices. 

2 Sensor Networks Data and Data Analytics 

Examples of embedded sensor networks include smartphones, smartwatches, health 

bands, vehicles (cars, trains, drones), smart homes, security systems, and IoT devices. 

Previously, data were collected and analyzed offline for making decisions and 

subsequent action. Real-time applications were rare, they were mainly critical 

applications such as power grid management, intensive care monitoring, or autopilot 

systems. These applications are designed to respond to a set of pre-defined conditions 

and were not adaptive, i.e. did not learn to respond to previously unseen inputs. 

Contemporary sensor networks are multi-agent systems that can measure variables, and 

perceive the state and behavior of their environment, responding accordingly. 

Intelligent sensor networks have an increasing ability to learn from past behaviors [22]. 

 

2.1 Emerging Data Types 

 

Individual sensors in WSNs generate data cooperatively, and data are often processed 

and filtered at the source. The technical ability to design sensor networks is well 

established. The capture, storage and processing of data by small sensor networks is a 

routine practice. Learning from sensor network data brings forward several issues: 
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understanding and dealing with the large scale of data, supply required energy for 

operation, and ensuring appropriate and timely responses [23]. The number of sensors 

may be very large, different sensor types may be connected, and they may be distributed 

arbitrarily. Data streams need to be combined and synchronized to enable real-time 

interpretations. Understanding, interpreting and learning from data and responding 

accordingly requires the application of AI and ML. The requirements for sensor 

network systems include enabling their intelligent behavior [22]. Biomedical data may 

be amongst the most complex to manage and use – these data are comprehensive, 

diverse, heterogeneous, and need to be isolated to protect individual privacy, while new 

types of data generated by sensor networks and their analytics requirements are 

continuously expanding. 

 

2.2 Data Processing and Knowledge Management 

 

The original raw data contains multiple layers of knowledge and data processing needs 

to distinguish these layers and make them available for analysis and use. The 

knowledge hierarchy is captured in the DIKW knowledge pyramid [24], which defines 

hierarchical relationships between data, information, knowledge, and wisdom. (Fig. 

1a). The quantity and cost of acquisition of the levels of knowledge are reversely 

proportional (Fig. 1a and 1b). 

 

Fig. 1. The DIKW hierarchy [28]. (a) Relative quantities of data, information, knowledge, and 

wisdom, (b) relative acquisition costs of the different layers, (c) gap between data and knowledge, 

and (d) gap between knowledge and wisdom. 

The speed of data acquisition is rapidly accelerating thanks to the growth of the Internet, 

the advancement of instrumentation, and 5G technologies and WSN. Our ability to 

analyze data, extract knowledge, and develop systems for decision-making support, is 

growing slower than the speed of data production and accumulation, creating 

knowledge (Fig. 1c), and application (Fig 1d.) gaps. Poor management of medical 

knowledge is a key factor preventing or delaying the development of robust and 
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medically useful home-based or mobile sensor network systems and the use of these 

data in clinical practice. Health care is a knowledge-driven process and applying the 

right knowledge at the right time is essential. 

An extension of the DIKW model is shown in Fig. 2. Raw data are analyzed using 

statistical methods, machine learning, and other methods of artificial intelligence to 

obtain high value content. It may include summaries, reports, reviews or critical 

information that can be used to support decision making and provide appropriate 

actions and responses. Biomedical data can be classified by structure, data processing 

level, application domain, and intended purpose [25]. Data may be structured or 

unstructured. For example, a diagnosis can be recorded in a structured form such as 

ICD diagnostic codes [26], or unstructured, such as textual descriptions. Structured data 

are suitable for comparative analysis and statistics. Structuring of data has some 

negative effects such as high rate of miscoding (false positives or false negatives) [26], 

and the loss of information available in textual descriptions that cannot be captured in 

the international classification of disease (ICD10) codes. It is difficult to record a 

correct diagnosis in cases that combine several health conditions, typically stated as a 

primary diagnosis along with comorbidities [27]. 

 

 

Fig. 2. Modified DIKW hierarchy (DIUWV). The data are basic elements without meaning; 

information shows the relationships or simple rules; understanding describes patterns and 

regularities; wisdom represents the understanding of underlying principles; vision refers to the 

ability to apply of these principles to new and useful designs or derive new theories. 

