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Abstract—While FPGA has been recognized as a promising platform
to accelerate Convolutional Neural Networks (CNNs) in embedded
computing given its high flexibility and power efficiency, two challenges
still have to be addressed to enhance its applicability on the edge-
computing paradigm. First, the power and performance of the CNN
accelerator are still bounded by memory throughput, and a CNN-
customized architecture is desirable to fully utilize the on-chip storage.
Second, power optimization algorithms are insufficiently explored on
CNN-targeted platforms. In this paper, we design a novel FPGA-based
CNN accelerator architecture that makes full use of the on-chip storage
resources leveraging data reuse and loop unrolling strategies. We also
present an efficient FPGA-based voltage and frequency scaling (VFS)
system that enables VFS of the CNN accelerator for power optimization.
We devise a VFS policy that fully exploits the power efficiency potential
of the FPGA. Experiment results show up to 40% energy can be saved
with our VFS platform and policy.

I. INTRODUCTION

Recently, FPGA has become a promising platform for edge-
computing given its energy efficiency compared to GPU and high
flexibility compared to ASICs [1]–[3]. Convolutional Neural Network
(CNN), as an essential component to realize computational intelli-
gence, has been increasingly seen implemented on FPGA platforms.
For instance, a programmable CNN accelerator architecture together
with data quantization strategy and compilation tool is raised in
[4]. In [5], the authors quantitatively analyze and optimize the
design objectives of the CNN accelerators based on multiple design
variables.

Two challenges still have to be addressed beyond existing FPGA-
based CNN works to further enhance its applicability on the edge-
computing scenarios. First, the performance is bounded by memory
accessing, thus customized mechanisms are necessary to reduce
CNN accelerator’s dependence on memory bandwidth [6]. Second,
although extensive studies have been targeting system-level power
optimizing strategies such as Voltage and Frequency Scaling (VFS)
[7]–[9], the models used are largely theoretical. VFS methodologies
based on measured system values have less been reported; nonethe-
less, devising a model-free VFS approach is exceptionally valuable
given the complexity of obtaining per-platform power models.

In our work, we introduce a novel FPGA-based CNN accelerating
system that addresses both of the above mentioned challenges.
Specifically, we design a novel CNN accelerator exploring data resue
and loop unrolling. We also devise an FPGA-based VFS system that
enables the VFS functionality of the CNN accelerator. Our major
contributions include the following:

• We introduce a data reuse strategy and the corresponding multi-
level storage and multi-level ping-pong architecture. With our
data reuse strategy, there is no repeated data access.

• We present an FPGA-based VFS platform with high resolution
and flexibility as well as low area overhead and scaling time.

• We propose a VFS policy based on the measured system metrics,
while previous works on VFS use idealized models.

TABLE I
DEFINITIONS OF CNN DIMENSIONAL PARAMETERS.

Params Shorthand Params Shorthand
Output channel width M Input channel width N

Output row no. R Output column no. C
Kernel size K Stride S

Tile o/p channel width Tm Tile i/p channel width Tn

Tile row no. Tr Tile column no. Tc

• We implement the proposed CNN accelerator architecture on
our proposed VFS platform, and achieve advantageous power
and performance compared to the state-of-the-art approaches.

The rest of the paper is organized as follows. Section II presents
the architecture of the CNN accelerator. Section III describes our
VFS solution on FPGA and presents the VFS policy. Section IV
provides experimental results, and Section V concludes the paper.

II. CNN ACCELERATOR DESIGN

In this section, we introduce the design considerations of the proposed
data reuse and loop unrolling methodologies, which is followed by
presenting the overall accelerator architecture design.

A. Data Reuse

In order to reduce the memory latency, the feature maps and
the weights need to be loaded into programmable logic (PL) be-
fore computing. A usual approach is to divide the entire feature
map into several tiles, given limited memory resources. The entire
feature map is computed vertically first and then horizontally in
M
Tm
× N

Tn
× R

Tr
× C

Tc
times successively, as shown in Fig.1, where

the notations are defined in Table I. The amount of data transfer for
computing each tile is given below:

γin = Tn × Tr × Tc × S × S (1)

γweight = Tm × Tn ×K ×K (2)

γout = Tm × Tr × Tc (3)

The following equations give the repeat coefficient of data access
for the input feature map, weight, and output feature map respec-
tively:

