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Abstract: Twelve GPS Block IIF satellites, out of the current constellation, can transmit on
three-frequency signals (L1, L2, L5). Taking advantages of these signals, Three-Carrier Ambiguity
Resolution (TCAR) is expected to bring much benefit for ambiguity resolution. One of the research
areas is to find the optimal combined signals for a better ambiguity resolution in geometry-free (GF)
and geometry-based (GB) mode. However, the existing researches select the signals through either
pure theoretical analysis or testing with simulated data, which might be biased as the real observation
condition could be different from theoretical prediction or simulation. In this paper, we propose a
theoretical and empirical integrated method, which first selects the possible optimal combined signals
in theory and then refines these signals with real triple-frequency GPS data, observed at eleven
baselines of different lengths. An interpolation technique is also adopted in order to show changes of
the AR performance with the increase in baseline length. The results show that the AR success rate
can be improved by 3% in GF mode and 8% in GB mode at certain intervals of the baseline length.
Therefore, the TCAR can perform better by adopting the combined signals proposed in this paper
when the baseline meets the length condition.

Keywords: GPS; ambiguity resolution; geometry-free; geometry-based; triple-frequency observations;
real data

1. Introduction

At the time of writing, three-frequency signals are available from all 12 GPS Block IIF satellites.
One of the new generation of GPS satellites, GPS III or GPS Block IIIA, is planned to be initially
launched on 3 May 2017, bringing another signal, L1C. The additional signals are anticipated to bring
significant improvements to the efficiency and reliabilities of carrier phase ambiguity resolution (AR)
by forming more extra-wide-lane (EWL) and wide-lane (WL) combinations. The selection of optimal
signal combinations has become a popular topic since optimal signal combinations can not only
eliminate or mitigate bias terms in the mathematical model but also alleviate the computational burden
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of processing multi-frequency data [1]. Therefore, significant research has been conducted towards
carrier phase AR using triple-frequency signals during the past decade. The idea of triple-frequency
cascading AR was initially studied by Forssell et al. [2] and Vollath et al. [3], who described the
Three-Carrier Ambiguity Resolution (TCAR) method for GNSS-2. De Jonge et al. [4] and Hatch et al. [5]
proposed the cascaded integer resolution (CIR) method for GPS. This method was expanded to
multi-carrier signals by Werner and Winkel [6] and Ji et al. [7]. All these classical methods are
essentially geometry-free (GF) methods, in which the geometric distance, orbit error, and tropospheric
bias are eliminated, leaving only the residuals of the ionospheric biases. Therefore, the early TCAR
method can only be applied to the short baseline due to ionospheric biases [8]. The ionospheric
biases can be considered as systematic errors, whose characteristics were systematically analyzed by
Sieradzki and Paziewski [9,10], Zhang et al. [11]. In order to reduce the effect of the ionospheric bias,
Feng [12] formed the ionosphere-reduced signal combinations in order to enhance the conventional
TCAR and expand the application range. Li et al. [13] made a further improvement by proposing a
GF and ionosphere-free model to fix the integer ambiguities using just several minutes of data and
without the limitation of distance. However, their method was only tested using semi-generated
triple-frequency GPS signals. The same method was tested using real triple-frequency GPS and Galileo
data by Wang and Rothacher [14], who suggested that the improvement factor would be better when
more triple-frequency satellites are available. The ionospheric bias can also be eliminated or reduced
by employing the ambiguity resolved EWL combination and three pseudorange observations in the
second step of TCAR [15,16].

Although early TCAR can only resolve integer ambiguities using a GF bootstrapping methods [17],
it has been proved that TCAR can also be implemented in a geometry-based (GB) process. Feng and
Li [18,19] presented a general linear equation system for a GB TCAR model, whose performance was
analyzed in [20] using semi-generated GPS triple-frequency signals with a result that the success
rate was much better than the dual-frequency case. Tang et al. [21] improved the GB TCAR model
with the estimation of the slant ionosphere bias at each epoch, resulting in high AR success rate in
short baseline applications using real data of BeiDou System (BDS). He et al. [22] presented a WL
real-time positioning algorithm based on BDS triple-frequency signals. Gao et al. [23] proposed a
BDS and GPS combined GB AR model testing with triple-frequency BDS data and dual-frequency
GPS data. Besides using the traditional bootstrapping method, another ambiguity search method
is the Least-square Ambiguity Decorrelation Adjustment (LAMBDA) search method, for which AR
performance was proved to be better than bootstrapping by Teunissen [17]. The research of applying
the LAMBDA method to the multi-frequency AR has been conducted by a number of papers [24–28].
Therefore, in this study, the LAMBDA method is adopted as the ambiguity search method for combined
GPS signals.

The purpose of this study is to identify the optimal signal combinations for GF and GB
TCAR separately with regards to different baseline lengths, which usually mean different levels
of biases including both ionospheric biases and tropospheric biases. This study is significant for
the following two reasons. Most of the research described above selected only one optimal signal
combination with the longest wavelength, the lowest noise, the lowest total noise level or the lowest
ionospheric scale factor (ISF) for each step of AR, expecting this combination could work well in
all conditions [12,18]. However, this is not the case when the length of the baseline is changed.
Therefore, in this study, besides considering the wavelength, noise and ISF, we will choose the
optimal combinations with regards to the effect of different levels of biases, caused by the changes of
baseline lengths, instead of the natural phenomenon such as scintillation. In addition, this research
is of importance because real triple-frequency GPS data from eleven baselines with different lengths
are adopted to refine the theoretically selected combined signals while the signals proposed by
most of the research above were tested with simulated data. The benefit of using the real data is
that the selected signals are more representative for real field surveying. These signals can also
help engineers design location applications with higher positioning performance by providing more
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solid ambiguities. Although Wang and Rothacher [14] adopted real GPS data, at that time there were
only two triple-frequency GPS satellites in orbit, which were not enough for deciding GB ambiguities
and positioning. In this study, one hour of real GPS data with 6 triple-frequency satellites available
was collected to test the optimal signals for both GF TCAR and GB TCAR separately.