2.3 Issues with Data Types 

 

Biomedical data are used in various types of information systems. Examples are 

administrative, financial, research, operations, pharmaceutical, laboratory, and 

radiology systems. Clinical data are stored in electronic health records, clinical trial 

data, and disease registries [29]. A key issue is the interoperability of these information 

systems [30]. The rapid development of sensor networks and IoT have created new 

challenges arising from merging traditional biomedical information systems with 

massive data streams for real-time decisions making [31]. The most granular level of 
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biomedical data is specialized data types, including demographics and socioeconomic 

data, patient encounters, medication, symptoms, diagnoses, diagnostics tests 

(laboratory, imaging, etc.), genetics, and family history. New data types used in 

healthcare include lifestyle (fitness, shopping preferences), environmental data and 

exposure (climate, weather, pollution, health maps), and content from social networks. 

The growth of Big Data generated by data streaming has created challenges for 

integrating Big Data into information systems. New data-processing algorithms are 

needed for the utilization of Big Data. The main issues related to sensor networks for 

personal and mobile health monitoring include signal processing, data accuracy, 

interoperability of sensors and networked IoT devices, interpretation of patterns in data 

for decision making, summarization of data for medical use (reporting), networking, 

security, compliance, and ethics. 

 

3 Monitoring Health and Wellbeing 

 
WSN applications are already commonly used for monitoring and management of 

health conditions in individuals [32]. There is an increased focus on improving the 

quality of life and human wellbeing. The concept of individual wellbeing refers to the 

psychological, social and physical resources needed to meet a variety of individual 

needs, such as psychological, social and physical needs specific for an individual. 

Wellbeing has three dimensions: life satisfaction, pleasant affect, and unpleasant affect 

[33]. While wellbeing data largely overlap health data, and the same infrastructure can 

be used for data collection and processing, there are major differences between 

addressing health and welfare needs. Medical diagnosis devices typically require a 

governmental agency certification, while wellbeing sensor devices typically do not. 

This situation is changing, and the number of FDA certified wearables (for example, in 

USA, China) is increasing. The distinction between medical, health, and wellbeing 

applications is diminishing. At a micro level, body area networks (BANs) are the 

primary source of data. BAN level sensors are wearable, non-invasive devices that 

quantify a physiological state or activity of the wearer [34]. Examples include 

electroencephalogram (EEG) headsets, heart rate (HR) bands and straps, and 

pedometers. Concerns have been highlighted over the validity and accuracy of 

consumer grade devices [35]. At the macro level, the combinations of multiple 

redundant sensors at the BAN level enable cross-calibration, improvement of the 

accuracy, and reliability of the measurements. Raw measurements by individual 

sensors are often imprecise, but their combinations offer resilience against individual 

source errors in the network. Real-time algorithms enable responses such as 

adjustments of the environment or alerts to the individual requesting responses. 

Continuous monitoring using sensors and wearables is becoming ever more important 

for both health care delivery and a healthier lifestyle [36]. The application of ubiquitous 

WSNs to health monitoring and societal wellbeing is a major technological disruptive 

trend for a traditional care-giving system. The collection of highly individualized data 

and their processing by smart systems enables a healthier lifestyle. Highly personalized 

and physically ‘close’ sensors will lead to every individual being responsible for 

creating their own Big Data driving further developments towards more ubiquitous 

BANs and PANs. Existing BAN applications are primarily used in fitness devices, 
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mainly focusing on activity monitoring. The insights can be used to improve wellbeing 

e.g. habit-forming, gamified exercising and the introduction of social accountability. 

WSNs are used for health and medical monitoring, require greater caution – health care 

providers should be informed or involved in decision-making in response to the analysis 

of data streams from wearables.  