βin =
M

Tm
, βweight =

R

Tr
× C

Tc
, βout =

N

Tn
(4)

As shown in Eqn.4, the feature map tiling leads to a significant
increase in data accesses. However, the data accesses can be mini-
mized by designing an optimized data reuse strategy. For example,
if the feature map shown in Fig.1 is computed in the order of
1 → 4 → 7 → 10 → 2 → 5 → 8 → 11 → 3 → 6 → 9 → 12, the
weight can be reused but the output feature map have to be repeatedly
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Fig. 1. Feature map tiling

Fig. 2. Two loop unrolling approaches

accessed by N
Tn

times. If all the output feature maps are stored on the
chip, the data access can be further decreased at the expense of higher
memory resource utilization. In order to minimize data accesses and
make full use of the on chip memory resource, we develop a novel
data reuse strategy where the entire input feature maps are stored on
chip and the weights for each output feature map are loaded before
the computation starts. Only after one output feature map is computed
completely, then the next iteration begins. With this method, there is
no repeated data access and βin, βout and βweight are all reduced
to 1. The pseudo code is as follows:

L1 : f o r (M x=0; M x<M/ T m ; M x++){
L2 : Load Weight (Tm∗N∗K∗K ) ;
L3 : f o r ( Cx =0; Cx<C / Tc ; Cx++){
L4 : f o r ( Rx =0; Rx<R / Tr ; Rx++){
L5 : f o r ( Nx=0; Nx<N/ Tn ; Nx++){
L6 : C o n v o l u t i o n ( ) ; }
L7 : S t o r e O u t p u t ( ) ; } } }

B. Loop Unrolling

The convolution operation has a variety of parallel features, and
there are mainly two ways to unroll it. The first type of unrolling is
carried out intra layer called fine-grained parallelism as shown in the
left side of Fig.2, where all the calculations in the same convolution
kernel are carried out simultaneously. The parallelism is K × K.
The second unrolling strategy, called coarse-grained parallelism, is
carried out inter layers and each of the output neuron corresponding
to Tn convolution windows that perform MAC operations. The
computations of the convolution window in different input feature
maps but in the same location can be executed in parallel. For
example, as shown in the right side of Fig.2, the 3 neurons in
dark blue are in the same location of its convolution window and
they are computed simultaneously. Meanwhile, neurons in the same
location but different output feature maps are connected to the same
convolution window, so Tm output neurons in the same location can
also be calculated in parallel, and the parallelism is Tn × Tm. The
coarse-grained parallelism can be adapted to any convolution layer
so we choose the coarse-grained unrolling strategy in this work.

C. Accelerator Architecture

Fig.3 shows the architecture of our proposed accelerator. The
feature maps of each layer except the first and the last ones are stored
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Fig. 3. The architecture of the proposed CNN accelerator

in FM L1 to minimize the data access. The feature maps are tiled by
the FM Reshaper and then stored in FM L2s before being sent to
the CONVOLUTION Processing Engine (CPE). W L1s store the
weights needed by each output feature map while W L2s store the
weights needed by each convolution tile. Thus the size of W L1s is
Tm×N ×K×K, while that of W L2s is Tm×Tn×K×K. The
dual-level weight buffer architecture is employed in that W L1s have
to store large amounts of data, and should be implemented by BRAM.
W L2s have to provide Tm × Tn weights each cycle to guarantee
the computation not be blocked, and should be implemented by
LUTRAM. In addition, we double the buffers in a ping-pong fashion
to further overlap the computation and data transfer/reshape. The
CPE receives data from W L2s and FM L2s, and stores the results
in output feature map. When the entire convolution layer is computed,
the output feature maps are sent back to FM L1.

III. VFS PLATFORM AND POLICY

Fig.4 shows the architecture of our CNN-VFS system. The FS
module is a clock generator that provides clock signals for the CNN
accelerator and its DMA. The VS module, implemented by a power
management IC (PMIC), controls and monitors switching regulators.
Users can scale frequency from 20MHz to 400MHz at the step size
of 1MHz in 3µs and scale voltage from 650mV to 850mV at the
step size of 10mV in 2ms. In this section, we introduce how to build
the VFS platform and formulate the power optimizing problem, then
we provide our VFS policy under the measured metrics of the VFS
platform.