This paper is organized as follows. In Section 2, after a brief introduction to both the GF TCAR
model and the GB model, the optimal signal combinations will be selected theoretically for both models
separately, followed by the analysis of these combinations. In Section 3, the selected combinations will
be corroborated by testing with real GPS data followed by the analysis of the results, in relation to the
different levels of ionospheric biases. Finally in the last section, conclusions will be drawn.

2. Theoretical Experiment and Result Analysis

2.1. Basic Concept of GF and GB TCAR Using Combined Signals

Generally, both GF and GB TCAR methods adopted in this study are based on a group of selected
linear combinations of the multi-frequency observations. A general form of GPS triple-frequency signal
combinations for double-difference (DD) carrier phase ∇4Φ(i,j,k) and DD pseudorange ∇4P(i,j,k) are
defined as follows [12].

∇4Φ(i,j,k) =
i · f1 · ∇4Φ1 + j · f2 · ∇4Φ2 + k · f5 · ∇4Φ5

i · f1 + j · f2 + k · f5
(1)

∇4P(i,j,k) =
i · f1 · ∇4P1 + j · f2 · ∇4P2 + k · f5 · ∇4P5

i · f1 + j · f2 + k · f5
(2)

where i, j and k are the coefficients, which must be integer numbers in order to maintain the integral
property of the ambiguity; f1, f2 and f5 are the frequencies of the carrier phase measurements on signals
L1, L2 and L5 in units of Hz; ∇4Φ1, ∇4Φ2 and ∇4Φ5 represent L1, L2 and L5 DD carrier phase
observations respectively for GPS in units of length; ∇4P1, ∇4P2 and ∇4P5 represent L1, L2 and L5
DD pseudorange observations respectively for GPS in units of length. The corresponding frequency
f(i,j,k), wavelength λ(i,j,k) and integer ambiguity of the DD combined carrier phase measurement
∇4N(i,j,k) are defined as follows.

f(i,j,k) = i · f1 + j · f2 + k · f5 (3)

λ(i,j,k) =
c

i · f1 + j · f2 + k · f5
(4)

∇4N(i,j,k) = i · ∇4N1 + j · ∇4N2 + k · ∇4N5 (5)

where c is the speed of light in vacuum; ∇4N1, ∇4N2 and ∇4N5 are the L1, L2 and L5 DD
ambiguities of the carrier phase measurements in units of cycles. With regards to the general GPS
observation equation [29], the observation equations of DD carrier phase and DD pseudorange on the
combined signals can be denoted as follows.

∇4Φ(i,j,k) = ∇4ρ +∇4δorb +∇4δtrop − β(i,j,k)∇4I1 − λ(i,j,k)∇4N(i,j,k) + ε∇4Φ(i,j,k)
(6)

∇4P(i,j,k) = ∇4ρ +∇4δorb +∇4δtrop + β(i,j,k)∇4I1 + ε∇4P(i,j,k) (7)

where ∇4ρ represents the DD geometric distance from satellites to receivers; ∇4δorb is the DD
satellite orbit error; ∇4δtrop is the DD tropospheric delay; ∇4I1 is the first-order ionospheric bias on
GPS L1 carrier; ε represents the observation noise; β(i,j,k)is known as the ionospheric scale factor (ISF).
It indicates the ionospheric influence level on the linear combination compared to that on carrier L1,
as well as the difficulty for AR using this linear combination. The phase noise factor (PNF) µ2

(i,j,k)
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is used to denote the noise level of the combined phase and combined code measurements [12,23].
β(i,j,k) and µ2

(i,j,k) can be expressed as follows.

β(i,j,k) =
f 2
1 (i/ f1 + j/ f2 + k/ f5)

i · f1 + j · f2 + k · f5
(8)

µ2
(i,j,k) =

(i · f1)
2 + (j · f2)

2 + (k · f5)
2

(i · f1 + j · f2 + k · f5)2 (9)

The general mathematical model for GF TCAR is outlined in the following steps. The details of
GF TCAR can be found in [30].

• Step 1. Fixing the EWL ambiguities.

∇4NEWL =
1

λEWL
[∇4Pcode −∇4ΦEWL − (βcode + βEWL)∇4I1] (10)

∇4N̂EWL = [∇4NEWL]round-off (11)

∇4Φ̌EWL = ∇4ΦEWL + λEWL∇4ŇEWL (12)

• Step 2. Fixing WL ambiguities.

∇4NWL =
1

λWL
[∇4Φ̌EWL −∇4ΦWL + (βWL − βEWL)∇4I1] (13)

∇4ŇWL = [∇4NWL]round-off (14)

∇4Φ̌WL = ∇4ΦWL + λWL∇4ŇWL (15)

• Step 3. Fixing the ambiguities of fundamental signals.

∇4Nsingle =
1

λsingle
[∇4Φ̌WL −∇4Φsingle + (βsingle − βWL)∇4I1] (16)

∇4Ňsingle = [∇4Nsingle]round-off (17)

∇4Φ̌single = ∇4Φsingle + λsingle∇4Ňsingle (18)

where code means pseudorange measurements; EWL is the extra-wide-lane carrier phase measurement
(λ ≥ 2.93 m); WL is the wide-lane carrier phase measurements (0.75 m≤ λ < 2.93 m); single means the
fundamental signal, denotes the ambiguity corrected observation. The ambiguities and the ambiguity
corrected phase measurements are the parameters that need to be estimated. The traditional signal
group for GF TCAR includes EWL(0, 1, −1), WL(1, −1, 0) and single(1, 0, 0) [30].

The general mathematical model for GB TCAR is outlined in the following steps. The details of
GB TCAR can be found in [20,31,32]

• Step 1. Fixing the EWL ambiguities in a GF model. In this step, instead of using a GB model, a
GF model (Equations (10)–(12)) is usually adopted, as there is no difference in the success rate
between them and it is more convenient to conduct AR in a GF model [11].

