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Abstract The issue whether return in the stock market is predictable remains
ambiguous. This paper attempts to establish new return forecasting models in
order to contribute on addressing this issue. In contrast to existing literatures,
we first reveal that the model forecasting accuracy can be improved through
better model specification without adding any new variables. Instead of having
a unified return forecasting model, we argue that stock markets in different
countries shall have different forecasting models. Furthermore, we adopt an
evolutionary procedure called Genetic Programming (GP), to develop our new
models with nonlinearity. Our newly-developed forecasting models are testified
to be more accurate than traditional AR-family models. More importantly, the
trading strategy we propose based on our forecasting models has been verified
to be highly profitable in different types of stock markets in terms of stock
index futures trading.

Keywords return forecasting · nonlinear models · genetic programming

1 Introduction

A crucial question for open discussions in finance is whether future stock re-
turns are predictable (see Fama 1970), and this issue is also controversial (e.g.
Ang and Bekaert 2006). A plethora of studies (such as Fama and French 1988;
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Campbell and Yogo 2006; Bollerslev et al. 2015; Goleza and Koudijs 2018; Liu
et al. 2019) have shown that the stock returns are predictable by using relevant
variables, such as dividend. On the other hand, however, many others remain
skeptical about the stock return predictability (Welch and Goyal 2007).

1.1 Research Background and Contributions

This paper aims to further examine this issue by building new return fore-
casting models using the genetic programming approach. Contributions of our
paper stem from several aspects. Firstly, we unveil that the model forecasting
accuracy can be improved through better model specification without adding
any new variables. Seeking the relevant variables for forecasting future return-
s has been witnessed in burgeoning literatures (see Fama and French 1988;
Nelson and Kim 1993; Campbell and Shiller 1988). In these aforementioned
works, they only focus on demonstrating the potential of different variables in
forecasting stock market returns. Nevertheless, works dedicated to calibrate
model specifications are scant. As a result, in this paper, in contrast to existing
literatures, we only use lagged market return as the future return predictors.
We do not add any new variable to our model because we intend to show that
new model specification can improve the model prediction power. It might be
complementary to existing literatures that better model specification could be
equivalently vital as including new variables, which reinforces predictive power
of return forecasting model.

Furthermore, we adopt an evolutionary procedure, namely Genetic Pro-
gramming (GP), to develop our new models with nonlinearity. The nonlinear
dependence of the return time series has been well documented (see Scheinkman
and LeBaron 1989; Ding et al. 1993), especially for those emerging markets
(see Avdoulas et al. 2018). We use GP to search the potential forms of the
return forecasting model using only the lagged returns as predictors. GP is a
specialized form of Evolutionary Algorithm (EA) inspired by Darwin’s theory
of evolution. The basic idea behind is to simulate the survival of the fittest
principle in a biological category, such that the favoured race of the successive
generations will be naturally chosen for preservation. A distinct feature of GP
compared to other evolutionary methods is the tree structure which gives not
only an optimised solution but also the solution method.

More importantly, discontinuous movements like jumps happen frequently
in the stock market and traditional return forecasting model is difficult to
capture such discontinuity (see Kim and Mei 2001; Chan and Maheu 2002;
Cremers et al. 2015). The jump process in terms of natural log function is
usually used to approximate price discontinuous movements in the futures and
options markets, and this formulation tends to be nonlinear (Bates 1996; Kou
2002). Therefore, we also include the natural log function in our GP framework
in order to capture such discontinuity and it would be advantageous to use
GP as the solution model provided by GP is normally nonlinear because of its
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evolutionary nature. Therefore, the accuracy of GP model specification might
be heightened by capturing such nonlinearity.

Besides, stock markets in different countries might exhibit distinguishing
characteristics. It is arguable that the characteristics in emerging markets
could be entirely contrasting to those in developed markets. Therefore, we
classify markets into subgroups and we employ different model specifications
for different market types. Like (Gencay and Selcuk 2004) show that different
countries have different moment properties at right and left tails of their re-
turn distributions, which may entail different risk-reward relationship. (Lee et
al. 2015) illustrate that empirical evidence from the U.S. stock market might
be quite distinctive to other countries, especially Asian countries, under the
structural VAR model. It is also well documented that different stock markets
have different characteristics in the literature (see Chen et al. 2006; Choudhry
and Garg 2008). Consequently, we argue that different countries shall have dif-
ferent return forecasting models that suit their own countries’ characteristics.
Basically, developed countries and emerging countries shall be categorized into
two different types of economics, which shall have different return forecasting
models. Furthermore, during different time periods, stock markets may al-
so exhibit different features. Therefore, dynamic model specification with GP
could well be overwhelmingly favourable compared with static models even
with new variables.