A. Voltage and Frequency Scaling Platform

The state-of-the-art FPGA boards usually use power regulators and
a PMBus-compliant system controller to supply core and auxiliary
voltages. The PMIC is connected to the FPGA via PMBus, a protocol
for power management which can be regarded as a subset of I2C, and
controls several switching regulators to supply power for different
components on FPGA. Users can scale the voltage and monitor
both voltage and current by sending standard PMBus commands. We
choose mixed mode clock manager (MMCM) as the clock generator
in our design whose output frequency can be calculated by the
following equation:

FOUT = FCLKIN ×
M

D ×O (5)

where M , D, and O are the configurations for the MMCM and can
be changed through the AXI4-Lite interface available in the MMCM
blocks, and new frequencies can be generated at run-time.

B. Power Optimization Problem Formulation

For realistic applications, there are many occasions where the
accelerator can meet the performance requirements without running
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Fig. 4. System architecture of CNN accelerator enabled with VFS.

at full speed. There are basically two strategies under this context,
one is to set the accelerator’s running frequency to a low value thus
it takes the accelerator longer time to finish task and the idle time is
short, while the other is to set the accelerator’s running frequency to a
high value thus the accelerator’s active time is short and the idle time
is long. To better illustrate the problem, we define ET , tT , tS , tI ,
TA, PS , PI , PA, and PAverage, where E, P , t, T , S, I and A stand
for Energy, Power, time, Total, Scaling, Idle and Active respectively.
Their relationship is shown in the following equations:

tT = tI + tS + tA (6)

ET = tI × PI + tS × PS + tA × PA (7)

PAverage = ET /tT (8)

The total time tT is fixed and determined by the actual need,
and tS is the time required to scale voltage and frequency and is
determined by the VFS platform. The tA is the time for the CNN
accelerator to process one frame of an image and is determined
by its running frequency for a specific CNN accelerator. PI is the
power consumption when the accelerator is idle, PS is the average
power during the voltage and frequency scaling period, and PA is
the power consumption when the accelerator is running. PI , PS , PA

are determined by both frequency and supply voltage. The target is
to find the frequency and voltage combination that gives a minimal
PAverage.

C. VFS Policy

We can reduce the supply voltage to some extent if the accelerator
is not running at its highest frequency, and we call the lowest supply
voltage that guarantees the normal operation of the accelerator the
optimal voltage. The optimal voltage is mainly determined by the
accelerator’s running frequency and the device parameters. Thus the
power optimization problem is further simplified to find the optimal
running frequency to minimize PAverage. What’s more, the supply
voltage of the PL can be scaled to the minimum that the configuration
will not be lost. Therefore, the workflow for each cycle is as follows:
the accelerator is set to the running frequency and optimal voltage
first and then process one frame of an image. Once the computation
is finished the clock frequency and supply voltage is scaled to the
idle frequency and voltage to save static power. The frequency scaling
time can be neglected but that of voltage cannot. If there is not enough
time to scale the voltage, only the frequency is scaled to a minimum.
Algorithm 1 shows the detailed steps to calculate PAverage at each
running frequency with our policy. After that, we choose the running
frequency with a minimum PAverage as the solution.

Algorithm 1 Average Power Calculation at a Specific Frequency
Input: Frequency
Output: PAverage

if tT − tA ≥ tS then
tI = tT − tA − tS
ET = tI × PImin + tS × PIminF@OV +Pmin

2
+ tA × PA

else
tI = tT − tA
ET = tI × PIminF@OV + tA × PA

end if
PAverage = ET /tT

Fig. 5. ZCU104 board and power monitor.

IV. EXPERIMENT RESULTS AND ANALYSIS

In this section, we first introduce our experimental setup and then give
the performance and power consumption results of our implemented
CNN-VFS system. After that, we show the energy optimization
results of the CNN accelerators after applying our policies. At last
we compare our work with state-of-the-art approaches.