• Step 2. Fixing the ambiguities of the second EWL/WL signals.[
∇4Φ̌EWL −∇4ρ0

∇4ΦW2 −∇4ρ0

]
=

[
A 0
A −I · λW2

] [
δx

NW2

]
+

[
ε∇4P

ε∇4ΦW2

]
(19)
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• Step 3. Fixing the ambiguities of the NL signal.[
∇4Φ̌W2 −∇4ρ0

∇4ΦW3 −∇4ρ0

]
=

[
A 0
A −I · λW3

] [
δx

NW3

]
+

[
ε∇4P

ε∇4ΦW3

]
(20)

where A is the linear coefficient matrix; δx is the baseline parameter; W2, W3 denote the signal
combinations used in the GB TCAR model. The original ambiguities of the three fundamental signals
can be recovered from the three ambiguity resolved independent combined signals. The conventional
signal group for GB TCAR includes EWL(0, 1, −1), EWL(1, −6, 5) and NL(4, 0, −3) [12].
Equations (19) and (20) can be denoted as the following formart.

L = BX + V (21)

where L is the observation vector; B is the coefficient matrix; X is the unknown parameter vector
including both the baseline parameters and the ambiguities, which need to be estimated; V is the
residual vector. Equation (21) can be solved by least-squares (LSQ) adjustment, where the LAMBDA
search method can be used to calculate the fixed solutions. With regards of the correlation of DD
measurements and the correlation of the two combined signals, the variance-covariance matrix (QL) of
the observation vector is denoted in Equation (22), where (i, j, k) and (a, b, c) represent different signal
combinations. The weight matrix (P) and the stochastic model of the estimated parameters (QX) are
denoted in Equations (23) and (24) respectively.

QL =

[
Q∇4Φ(i,j,k)

Q∇4Φ(i,j,k),∇4Φ(a,b,c)

Q∇4Φ(a,b,c),∇4Φ(i,j,k)
Q∇4Φ(a,b,c)

]
(22)

P = Q−1
L (23)

QX = (BTPB)−1 (24)

2.2. Selection of Combined Signals Based on Theoretical Consultation and Result Analysis

2.2.1. Theoretical Selection of Combined Signals for GF TCAR

GF TCAR can eliminate most of the effect of the error sources, such as the satellite orbit error and
the tropospheric bias, by adopting a pair of combined signals in each step. Taking advantage of the
triple-frequency signals, the optimal combined EWL and WL signals can significantly enhance the
efficiency and reliability of the AR [33,34]. However, many researchers proposed combined signals
often only considered the EWL or WL signal independently instead of the signal pair [12,16,21].
Therefore, the main aim of this subsection is to discover the optimal combined signal pair in theory to
fix the ambiguities more easily, mainly considering the following four criteria, wavelength, the sum of
ISFs and the measurement noise, the wavelength to total noise ratio and the theoretical success rate.
Figure 1 summarizes the procedure of selecting the optimal signal pairs for GF TCAR using these
four criteria.

As combined signal pairs of different wavelengths are needed in different steps of GF TCAR,
we will select two groups of combined signal pairs, EWL or WL, whose ambiguities are to
be determined. The numerous selected signal pairs will be refined with the sum of ISFs and the
measurement noise (σGF), which is calculated by Equation (25) and denoted in units of cycles. Usually,
a smaller value of the sum of the ISFs means the corresponding signal pair is less affected by the
ionospheric bias, while a smaller measurement noise means more precision of the signal pair. Both of
them contribute to AR. Ideally, signal pairs with the smallest sum of ISFs and measurement noise at the
same time should be pursed, which is not often the case. In general, the ionospheric bias contributes
the most error in the long baseline, while in the zero or short baseline effects of the measurement noise
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or the multipath are more considerable respectively. Thus the combined signals obtained based on the
smallest ISF only may not be suitable for the zero or short baseline. It is a complex work to model the
effect of the multipath, which is not considered to be a common factor when deciding the signals for
AR as well. Thus, only the sum of ISFs and the measurement noise are taken into account in order to
find the suitable signal combination pairs for different levels of ionospheric bias. After considering
the ISF and the measurement noise, there will be still too many options left, which can be further
refined with the wavelength to total noise ratio (ratio) and the success rate considering the updated
ionospheric bias. The optimal signal pairs will be those with the largest wavelength to total noise
ratio and the largest success rate. In this study, the measurement noise of the DD carrier phase on L1
is set to 0.5 cm, while the DD code noise is 50 cm [13]. The ionospheric biases are linearly increased
from 0 to 100 cm with the increase of the baseline length from 0 to 500 km [13]. The total noise of
the combined signal pair can be calculated by Equation (26). It should be noted that the selection of
the mathematical symbol depends on whether the signal pair is a code and phase mixed pair or a
pure phase pair. When a pure phase pair is adopted, the mathematical symbol is—in Equation (26),
while σ∇4P1 should be replaced with σ∇4Φ1 in both Equations (25) and (26). The combined signal with
coefficients (i, j, k) is the one with ambiguities to be determined. Equation (27) is for the calculation of
the wavelength to total noise ratio.

σGF =
1

λ(i,j,k)

√
µ2
(a,b,c) · σ

2
∇4P1

+ µ2
(i,j,k) · σ

2
∇4Φ1

(25)

σTGF =
√
(β(i,j,k) ± β(a,b,c))

2 · σ2
∇4I1

+ µ2
(a,b,c) · σ

2
∇4P1

+ µ2
(i,j,k) · σ

2
∇4Φ1

(26)

ratio = λ(i,j,k)/σTGF (27)

Figure 1. The procedure of selecting the optimal signal pairs for GF TCAR.