 

3.2 Integration and Interpretation of Data and Knowledge Management 

Integration of multi-sensor data, their interpretation, and ensuring the accuracy of 

measurements of individual sensors and the overall network are important SE 

considerations. Dealing with these issues becomes increasingly complex as the number 

of sensors grows, particularly when dealing with the swarms of sensors. The application 

of BAN level sensors for health monitoring requires interoperability with the existing 

health records. For example, chronic lung disease patients may be highly sensitive to 

variations in air pollution relative to the normal population. When provided with 

information that monitored individual suffers from a chronic condition, the smart 

system can adjust its recommendations, actions and reporting accordingly. For 

example, suggestions for physical activity might be more conservative when the 

pollution level is high. A smart environment may use more air filtration, but this can be 

costly and energy consuming. Integration of existing medical record data into a smart 

system, while respecting the privacy of the individuals, and the local legal system 

represents another challenge. Knowledge management is needed for developing “smart 

algorithms” – this refers to enabling the understanding and wisdom levels of the 

DIUWV hierarchy shown in Figure 1. Adequate responses to changes detected in 

sensor data streams require management and use of appropriate knowledge. For 

example, the system must be aware of thresholds that define safe levels of air pollutants 

for both immediate and chronic exposures so that appropriate action can be made. The 
system should be aware of the lower values of these thresholds if high-risk or vulnerable 

groups (including children, pregnant women, and chronic patients), are present in the 

environment. Integration of wisdom level (Fig. 1) knowledge is needed to ensure 

adequate decision making. 

Scientific and professional literature, including books, journal and conference 

articles, technical reports, guidelines, and databases, represent a rich source of data, 

information and knowledge. The accurate, up-to-date, and applicable knowledge that is 

essential for design, application and adequate use of WSNs for health monitoring. 

Medical alerts or health advice or intervention must be made using the best scientific 

and clinical evidence [5]. The quality of medical knowledge in literature varies across 

the sources, and large proportion of the data and derived knowledge are of poor quality 

[37]. Clinical decision making is improving due to access to complementary sources, 

such as Electronic Health Record, clinical research databases, and software for rapid 

chart analysis [38]. Health monitoring is personalized – individuals with increased risk 

for a health condition should be screened thoroughly. Risk factors, diagnostic variables, 

and diagnostic values of these variables for various classes of patients are available in 

systematic reviews. Systematic review researchers use meta-analysis along with the 

assessment of the relevance, adequacy, completeness, and quality of studies and 

provide validated results that can be used in clinical practice. Systematic review goals 

in health care include a) assessing the effects and economic value of intervention, b) 
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assessing the frequency of a condition, c) estimating of a diagnostic test performance, 

d) determining the cause and risk factors, and e) assessing the predictability of a 

condition [39]. 

 

3.3 Sensor Systems and Functionality of Monitoring 

Until recently, continuous monitoring of vital signs and diagnostic variables was 

possible only in clinical settings, such as in intensive care units. The emergence of 

wearable wireless senor networks (wWSN) along with interconnected IoTs enable 

continuous monitoring of variables at sub-second scale. Some of the key differences 

between wearable WSNs and clinical monitoring systems (CMS) include a) the 

population that is monitored – general or at-risk individuals (wWSN) vs. very ill 

individuals (CMS), b) focus on early detection of health problems (wWSN) vs. focus 

on critical care (CMS), c) limited ability for data processing due to energy requirements 

(wWSN) vs. readily available power supply (CMS), and d) use of lower accuracy sensor 

systems (wWSN) vs. certified devices (CMS). 

Similar functionality, but significantly different operating conditions between 

wWSNs and CMS mandate the development of new implementation models, including 

ultra-efficient algorithms for processing of Big Data streams, robust decision making 

algorithms using continuous data, cross-calibration of sensors to ensure accuracy, auto-

correction of errors, the ability to safely store and transmit data for offline analysis, and 

the ability to verify sensor measurements when needed. wWSN enable large-scale 

collection of multiple vital measurement (such as blood sugar, blood pressure, physical 

activity, and heart rate) and their cross-linking with health status, improving the 

potential for early diagnosis. We anticipate that large numbers of measurements for 

large numbers of variables will be collected into health monitoring registries and used 

as a basis for decision making. Smart environments are promising areas for WSN 
applications in health and wellbeing. Modelling health characteristics of an individual’s 

environment in real-time and over historical periods enables understanding of an 

individual’s exposure to potentially harmful substances. The critical data include 

environmental health factors, including air pollutants (such as particulate matter, 

formaldehyde, or volatile organic compounds) concentrations, temperature, and 

humidity. The detection of increased levels of pollution can trigger air-purification 

systems in the home or workplace. Conversely, low levels of pollution may trigger 

normal ventilation where external air is introduced into the living environment, 

providing a supply of fresh air in an energy-efficient manner. 