A. Experimental Setup

We first build an SDSoC [10] hardware platform with VFS support
targeting ZCU104 in Vivado 2018.2, and then synthesize the CNN
accelerator using SDSoC 2018.2. To better describe the relationship
between the supply voltage and the power consumption, we monitor
the power of the PL rather than the whole chip. Thanks to the PMIC,
we can monitor the power consumption of each component on FPGA
without any extra equipment, as shown in Fig.5. VGG16 [11] is
chosen as the case study and we cut off half of the kernels of the
CONV layers (except CONV5) and replace the FC layer with average
pooling to fit the embedded FPGA. In order to demonstrate the effect
of our data reuse strategy, we implement two accelerators, the one
with our data reuse strategy is called Accelerator A, and the one
without is called Accelerator B. Both of the accelerators’ parallelism
are set to 32× 32. We quantize the VGG16 to Fix8 according to the
guidance of [12] and achieve 66.28% Top-1 accuracy on imagenet
dataet.

B. Performance and Power Consumption

Fig.6 shows the performance and power efficiency change with
frequency respectively. The peak performance of Accelerator A is
300GOPS while that of Accelerator B is 205GOPS, about 50% per-
formance improvement is achieved with our data reuse strategy. The
power efficiency is given by Giga-Operations-Per-Second-Per-Watt
(GOPS/W) and all the following data is measured with Accelerator
A. Fig.7 shows the CNN accelerator’s optimal voltage and power
consumption change with frequency respectively, where O stands
for optimal, I stands for idle, P stands for power, and N stands
for normal. We sweep the voltage from 850mV to 650mV at each
frequency and record the optimal voltage. Our experiment shows
that the minimum supply voltage for ZCU104 is 680mV, under
which the system may be unstable. The optimal idle power (OIP)
is measured when the accelerator is not running but the accelerator’s
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TABLE II
ENERGY EFFICIENCY COMPARISON WITH OTHER WORKS

Reference [6] [13] our work

FPGA chip XC7Z045 XC7Z045 XCZU7
Frequency 150MHz 100MHz 220MHz
Network VGG16 VGG16 VGG16
Precision Fix16 Fix16 Fix8
DSPs(used/total) 780/900 824/900 524/1702
Performance(GOPs) 137 230 258
Power(W) 3.15 2.92 2.12
Effiency(GOPs/W) 43.5 78.7 121.7

frequency and voltage remains. The optimal idle power at 20MHz
(OIP20) is measured when the accelerator’s clock is set to 20MHz
and the voltage remains at the original voltage. The optimal active
power (OAP) is measured when the accelerator is running at the
optimal voltage while the normal active power is measured when the
accelerator is running at 850mV. We can see that the OAP is about
800mW lower than normal active power (NAP) when the frequency is
under 200MHz. As the frequency goes up, the optimal voltage goes
up correspondingly thus the gap narrows. Fig.6 shows the power
efficiency under normal voltage goes up with the frequency while
that under optimal voltage first goes up and then goes down as
the optimal voltage gets closer to normal voltage. The peak optimal
power efficiency is 160GOPS/W, achieved at 210MHz.

C. Power Optimization

We define two performance requirements, namely low performance
and middle performance. The low performance scenario requires
5FPS, middle performance scenario requires 10FPS and high per-
formance scenario requires 30FPS. For low and middle performance
scenario, there remains design space to optimize the power con-
sumption with our VFS policy. Fig.8 shows the average power of
the accelerator using our VFS policy under different performance
requirements. In the low performance scenario, the minimum average
power with VFS is 1167mW while that without VFS is 1891mW, in
the middle performance scenario, the minimum average power with
VFS is 1252mW while that without VFS is 2176mW. In summary,
about 40% energy can be saved with VFS under both low and middle
performance scenarios.

D. Comparison with other works

Most of the previous works targeting edge-computing choose
ZC706. To give a fair comparison, we measure the static power of
the CPU of both ZC706 and ZCU104 and remove it from the total

power consumption. The static power of the CPU part of ZC706 is
6.5W while that of ZCU104 is 12W. We choose the performance
and power at 220MHz with the optimal voltage as a comparison. As
shown in Table II, our work achieve the best performance and power
efficiency.

V. CONCLUSION

In this paper, we propose a novel CNN accelerator that optimizes the
power and performance utilizing data reuse and loop unrolling. We
then present a novel FPGA-based VFS platform which is efficient
to measure and alter the CNN accelerator’s voltage and frequency
settings. Based on the platform, we devise a model-free VFS policy
that achieves power optimization. We apply the VFS policy to our
proposed CNN accelerator platform, and save about 40% energy
under both low performance and middle performance requirements.
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