The calculation of the theoretical success rate based on the assumptions is briefly introduced here.
The ambiguity success rate is also known as the reliability of AR. When the success rate is sufficiently
close to 1, the uncertainty of the integer AR can be neglected. The distribution of float ambiguities can
be regard as a biased Gaussian normal distribution in units of cycle [35], â ∼ N(a + bias, σ). Where,
a is the true integer ambiguity; σ is the part of standard deviation of the float ambiguities caused

by the code and phase noise: σ =
√
(σ2
∇4N − bias2). Where, σ∇4N is the standard deviation of the

GF float ambiguities, which can be calculated by applying the variance-covariance propagation law
to Equation (10), (13) or (16). Biases in the float ambiguities could be generated by outliers in the
code data, cycle slips in the phase data, multi-path or the presence of unaccounted atmospheric delays,
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while in this study, bias is mainly considered as the effect of the ionosphere. Thus the probability of
fixing â into a equals fixing the bias into zero. Then, the GF ambiguity success rate is given as follows.

P(−0.5 < x < 0.5) =
∫ 0.5

−0.5

1
σ
√

2π
exp

(
− (x− bias)2

2σ2

)
dx (28)

With regards to the former four criteria, the next mission is to determine the most useful signal
pair out of the three fundamental carrier phases and the three original codes for the GF TCAR purpose.
The combined signal pairs containing the combined code signal and EWL phase signal are firstly
selected as shown in Table 1. Only four EWL phase signals meet the criteria discussed before, while
only two of them, EWL(0, 1, −1) and EWL(1, −6, 5) are linear independent. The wavelength to total
noise ratio and the AR success rate of all these signal pairs are analyzed in Figure 2 updating with the
ionospheric bias. Compared with EWL(0, 1, −1), the combined signal EWL(1, −6, 5) has a comparable
success rate when the ionospheric bias is not high, although the ISFs and the measurement noise are
bigger and the wavelength to total noise ratio is smaller. However, the success rate of EWL(1, −6, 5)
will decrease significantly with the increase of the ionospheric bias, while EWL(0, 1, −1) still maintains
a high success rate. Thus in this study, EWL(0, 1, −1) is selected as the best EWL combined phase
signal, which can nearly work well with all the combined code signals. With regards to the ionosphere
free aspect and the 100% AR success rate, the signal pair code(0, 1, 1)-EWL(0, 1, −1) is selected as the
optimal EWL signal pair as most of the existed papers did, although the measurement noise may be
larger and the wavelength to total noise ratio is smaller than some pairs working with some other
combined code measurement.

Table 1. The wavelength, ISFs and the measurement noise of the EWL signals working with combined
code signals in GF TCAR.

Signal Pairs λ(i,j,k) (m) ISFs σGF (Cycle)

code(1, 4, 5)-EWL(0, 1, −1) 5.8610 −0.0844 0.0610
code(1, 2, 3)-EWL(0, 1, −1) 5.8610 −0.1381 0.0589
code(1, 2, 5)-EWL(0, 1, −1) 5.8610 −0.0876 0.0632
code(0, 1, 1)-EWL(0, 1, −1) 5.8610 0 0.0667
code(1, 7, 19)-EWL(0, 1, −1) 5.8610 −0.0024 0.0690
code(1, 6, 19)-EWL(0, 1, −1) 5.8610 0.0003 0.0703
code(1, 4, 5)-EWL(0, 2, −2) 2.9305 −0.0844 0.1219
code(1, 2, 3)-EWL(1, −6, 5) 3.2561 1.5060 0.1845
code(1, 2, 3)-EWL(1, −7, 6) 7.3263 3.5612 0.1918
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Figure 2. The variation trend of the wavelength to total noise ratio and the AR success rates of the
signal pairs in Table 1 for GF TCAR. (a) The wavelength to total noise ratio; (b) AR success rates.
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On the basis of the best EWL combined phase signal and the four criteria, six possible WL
signals are selected, as shown in Table 2. When the effect of the ionospheric bias is not as high as
the measurement noise, the wavelength to total noise ratios of these signals (Figure 3a) are all larger
than 4, while the AR success rates of these six signal pairs (Figure 4a) are high and comparable. At this
circumstance, the signal pair EWL(0, 1, −1)-WL(1, −4, 3) is supposed to provide the most reliable
ambiguities on account of its wavelength to total noise ratio. With the increase of the ionospheric bias,
all the wavelength to total noise ratio will decline to less than 2, while all the AR success rate will be no
larger than 0.5. Thus at this stage, it is hard to say which signal pair should be selected as the optimal.
However this might be due to the incorrect assumptions of the effect of the error sources, especially
ionospheric biases [16]. Two methods are proposed here to solve this problem. One is to be refined
with the real data, which will be conducted in the next section. The other adopts combined code
signals to work with the WL signals when the ionospheric bias becomes serious, as shown in Table 3.
Compared to the signal pairs in Table 2, although these in Table 3 are a little nosier, which lead to a
lower wavelength to total noise ratio at the beginning (Figure 3b), they have a stronger ability to resist
the effect of the ionospheric bias as the ISFs are smaller. Thus, the wavelength to total noise ratio and
the AR success rate do not decline much with the growth of the ionospheric bias, as shown in Figure 4b.
The signal pairs involved with WL(1, −5, 4), WL(1, −4, 3) and WL(1, −3, 2) can maintain the success
rate is larger than 0.9 no matter how serious the ionospheric bias is, which might be acceptable for AR
when using smoothing techniques.

Table 2. The wavelength, ISFs and the measurement noise of the EWL-WL signal pairs for GF TCAR.

Signal Pairs λ(i,j,k)(m) ISFs σGF (Cycle)

EWL(0, 1, −1)-WL(1, −5, 4) 2.0932 1.0570 0.1537
EWL(0, 1, −1)-WL(1, −4, 3) 1.5424 0.7788 0.1499
EWL(0, 1, −1)-WL(1, −3, 2) 1.2211 0.6166 0.1566
EWL(0, 1, −1)-WL(1, −2, 1) 1.0105 0.5103 0.1726
EWL(0, 1, −1)-WL(1, −1, 0) 0.8619 0.4352 0.1957
EWL(0, 1, −1)-WL(1, 0, −1) 0.7514 0.3794 0.2236

Table 3. The wavelength, ISFs and the measurement noise of the code-WL signal pairs for GF TCAR.