Therefore, the goal of the paper is to adopt GP to generate the best models
that can predict future stock returns without adding any other variables but
with high accuracy. We categorize different countries into different groups and
we have developed an appropriate model for each group. More importantly, our
proposed models are more accurate in predicting returns and can be used to
develop corresponding trading strategies with high profitability. The trading
strategy is used in the stock index futures market. It is noticeable that futures
trading differs from stock trading. Specifically, futures contract has maturity,
which indicates that futures contract has an expired date and all futures posi-
tions would be closed on that day automatically. Therefore, we use our model
to forecast one-day ahead return and implement the intra-day trading strat-
egy. In other words, our futures position would be opened and closed on the
same date. Additionally, unlike stock investment, investors can earn money
even if the market return is negative because they can take short positions of
stock index futures. As a result, the traditional stock trading strategy like buy
and hold would be irrelevant and thus it might be inappropriate to use such
strategy as a benchmark. Therefore, we adopt the same trading strategy for
all tested models. Compared with other AR-family models with same trading
strategy in futures market, our model exhibits 55% profitability on average
while other models only have 40%.

Empirically, we are able to demonstrate that our models have superior per-
formance in forecasting future returns compared with AutoRegressive (AR)
family models in both linear and nonlinear forms. The improvement rate is
around 30% for in-sample fitting and around 40% for out-of-sample forecast-
ing. Furthermore, we have exploited a trading strategy based on our models.
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The profitability of our trading strategy is around 20% for developed markets
and around 60% for emerging markets from 2012 to 2017, which are noticeably
higher than traditional AR family models. Moreover, we also adopt a tradi-
tional non-linear model for the robustness check and our models outperforms
the traditional non-linear model, which verifies the robustness of our results.

1.2 Literature Overview

Predicting future returns with relevant variables has been the focal point in
literatures. Dividend is the most popular variable for predicting future stock
returns among those works. (Fama and French 1988, Nelson and Kim 1993 and
Campbell and Shiller 1988) show that the capability of dividend conveying the
future dividend growth and expected return information may yield the success-
ful cases of stock return prediction. The Price/Earnings (P/E) ratio has also
been well documented in the return predictability literatures. Like (Lamont
1998) maintains that the P/E ratio holds the predictive power to predict the
future stock returns in addition to dividend. Moreover, Book/Market (B/M)
ratio also plays an important role in stock predictability research. (Jiang and
Lee 2007) demonstrate the prediction power of B/M ratio and log dividend
yield in terms of return forecasting performance. (Aydogan and Gursoy 2000),
unfold the fact that P/E as well as B/M ratios carry the ability of predicting
future returns, especially over long time periods. More recently, (Cremers and
Weinbaum 2010) use deviations from put-call parity to predict future stock
returns. However, the prediction power of those models is quite limited as
(Ang and Bekaert 2006) argue that return forecasting model with dividend
fails to exhibit any long-horizon predictive power. More importantly, forecast-
ing models based on the dividend and earnings yield may also have instability
problems (see Lettau and Ludvigson 2001; Goyal and Welch 2003; Paye and
Timmermann 2006; Cai et al. 2015). Moreover, since our paper also focuses
on developing trading strategies, the technical analysis paper such as (Park
and Irwin 2007, Batten et al. 2018 and Jiang et al. 2019) as well as the recent
non-linear model works such as (Zhao et al. 2019 and Facchini et al. 2020)
could also be relevant.