4 Software Engineering Challenges 

One variable may be measured by multiple independent sensors, and at the same time, 

one sensor device may measure multiple variables. Sensor networks commonly 

perform continuous concurrent measurement of variables at different scales. For 

example, weight, blood pressure (BP), heart rate (HR), heart rate variation (HRV), and 

electrocardiogram (ECG) data should be measured and captured concurrently for 

monitoring heart health. Given the number and diversity of network sensors and the 

data coming from multiple devices, a key challenge of the system design is to ensure 
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that data are trustworthy – accurate, precise, and reliable. If, for example, several 

sensors that simultaneously cover the same variable produce differing or even 

conflicting values, we need to consider several key questions:  

• What is the system intended to do? 

• Which source (if any) should be considered canonical? 

• What degrees of ‘trust’ or ‘authority’ should be given to one measure or another? 

• How should the trust priority be established? 

• How do we evaluate the correctness in uncertain-by-design environments? 

 

4.2 Oracle Problem and Metamorphic Testing 

This situation, known as the “Oracle Problem” is common and well-studied in software 

testing [40]: Given a system whose output or behavior can be observed, how can it be 

determined if the observations are correct? A mechanism that the observer can use to 

decide correctness is called an Oracle. If Oracle is not available or it is not practical to 

use it (e.g. owing to excessive cost or time requirement), then the system has the Oracle 

problem. In a large, distributed, free-form sensor networks, the Oracle problem is 

common. In sensor systems, the Oracle Problem can occur at the data acquisition end 

(sensors) and the data processing or interpretation (software) end.  

When multiple sensors report different values for the same variable (data source) 

is analogous to SE n-version programming (NVP) [41]. NVP builds several 

implementations from the same specifications, and then executes all n versions for any 

given input. Voting or polling methods can be used to determine the correct and 

incorrect outputs or behaviors. For large, complex sensor networks, the choice of the 

decision algorithm employed in NVP is critical, and possibly undecidable, given the 

nature of the measures being observed [42]. Fundamentally, we are uncertain as to what 

a correct answer is at any given moment. Metamorphic Testing (MT) an approach to 

address the Oracle problem [43,44]. Rather than focusing on identifying the correctness 

of individual outputs (or executions), MT examines relationships amongst multiple 

executions that should hold for the system. These relationships are called metamorphic 

relations (MRs). Identification of a violation of the MR is sufficient to detect a fault in 

the system. MT has been applied to analyzing and verifying Big Data systems [36,45] 

and to large bioinformatics and health systems [46]. 

5 Implementation Issues 

The design and implementation of a WSN system for health monitoring bring forward 

additional practical issues and challenges. Here, we discuss these issues and suggest 

solutions using a case study on pregnancy monitoring. 

 

5.2 Pregnancy Monitoring Systems 

 

Pregnancy-related complications affect the health of both mother and baby throughout 

the pregnancy and at birth. These complications are associated with higher incidence 

and earlier onset of chronic disease in both mother and baby later in life. Early signs of 
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possible pregnancy complications can be discovered using wearable sensors and 

confirmed through certified diagnostic devices. Early diagnosis reduces the incidence 

and severity of complications, and therefore reduces the burden of both acute and 

chronic disease [47]. For example, hypertensive disorders represent a major cause of 

maternal death and illness of both mothers and babies. Hypertensive disorders are 

estimated to affect 5.2% of all pregnancies in China [48]. Gestational diabetes is present 

in approximately 14% of pregnancies in China and is rapidly rising (3% in 1999, 9% in 

2011) [49]. Studies have shown that regular prenatal testing can help reduce the risk of 

complications [50]. A recent study found that a simple mobile application that uses 

manual input from patients to alert them to complication symptoms resulted in the 

improvement of baby birth weight in 25% of monitored pregnancies [51]. Continuous 

monitoring using wearable sensors should be even more effective. A typical home 

pregnancy monitoring system is shown in Figs. 3 and 4. A simple system may combine 

wearables and IoT devices for measuring HR, BP, blood sugar, weight, and physical 

activity. This system takes input from continuous activity monitoring devices 

(smartwatch or health band), smart devices that are used several times a day (smart 

scale, blood pressure monitor and blood sugar). Similar systems have been proposed 

[52-54] but a truly functional system is not yet available [55]. 