Signal Pairs λ(i,j,k) (m) ISFs σGF (Cycle)

code(1, 0, 0)-WL(1, −5, 4) 2.0932 0.3384 0.2727
code(9, 3, 1)-WL(1, −4, 3) 1.5424 0.2344 0.2711
code(7, 2, 1)-WL(1, −4, 3) 1.5424 0.2323 0.2720
code(3, 1, 1)-WL(1, −4, 3) 1.5424 0.3025 0.2510
code(4, 2, 1)-WL(1, −3, 2) 1.2211 0.1519 0.2934
code(8, 5, 4)-WL(1, −2, 1) 1.0105 0.1203 0.3164
code(8, 6, 5)-WL(1, −1, 0) 0.8619 0.0815 0.3547
code(1, 1, 0)-WL(1, −1, 0) 0.8619 0 0.4147
code(1, 1, 1)-WL(1, 0, -1) 0.7514 0.0950 0.3890

Besides working with EWL ambiguity corrected signals and combined code signals,
for WL signals, another considerable aspect is to work with the fundamental signals, whose ambiguities
are of the interest when high precise positioning is needed. Table 4 shows the ISFs and the measurement
noise of the WL signals working with the fundamental signals, while the wavelength to total noise
ratio and the AR success rate are shown in Figure 5a,c and partly amplified in Figure 5b,d updating
with the DD ionospheric bias on L1. When the affect level of the DD ionospheric bias is less than
approximate 2 cm, the signal pairs, WL(1, −1, 0) and WL(1, 0, −1), are clearly at a priori stage to be
adopted as the optimal, on account of the high wavelength to total noise ratio and AR success rate.
However it is not easy to decide the ambiguity of which fundamental signal should be solved first
as both the wavelength to total noise ratio and the success rate are similar for a certain WL signal.
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When the effect of the DD ionospheric bias increases, both the wavelength to total noise ratio and the
AR success rates of all the signal pairs decline significantly into a value near zero, making it difficult to
decide the optimal signal pair for AR. The bad AR performances of WL-single signal pairs might be
because of the high ISFs of these signal pairs, as well as the incorrect assumptions problem, which will
be tested in the next section in order to select the optimal WL phase signal and the corresponding
signal pair. Here we also find that there is a strong correlation (0.9337), between the wavelength to total
noise ratio and AR success rate. In order to obtain a 100% success rate, the approximate wavelength to
total noise ratio should be larger than 8.

Assumed DD Ionospheric Bias on L1 (cm)
0 10 20 30 40 50 60 70 80 90 100

T
he

 W
av

el
en

gt
h 

to
 T

ot
al

 N
oi

se
 R

at
io

1

2

3

4

5

6

7

EWL(0,1,-1)-WL(1,-5,4)
EWL(0,1,-1)-WL(1,-4,3)
EWL(0,1,-1)-WL(1,-3,2)
EWL(0,1,-1)-WL(1,-2,1)
EWL(0,1,-1)-WL(1,-1,0)
EWL(0,1,-1)-WL(1,0,-1)

(a)
Assumed DD Ionospheric Bias on L1 (cm)

0 10 20 30 40 50 60 70 80 90 100

T
he

 W
av

el
en

gt
h 

to
 T

ot
al

 N
oi

se
 R

at
io

1

2

3

4

5

6

7

code(1,0,0)-WL(1,-5,4)
code(9,3,1)-WL(1,-4,3)
code(7,2,1)-WL(1,-4,3)
code(3,1,1)-WL(1,-4,3)
code(4,2,1)-WL(1,-3,2)
code(8,5,4)-WL(1,-2,1)
code(8,6,5)-WL(1,-1,0)
code(1,1,0)-WL(1,-1,0)
code(1,1,1)-WL(1,0,-1)

(b)
Figure 3. The variation trend of the wavelength to total noise ratio of the WL signal pairs for GF TCAR.
(a) Signal pairs in Table 2; (b) Signal pairs in Table 3.
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Figure 4. The variation trend of the AR success rates of the WL signal pairs for GF TCAR. (a) Signal
pairs in Table 2; (b) Signal pairs in Table 3.

Table 4. The ISFs and the measurement noise of the WL signals working with fundamental signals for
GF TCAR.

Signal Pairs
ISFs σGF (Cycle)

L1 L2 L5 L1 L2 L5

WL(1, −5, 4) 1.6616 2.3085 2.4549 1.4483 1.1286 1.0815
WL(1, −4, 3) 1.9397 2.5867 2.7330 0.8452 0.6586 0.6311
WL(1, −3, 2) 2.1020 2.7489 2.8953 0.4979 0.3879 0.3718
WL(1, −2, 1) 2.2083 2.8552 3.0016 0.2798 0.2180 0.2090
WL(1, −1, 0) 2.2833 2.9303 3.0766 0.1531 0.1193 0.1144
WL(1, 0, −1) 2.3391 2.9861 3.1324 0.1321 0.1030 0.0987
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Assumed DD Ionospheric Bias on L1 (cm)
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Figure 5. The variation trend of the wavelength to total noise ratio and the AR success rates of the
signal pairs of GF TCAR in Table 4 updates with the DD ionospheric bias on L1. (a) The wavelength to
total noise ratio; (c) AR success rate; (b,d) are the amplification of the rectangle in (a,c) respectively.