GP also holds the elegant characteristics that one can build the relevant
performance criterion directly into the search procedure. Furthermore, it has
been shown that GP has been adopted in various financial areas. For example,
(Manahov et al. 2015) has utilized a Strongly Typed Genetic Programming
(STGP) based trading algorithm to forecast one-day-ahead stock return. The
STGP-based system enables them to investigate the stock return forecasting
through groups of artificial traders. They find that the STGP-based forecasting
results dominate other benchmark forecasts in a short time horizon. (Pimenta
et al. 2017) apply genetic programming with multiobjective optimization to
develop an automated investing method and this method is proven to be quite
profitable in the Brazil stock exchange market (BOVESPA). More recently,
the applications of GP have been also witnessed in different research fields
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other than finance (see Bhola et al. 2019; Chen and Gao 2019; Shoba and
Rajavel 2020). Therefore, we utilize GP to build our new return forecasting
models with nonlinearity and embedded nonlinearity characteristics in our
models could enhance the model performance in predicting future returns.

Therefore, developing new return forecasting model without adding new
variables is essential since less variable might make model more stable. Further,
model specification with features like nonlinearity would be also helpful and
GP method would be favorable.

1.3 Paper Structure

The remainder of the paper is organized as follows. Section 2 gives the detailed
information about the data and methodology we use. Section 3 describes the
GP algorithm. Section 4 shows the empirical return forecasting results. Section
5 presents the empirical results of the trading strategy based on our return
forecasting models. Section 6 concludes our paper.

2 Data and Methodology

2.1 The Data

We obtain four countries’ stock index from WIND database with daily frequen-
cy, from January 1, 2006 to December 31 2017. The full sample constituted by
four countries contains two subsamples, which are developed economics and e-
merging economics. For developed economics, we use S&P 500 index of US and
Nikkei 225 index of Japan. For emerging economics, we use Sensex 30 index
of India and CSI 300 index of China. As pointed out in (Batten et al. 2018),
the sample composition could have an impact on the model performance. In
order to maintain the in-sample and out-of-sample periods have the same ob-
servations, we divide the sample from 2006-2011 and 2012-2017. This can help
models to show their performance in a relatively similar way in both in-sample
and out-of-sample periods and assist us to enhance our model performance in
the out-of-sample period. For the in-sample test, we use the full sample peri-
od, which means the input data and the forecasted returns will be both the
whole sample period. For the out-of-sample period, we use January 1, 2006 to
December 31, 2011 as the estimation period and January 1, 2012 to December
31 2017 as the forecasting period, which means we use the period January 1,
2006 to December 31, 2011 as the input data to forecast the stock return of
the period January 1, 2012 to December 31 2017. Specifically, in-sample test
indicates that we use available data to forecast values within the estimation
period while out-of-sample test means we use available data to forecast values
outside the estimation period. For the trading strategy empirical test, we also
use the corresponding stock index futures data for the four stock markets with
the period from January 1, 2012 to December 31 2017. In addition, for both
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in-sample and out-of-sample tests, we use 1-day ahead prediction during the
data period and the statistical test for error differences will be also employed.

2.2 Model Specifications and Variable Estimation

The main variable we use in this paper is the return, which can be defined as
(Andersen and Bollerslev 1998):

rt = ln

(
Pt
Pt−1

)
where Pt is the spot price of a stock or a stock index.

Table 1 summarizes the detailed statistics of stock index returns for four
countries.

Variable Obs Mean Std. Dev. Min Max
rUS 3,020 0.00025 0.0122 -0.094 0.109
rJapan 2,957 0.00012 0.0155 -0.121 0.132
rChina 2,916 0.0005 0.0198 -0.118 0.134
rIndia 2,928 0.0004 0.0146 -0.116 0.159

Table 1 Statistical summary of variables used for the 12-year returns of four countries.

The AR-class model has been widely used in the financial literatures for
return forecasting (see Ferrara et al. 2015; Avdoulas et al. 2018). We use the
AR-class model to forecast stock index returns, with both linear and nonlin-
ear specifications as benchmark models. For the linear benchmark model, we
use the standard Autoregressive (AR) model. For the non-linear benchmark
models, we use the SETAR (Self-Exciting Threshold Autoregression) model
and the STAR (Smooth Transition Autoregressive) model. Both of the mod-
els are time series models, which assume that data order is in time sequence.
For the linear ARMA model, it assumes a linear relationship between past
asset returns and future asset returns. In other words, future asset returns
can be envisioned as a function of past asset returns with linear combination.
On the other hand, the nonlinear models such as SETAR and STAR models,
they assume a nonlinear relationship between past asset returns and future
asset returns. Those models can be viewed as structural models where they
use thresholds to distinguish returns in different structures.