 

5.3 Key requirements for pregnancy monitoring system  

 

Failure of pregnancy monitoring systems may result in injury to the health that may be 

prevented if the system worked properly. In some instances, preventable complications 

can cause death or permanent disability to both mother and the baby. Therefore, 

pregnancy monitoring systems, both at home and in hospital, must be considered as 
safety critical systems [56]. The design of such systems must provide the resistance to 

failure and the ability to detect a failure. The requirements of pregnancy monitoring 

systems include a) the ability to timely produce adequate responses, b) dependability 

[56], and c) ensuring that system operation and data management provide a good 

balance between ethics and social responsibility [57].  Assuming the hardware, 

software, and operation of the system work correctly (i.e. that operation is free of faults), 

the system must incorporate best and up-to-date medical algorithms. For example, the 

weight gain of the pregnant woman should be compared with tables that are accurate 

and adequate (e.g. body mass index, race/ethnicity, or multiple pregnancies) [58,59]. 

The standard approach is to use pre-defined pregnancy weight charts and find the best 

fit for a given individual. “Normal” pregnancy weight gain charts are available in recent 

papers [60,61]. These data should be combined with knowledge represented in in 

systematic reviews to personalize target weight gain charts for specific individuals [62]. 

Because the system takes daily weight measurements through a smart scale, unhealthy 

pregnancy weight gain – too low or too high – can then be detected early. Similar 

methods for injection of knowledge into the system should be used for each of the 

observed diagnostic variables. 
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Fig. 3. Home pregnancy monitoring system overview. Data capture is on the client side combined 

with the information from EHR and the patient’s health history. Data capture is facilitated by 

wearable sensors, IoT devices, and mobile I/O device. Data analytics and decision making are 

done at both the source side (I/O device) and at the server side. Appropriate alerts are transmitted 

to the patient or health provider, as needed.  

 

Fig. 4.  Schematic data/information flow in the system shown in Fig. 3. Various sensors 

capture values that assess vital functions (physical activity, heart status, or weight). Machine 

learning algorithm compares current values and patterns with common diagnostic values from 

systematic reviews, as well as with the patient’s own history. The results are then used to adjust 

decision making. GPS – global positioning system; ECG – electrocardiogram; PPG – 

photoplethysmography; ML – machine learning. 

Dependability of a system is a software engineering concept that defines the ability 

of a system to provide trustworthy services (Table 3).  Failure is a situation when 

system performance or functioning is not in accordance to specifications. Failure modes 

may refer to incorrect values, timing, or execution of a function. Examples include false 

alarms, degradation of services, software crashing, incorrect service (such as 

measurement recordings). An error is a hardware or software system component that 

may cause a failure. A fault is an actual or hypothesized cause of an error. The faults 

can be due to inadequate design, hardware (physical) problems, or interaction causes 

[56]. Availability and reliability ensure that the system is ready for correct service and 

that service is uninterrupted. Safety ensures that there is an absence of damage to 
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service users and to the environment. Security refers to the prevention of unauthorized 

use of the system and data. Integrity and maintainability mean that the system is no 

degraded or altered, and it can be repaired and upgraded. Dependability is achieved 

using: fault prevention, ability to deliver proper service even in the presence of faults 

(fault tolerance), reduction of the number and severity of faults (fault removal), and 

estimating the number, future incidence, and consequence of faults (fault forecasting) 

[56]. Because of high interconnectivity and a broad range of operating conditions of 

our system, we added two threats – suboptimal performance and misuse, two attributes 

– robustness and interoperability, and three methods to deal with the threats - quality 

assurance, quality control, and forensic analysis (Table 3).  

Table 3. SE concept of dependability, adapted from [56] (items in bold), and expanded. 

DEPENDABILITY 

THREATS ATTRIBUTES TECHNIQUES 

Faults Availability Fault prevention 
Errors Reliability Fault tolerance 

Failures Robustness Fault forecasting 
Suboptimal performance Safety Quality assurance 

Misuse Security Quality control 
 Integrity Forensic analysis 
 Interoperability Fault removal 
 Maintainability  

 