2.2.2. Theoretical Selection of Combined Signals for GB TCAR

As the first step of GB TCAR adopts a GF process, whose optimal EWL phase signal has been
theoretically selected, the main aim of this subsection is to determine two extra combined signals,
which should be linearly independent from EWL(0, 1, −1). These combined signals can be chosen
from EWL, WL, middle-lane (ML, 0.19 m ≤ λ < 0.75 m) or narrow-lane (NL, λ < 0.19 m) signals,
considering the following three criteria, wavelength, ISF and the measurement noise, and the
wavelength to total noise ratio. The wavelength is adopted to allocate the classification of the
combined signals. The ISF and measurement noise (σGB) will be collaboratively considered in order
to select the optimal combined signals with the updating of the frequency dependent error sources,
mainly ionospheric biases. On the basis of PNF and the assumption for the DD L1 carrier phase noise,
the measurement noise can be calculated with Equation (29). Different from the GF method, GB TCAR
cannot eliminate either the frequency dependent error sources or the frequency independent ones,
including the satellite orbit error and the tropospheric bias. In this study, the tropospheric bias is
assumed to be linearly increased from 0 to 50 cm with the increase of the baseline length, while the
orbit error is from 1 to 8 cm [13]. The wavelength to total noise ratio, which can be calculated with
Equations (30) and (31), is adopted in order to consider all the error sources in the determination of the
optimal combined signals for GB TCAR. With regards to the correlation between the wavelength to
total noise ratio and the AR success rate, the larger of the wavelength to total noise ratio is, the higher
of the success rate will be. Therefore the optimal combined signals should have the largest wavelength
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to total noise ratio. Figure 6 summarizes the procedure of selecting the optimal signals for GB TCAR
using these criteria.

σGB = µ(i,j,k) · σ∇4Φ1 /λ(i,j,k) (29)

σTGB =
√

σ2
∇4δorb

+ σ2
∇4δtrop

+ β2
(i,j,k) · σ

2
∇4I1

+ µ2
(i,j,k) · σ

2
∇4Φ1

(30)

ratioGB = λ(i,j,k)/σTGB (31)

Figure 6. The procedure of selecting the optimal signals for GB TCAR.

With regards to the former three criteria, ten combined signals, including five EWL/WL signals
and five NL signals, are selected, as shown in Table 5. It is impossible to find a combined signal with
the smallest ISF, as well as the smallest measurement noise at the same time. However, obviously the
wavelength to total noise ratios of the five EWL/WL signals are always larger than those of the
NL signals, as shown in Figure 7. We can select only one EWL/WL signal, since none will be
independent from the EWL(0, 1, −1) once any of those five signals is chosen. WL(1, −1, 0) is the
best signal when the affect of the ionospheric bias, the tropospheric bias and the orbit error are
weak. With the increase of the affect of these error sources, each of the five EWL/WL signals has
its own period with the best AR performance, while EWL(1, −6, 5) can maintain its performance.
The wavelength to total noise ratios of the NL signals are quite similar to each other. NL(3, 0, −2) is
the best until the percentage of the error affect exceeds 25. After that, NL(3, 5, −7) performs a little
better than any of the others. However, it should be noted that the differences of the wavelength to
total noise ratio of all the NL signals are not so obvious, that any one of these five NL signals can have
the best performance when using the real data.
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Figure 7. The variation trend of the wavelength to total noise ratio of the selected combined signals in
Table 5 updates with the effect percentage of the total noise level from 0 to 100. (a) The EWL, WL and
NL combined signals; (b) The NL combined signals only.
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Table 5. Possible combined signals for GB TCAR and their wavelength, ISF and the measurement noise.

Combined Signals λ(i,j,k) (m) ISF σGB (Cycle)

EWL(1, −6, 5) 3.2561 −0.0744 0.1594
WL(1, −5, 4) 2.0932 −0.6616 0.1316
WL(1, −4, 3) 1.5424 −0.9397 0.1042
WL(1, −2, 1) 1.0105 −1.2083 0.0525
WL(1, −1, 0) 0.8619 −1.2833 0.0333
NL(3, 0, −2) 0.1263 0.2136 0.0881
NL(2, 6, −7) 0.1314 0.2252 0.1916
NL(3, 5, −7) 0.1140 0.0256 0.1886
NL(4, 0, −3) 0.1081 −0.0099 0.1205
NL(4, −3, 0) 0.1145 0.0902 0.1217

3. Empirical Experiment and Result Analysis

3.1. Basic Information of the Data and the Process Strategy

In order to test if the former assumptions, theories and the selected combined signals are
reasonable or not, the signals will be tested using the observations only from the triple-frequency
GPS satellites in this section. As the number of triple-frequency GPS satellites is currently not always
enough for AR, one hour duration data starting from 6:30 a.m. on 9 April 2016 was collected with
the help of mission-planning. During the observation slot, there were six triple-frequency satellites,
whose elevation angles to any of the observation stations are over 10◦, which is considered to help
restrict the influence of multipath. The observations are obtained from nine stations, which are all
located in southwest Australia. Stations CUT0 and CUT2 belong to the shared GNSS CORS data
of Curtin University, while the other stations are from the Geoscience Australia GNSS anonymous
FTP archive. All of the data were obtained using Trimble NetR9 receivers in static mode, with an
interval of 30 s and processed in static mode as well. In order to show the changes of the AR
performance of different combined signals, eleven baselines with different and reasonable lengths
were selected. Table 6 summarizes the basic information of these stations and the data, while the
baselines are listed in Table 7. It should be noted that the signals and the data loss rate are only
considered with regards to the piece of data adopted in this experiment.

Table 6. Information of the stations and the data.

Stations Location Antenna Type Interval Signals Data Loss Rate

CUT0 Perth TRM59800.00 SCIS 30 s GPS L1/L2/L5 0
CUT2 Perth TRM59800.00 SCIS 30 s GPS L1/L2/L5 0
PERT Perth TRM59800.00 NONE 30 s GPS L1/L2/L5 0
BURA Burakin JAVRINGANT_DM SCIS 30 s GPS L1/L2/L5 0
KELN Kellerberrin JAVRINGANT_DM SCIS 30 s GPS L1/L2/L5 0

MTMA Mt. Magnet LEIAR25.R3 LEIT 30 s GPS L1/L2/L5 0
WAGN Wagin LEIAR25.R3 LEIT 30 s GPS L1/L2/L5 0
KALG Kalgoorlie JAVRINGANT_DM SCIS 30 s GPS L1/L2/L5 0
RAVN Ravensthorpe JAVRINGANT_DM SCIS 30 s GPS L1/L2/L5 0

The levels of the effects of the main error sources are analyzed now, including the
measurement noise, the ionospheric bias and the tropospheric bias. A zero baseline test is conducted
to obtain the measurement noise level of both the carrier phase and the code. Through DD the
observations of the zero baseline, the measurement noise of the code and the carrier phase are 0.3 m and
0.002 m respectively. The ionospheric bias of the the original L1 signal is estimated using a Klobuchar
model [36], while the tropospheric bias is modeled using a simple method described in [37]. The mean
of the DD ionospheric bias and tropospheric bias initially calculated for each baseline, prior to the
interpolation method is adopted to obtain the changes of both the ionospheric bias and the tropospheric
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bias with the increase of the baseline length, as shown in Figure 8. Basically, both DD ionospheric
bias and tropospheric bias are approximately linearly increased with fluctuations, which is similar
as assumed. Compared to the real value, the assumed value is contiguous. Overall, the assumed
observation condition is reasonable, and the real data in this study can be used to test our selected
combined signals based on our assumptions. It should be noted that except testing the rationality of
the assumed value, the estimated ionospheric and tropospheric parameters will not be used in the
process of fixing ambiguities, for the reason that the aim of our research is to identify the optimal
signals for different lengths of baselines. One of the good qualities of the optimal signals is the ability
to mitigate the effect of the ionospheric bias and the tropospheric bias. If these estimated parameters
are adopted to assist AR, the highest AR success rate may be obtained from the combined signals
with low capability to mitigate the biases, which will have an adverse impact on the selection of the
combined signals. However, the estimation accuracy of both the ionospheric bias and the tropospheric
bias can be improved with the help of IGS products or water vapor radiometer, which has been already
studied by some research [9,10,38–40]. The data processing strategy and the estimated parameters for
both GF and GB mode are summarized in Table 8.

Table 7. The length of baselines.

Stations Length Stations Length Stations Length

CUT0-CUT2 0 km BURA-PERT 187 km BURA-KALG 411 km
CUT0-PERT 22 km WAGN-PERT 222 km MTMA-KALG 459 km
CUT0-BURA 136 km KELN-RAVN 312 km CUT0-KALG 545 km
CUT0-KELN 176 km KELN-KALG 369 km
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Figure 8. The variation trend of DD ionospheric bias and DD tropospheric bias updates with the
baseline length. (a) The ionospheric bias; (b) The tropospheric bias.

3.2. Experiment of the Combined Signal Pairs in GF TCAR

All the selected combined signal pairs for the GF TCAR will be analyzed in this section using
real triple-frequency GPS data in respect of the success rate. In order to assess the effects of the
different signal pairs on AR, the success rates will be calculated based on the theory of statistics
without using any atmospheric corrections or smoothing techniques. The observations of the eleven
baselines are initially used to calculate the success rates of all the signal pairs, after which the Piecewise
Cubic Hermite Interpolating Polynomial (PCHIP) interpolation method will be used to obtain the
possible changes of the success rate with the increase of the baseline length. The reason why this study
adopts PCHIP interpolation method is that the generated lines are easier to see the fluctuations than
those from the linear interpolation and the interpolated values are more reasonable than those from
higher order non-linear interpolation such as Lagrange, which usually provides too big fluctuations.
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The success rates of all the combined signal pairs involving EWL(0, 1, −1) (Figure 9a) are the same as
expected (Figure 2b), which is 1. Therefore, there will be no EWL signal pairs which can have a better
performance than the traditional signal pair, code(0, 1, 1)-EWL(0, 1, −1). The same conclusion can also
been drawn with the WL signal pairs (Figure 9b), where all the signal pairs have the same success
rate regardless of the baseline length, although the success rate declines with fluctuations. Figure 10a
shows the success rates of the signal pairs with both WL carrier phase and combined code start to
increase a little when the baseline length becomes longer than around 20 km, after a sharp decline
when the baseline length was between 0 and 20 km. This proves that these signal pairs have the ability
to restrict the effect of the ionospheric bias, although the success rate still cannot be comparable to
those using EWL ambiguity corrected signal pairs. Figure 10b shows that the success rates of all the
WL-single signal pairs are declining with the increase of baseline length, while the success rates of the
signal pairs with WL(1, 0, −1) or WL(1, −2, 1) have the capability to perform better than the traditional
signal pair. Compared to the traditional signal pair, WL(1, 0, −1)-single(1, 0, 0) performs slightly better
with an improvement of the AR success rate by about 3% at maximum when the baseline length is less
than 200 km or over 350 km, while WL(1, −2, 1)-single(1, 0, 0) can have the best performance when the
baseline length is between 200 and 300 km. Comparing Figure 10b–d, it is not easy to decide which
fundamental signal should be adopted at a prior stage since the AR success rate curves involving in
the same WL signals show the same trend and magnitude when working with different fundamental
signals. Comparing Figures 4a,b, 5a, 9b and 10a,b, it can been seen that the assumed success rates using
pure carrier phase combined signal pairs will be lower than those using the real data, while the success
rates using signal pairs involving both carrier phase and code will be higher than those using real data.

Table 8. Triple-frequency data processing strategy and estimated parameters.