Health monitoring systems present an expanded set of ethical issues to system 

developers. They combine SE ethics (engineering and professional ethics applied to the 

design, development, and implementation of software systems) with medical ethics. SE 

has eight basic ethical principles: serve consistently with public interest, protect the best 

interest of client and employer, ensure highest possible professional standards of the 

product, maintain integrity and independence in professional judgement, promote an 

ethical approach to the management of software development and maintenance, 

advance the integrity and reputation of the profession, be fair to and supportive of 

colleagues, and participate in lifelong learning regarding the SE practice [63]. Medical 

ethics principles include patient self-determination, honesty/integrity, confidentiality, 

fairness and equity, and balance of harm vs. benefit [64]. Key issues include ensuring 

a high degree of dependability of the system, appropriate data governance and 
ownership, and making data accessible when needed. Pregnancy data must involve 

consideration of the rights of both mother and yet unborn baby as well as the rights of 

the father. Access to data and medical decision-making issues in pregnancy are 

complex and require novel solutions in the rapidly changing health care and societal 

frameworks. 

 

5.4 Addressing Software Engineering Issues 

SE issues to be resolved in a satisfactory manner include [65]: system accuracy, system 

and data dependability, oversight and governance of patient data, accuracy and 

adequacy of medical knowledge, reasonable cost of the system and system operation, 

system compatibility and data portability, and standards. 
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The system should ensure accuracy and suggest adequate responses to alerts. System 

and data dependability are essential for health monitoring, including pregnancy 

monitoring. Dependability threats, attributes, and techniques are shown in Table 3. 

Currently, dependability options are limited because there is a lack of standards, patient 

data and software are owned by sensor device manufacturers, not by the patients, and 

the versions of sensor systems along with associated software are changing every year. 

WSN devices are generally of consumer quality and the number of FDA certified 

devices is low. This is a major area of development and improvement. It is unclear 

about the quality of medical knowledge used for decision making. We suggest that 

clinical grade guidelines and data from systematic reviews (see Section 3) are used for 

developing and improving decision making algorithms. The development of standards 

for both hardware and software applications in WSN should be a priority. This 

improves compatibility, persistence, exchange, and the durability of data.  

 

5.5 Ethics 

Health monitoring systems allow health care services in patient homes and other places. 

These systems generate large amounts of personal health data. These data are used to 

assess health status and can help making health care decisions. The issues of privacy, 

trust and safety, accessibility, and ownership of data require serious consideration. Data 

safety considers the combination of data accuracy, integrity availability and persistence. 

Data from wearable devices are typically owned by sensor devices manufacturers and 

data privacy is not their priority. Corporations sell personal data for commercial gain, 

but people are reluctant to provide their data for such purpose [66]. Private health and 

financial data are sold to third parties [67]. Aggregated anonymized data can be sold 

legally, but many loopholes open privacy and security threats [68]. Conceptual Privacy 

Framework is defined as a coherent set of actionable principles to protect Patients 
health information privacy [69]. New SE models and algorithms for enhancing privacy 

and security of personal data have been proposed [66,69], but their broad application is 

not yet a common practice. The proposed pregnancy monitoring system (Fig. 3) 

generates alerts and health recommendations based on the patient’s health data and 

sensor system historical data, for example, it can detect healthy or unhealthy pregnancy 

weight gain. An inaccurate assessment of pregnancy weight gain may create nutritional 

or psychological problems for the monitored person. It is essential that the system is 

robust, reliable, and accurate to provide for both quality health care and high comfort 

for the patient.  

The long-term solution for data privacy and safety is that the ownership of the data 

is transferred to the patient. Aggregation of health monitoring data is important for 

understanding patterns that correlate to healthy or disease states. Sharing these data is 

essential for advancing medical research, a better understanding of disease, improving 

public health care management, and improvement of health care services. Sharing 

health monitoring data is, therefore, a part of social responsibility, but it must be done 

using anonymization to protect patient privacy. Sharing health data involves specific 

privacy risks such as privacy abuse by authorized users, access by unauthorized users, 

re-identification of publicly available anonymized data. Safety risks involve loss or 

corruption of data. The key security measures designing should achieve the following 

objectives [70]: protecting the confidentiality, integrity, and availability of health data; 
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ensure the security of the use and disclosure of health care data; protect the security of 

personal information, public interest, and national security; and ensure that health care 

data meets both business and security requirements. 

Ethics is an emerging concern for both the design and use of sensor networks in 

health monitoring and needs to be considered as an emerging SE issue. 

6 Discussion 

Health data, such as vital signs, should produce similar values when detected by 

different sensors that may be located at different parts of the body, or within the 

personal environment. The value of each data point for a given variable in health 

streaming depends on its previous value, change of the status of the organism, and 

responses to various stimuli. Interpretation of these data requires use of medical 

knowledge, particularly medically established “normal values” that define threshold 

values for healthy state. Different states of the organism (such as resting, sleeping, 

exercising, walking, or running) follow characteristic trends of observed variables. 

Pathological values are defined by defined thresholds and trend deviations. The 

functional monitoring system shows the same trends for a given variable even when the 

measurements are done by multiple sensors. The values should agree with medical 

knowledge and conform to the value ranges characteristic for the identified state.  

Integration of WSNs with the IoT devices, such as those that record atmospheric 

variables or air pollution provide additional information relevant to health monitoring. 

This new information can help the interpretation of measured changes and the health 

effects on individual, as well as provide for the calibration of the sensor networks. For 

example, changes in wearable BP measurements from a smart wrist band can be 

verified by an FDA certified IoT BP monitor. The verification can be requested 

automatically by the system, followed by BP data comparison with HRV and weight 

data to identify possible causes of variability. Calibration of multiple sensors from the 

network can be done at the time when measurement with a certified instrument is 

performed. The recorded data update the individual’s health history, and the past data 

can be corrected for systematic errors and explainable deviations. In our opinion, the 

following starting points are suitable for addressing the Oracle problem questions [24]: 

What is the system intended to do?  

The system is intended to collect vital data from individuals and the environment. 

The accuracy, validity, and relevance of the data must be assured, supported by 

interpretations, and patterns recognized in the data should trigger responses. 

Which source (if any) should be considered canonical?  

The primary canonical data are those collected from FDA certified medical devices. 

For pregnancy monitoring certified devices should be available for both calibration 

and validation of WSN measurements. 

What degrees of ‘trust’ or ‘authority’ should be given to one measure or another? 
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Higher trust is given to data of higher granularity, certified sensors, and certified 

medical instruments. For pregnancy monitoring, all findings from WSNs should be 

verified by clinical-grade FDA certified instruments. 

How should the trust priority be established?  

Unusual behavior or discrepancies can be explained, responded to, or corrected, 

through use of primary canonical data and the data from highly reliable IoT linked 

devices. For pregnancy monitoring FDA certified devices should be used for 

calibration of wearables and the trust should be assessed through experimental 

validation and regular checking. 

How do we evaluate the correctness in uncertain-by-design environments?  

Compare data with the expected behavior and validate through regular medical 

diagnostic tests (done on a regular schedule or on demand). For pregnancy 

monitoring we propose three-prong approach. Regular system testing provides for 

recalibration of the system using certified devices. The system design maximizes 

fault prevention, tolerance, and removal, while aberrations of regular patterns should 

be investigated as fault forecasting predictors. Finally, the system should address the 

Oracle problem by continuous deployment of metamorphic testing. 

7 Conclusion 

We foresee the proliferation of systems that combine large sensor networks. These 

systems have embedded redundancy, where multiple sensors measure the same variable 

and stream data to a control unit. The control unit captures data from different streams, 

compares them with expected behavior using medical knowledge and the subject’s 

individual characteristics. The system must apply filtering and error corrections to 

gather evidence, provide reports, and offer appropriate advice. In some cases, standard 

medical diagnostic testing should be initiated and requested to validate observations 

indicated by WSN data streams.  

The filtered, corrected, and summarized streamed data are stored to form personal 

health histories. These personal health records will complement professional health 

records and enhance personal care both for health and wellbeing. Ownership and 

governance of the data must provide a good balance between ensuring their safety and 

privacy, and social responsibility. The emerging technologies, such as blockchain [71] 

and artificial intelligence may offer solution to the emerging challenges of mobile 

wearable health care and wellbeing. The systems for mobile healthcare and wellbeing 

rapidly grow in size and complexity. Information technology and sensor networks are 

at the core of these systems and SE is critical for assuring appropriate design, 

dependability, knowledge management, and ensuring that system specifications are 

properly addressed. These specifications should address not only the technical 

requirements, but also the compliance with legal and ethical frameworks and resistance 

to abuse. New algorithmic and engineering solutions are needed to deal with 

connectivity, data analytics, and decision making in the era of Big Data.  
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