Item GF Mode GB Mode

Observations DD phase and code DD phase and code
Combination mode Combined signal pairs Combined signals

Float estimation Difference within signal pairs LSQ
integer estimation Round off Integer LSQ

Weight Equal weight Noise value dependent
Ionospheric bias Mitigated using combined signal pairs Mitigated using signal pairs

Tropospheric bias
Success rate Statistics Threshold value and reliable ratio
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Figure 9. The variation trend of AR success rate in GF TCAR. (a) The signal pairs with combined code
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Figure 10. The variation trend of AR success rate in GF TCAR. (a) The signal pair with combined code
and WL carrier phase; (b–d) The signal pairs with ambiguity corrected WL carrier phase signal and
fundamental signals L1, L2 and L5 respectively.

3.3. Experiment of the Combined Signals in GB TCAR

The theoretically selected combined signals for GB TCAR will be analyzed in this section based
on two criteria, the AR success rate and the reliability ratio. The AR success rate of GB TCAR in this
study is calculated by the percentage of (R), whose value is larger than a validation threshold (Rthres),
which is set to 2. R is the ratio of the weighted sum of the squared residuals by the second best solutions
(Ň2) to ones by the best solutions (Ň), as shown in Equation (32) where N̂ is the float ambiguity and
Q−1

N is the corresponding variance-covariance matrix. Although some researchers argue that this
calculation method for AR success rate might lead to unnecessary rejections [41], it was still adopted
by a number of papers and research software [42–44] for convenience, as well as for a reason that
a higher R value usually means more reliable AR. Therefore, the R value will be compared epoch by
epoch when the combined signals share the same success rate. The subtraction of the percentage of
the epochs, in which the R values obtained by one combined signal (signal A) are larger than those
obtained by another combined signal (signal B), from the percentage of the epochs, where R values of
signal B are larger than those of signal A, is called the reliability ratio of A to B. If the reliability ratio is
positive, this means the percentage of epochs whose ambiguities can be more reliable using signal A
compared to signal B.

R =
(Ň2 − N̂)TQ−1

N (Ň2 − N̂)

(Ň − N̂)TQ−1
N (Ň − N̂)

> Rthres (32)
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The AR success rate of the eleven baselines are initially calculated to prepare the data which
is used to demonstrate the changes with the increase of the baseline length using the PCHIP
interpolation method. Figure 11a shows that the EWL and WL signals share the same AR success
rate along the increase of the baseline length. Thus the reliability ratio is considered among all the
five EWL and WL signals, with a result of the selection of the second optimal EWL and WL signal,
WL(1, −1, 0), as shown in Figure 11b. Although, Figure 11b shows a randomness of the reliability ratio,
it can be argued that WL(1, −1, 0) can provide more reliable ambiguities than EWL(1, −6, 5) especially
in the case that the baseline length is within 100 km from the statistical point of view. Compared to the
success rates of the EWL and WL signals, the NL signals will not have a better performance when the
baseline length is within 100 km. For the baselines whose lengths are longer than 100 km, it is hard to
say which signal possesses the best performance, as all the curves show obvious random volatility.
However, among all the NL signals, the traditional NL(4, 0, −3) has the best performance when the
baseline length is between 200 and 400 km, as well as NL(4, −3, 0), while NL(2, 6, −7) can be the most
outstanding NL signal for the baseline length around 100 km, with a maximum larger value of 8%.
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Figure 11. The variation trend of AR success rate in GB TCAR. (a) The success rates of all the selected
combined signals; (b) The reliable ratio of WL(1, −1, 0) compared to EWL(1, −6, 5).

4. Conclusions

In this paper, we proposed a theoretical and empirical combined method to select the
optimal combined signals for GF TCAR and GB TCAR separately. For GF TCAR, four criteria,
including wavelength, the sum of ISFs and the measurement noise, wavelength to total noise ratio
and the theoretical success rate, were considered to select the possible optimal combined signal pairs.
The theoretically selected combined signal pairs were refined with the real triple-frequency GPS data
by considering the AR success rates based on the theory of statistics. For GB TCAR, the possible
combined signals were first theoretically selected with regards to three criteria, wavelength, ISF and
the measurement noise, and the wavelength to total noise ratio. These signals were refined using
the same data sample as GF with regards to the AR success rate and the reliability ratio. The main
conclusions and the future research aspects are listed as follows.

1. In GF TCAR, there are no code with EWL signal pair and EWL with WL signal pair which can
perform better than the corresponding traditional signal pairs. However, for the WL with single
signal pairs, ones working with WL(1, 0, −1) can provide higher success rates by a maximum
number of 8% for the baselines whose length are shorter than 200 km or over 400 km, while for
other lengths of baselines, ones with WL(1, −2, 1) can perform better compared to the traditional
signal pairs, which work with WL(1, −1, 0). The ambiguity corrected EWL carrier phase signals
perform better than any combined code signals in AR when fixing ambiguities of WL signals.
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When working with the EWL corrected signal, all the WL signal pairs proposed by this paper can
have the same success rate regardless of the baseline length.

2. In GB TCAR, the WL(1, −1, 0) signal selected in this paper has higher probability to provide more
reliable ambiguities especially when the baseline length is short, compared to the traditional
EWL(1, −6, 5) signal. The combined signal NL(3, 5, −7) performs more stable than the traditional
NL(4, 0, −3), while NL(4, −3, 0) always shares the same success rate with NL(4, 0, −3).

3. In GF TCAR, although the results obtained by the theoretical section meet the results using
the real data, the assumed success rates using pure carrier phase combined signal pairs will be
lower than those using the real data, while the success rates using signal pairs involving both
carrier phase and code will be higher than those using real data. To the best of our knowledge,
this might be because of the slightly incorrect assumptions of the effect of the error sources and
the imprecision of the mathematic model used in the theoretical analysis. However, the real
reason needs further research.

4. In GB TCAR, although the proposed theoretical method can be used to analyze the relationship
between the signals and the noise level, there was not showing a strong correlation between the
wavelength to total noise ratio using the theoretical model and the success rate using the real
data, which means there might be still some unselected signals with a good success rate when
only the wavelength to total noise ratio was considered. Therefore, future improvement could
be on developing a theoretical method to demonstrate the GB success rate directly in order to
discover all the signals with high performance.
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