Then, we provide a brief description of the models implemented in our
analysis, (Terasvirta 1994; Hurn et al. 2016). The benchmark forecasting linear
autoregressive model (AR) of order p (p is the number of lagged autorregressive
term yt), for a given horizon h:

yt+h = α+ βXt + εt+h (1)

where Xt = (yt, yt−1, . . . , yt−p+1), εt+h has a finite variance σ2
ε , α is a constant,

and β is a p-vector of parameters. Specific model is selected by Bayesian
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Information Criterion (BIC). The BIC is mathematically defined as:

kln(n)− 2ln(L(θ)),

where n is the data size, k is the number of parameters estimated, θ is the set
of all parameters, in particular, L(θ) represents the maximized value of the
likelihood function for the estimated model with θ.

We need the maximum value of L(θ), the lowest BIC is thereby preferred.
Moreover, parameters are estimated by Ordinary Least Squares (OLS) linear
regression method. OLS linear regression method uncovers the parameters of
a linear function consisting a number of independent variables by minimizing
the sum of the squares of the differences between the observed dependent vari-
able and predicted dependent variable (calculated through the linear function
with independent variables). As has been documented in the literature (Mar-
cellino et al. 2006), the forecasting model in Equation (1) often outperforms
alternative and more sophisticated univariate and multivariate models. In this
work, we focus on three classes of well-known autoregressive models that nest
the AR (p) model in Equation (1), namely ARMA model, TAR model and
STAR model.

In additional to the traditional ARMA model, we use two nonlinear model-
s, TAR and STAR. The Threshold Autoregressive (TAR) model was developed
by (Tong 1978), which assumes that the regime-switching that occurs at time
t can be determined by an observable variable q relative to a threshold value,
denoted by c. The model presumes that the time series may behave differently
corresponding to different regimes where the regime-switching point depends
on the past values of the time series and the specific threshold value c. A spe-
cific case of TAR model is a SETAR (Self-Exciting Threshold Autoregression)
model, which assumes that the threshold variable q can be selected to be the
lagged value of the time series itself (Tong 1990; Hansen 1997; Hansen 2000).
The most general case is to presume that the model has two regimes to switch,
where the specific model for order p can be defined as:

yt = (α1 + β1Xt)I(yt−q ≤ c) + (α2 + β2Xt)I(yt−q > c) + εt (2)

where I [A] is an indicator function with I (A)=1 if the event A occurs and I
(A)=0 otherwise; Xt = (1, yt−1, yt−2, . . . , yt−p) ; α1 + β1 and α2 + β2 are p
+ 1-vectors of parameters.

Besides, we also use the STAR model and the most general case of the
STAR model for order p can be expressed by the following function formula:

yt+h = (α1 +β1Xt)(1−G(zt−d, γ, c) + (α2 +β2Xt)G(zt−d, γ, c) + εt+h (3)

whereXt = (yt, yt−1, yt−2, . . . , yt−p+1); α1+β1 and α2+β2 are p + 1-vectors
of parameters. G(·) is the smooth-transition function.

Specifically, the smooth transition function can be determined by one of
the following functions:
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one is a logistic function, which is:

G(zt−d, γ, c) = [1 + exp(− γ

σzt−d

(zt−d − c)]−1 (4)

or an exponential function, which is:

G(zt−d, γ, c) = [1 + exp(− γ

σzt−d

(zt−d − c)2] (5)

where γ is the smoothing parameter that controls for the shape of regime
changes; zt−d is the transition variable, σzt−d

is the standard deviation of the
transition variable and c is the threshold parameter.

3 Model Evolution Using Genetic Programming

3.1 Preliminaries

In this section, we will develop our return forecasting model based on the
estimated variables in section 2. For the specific model development, we will
adopt an evolutionary search method, Genetic Programming (GP). GP is an
evolutionary computation (EC) technique inspired by biological process (see
Banzhaf et al. 1998; Hirsh et al. 2000; Poli et al. 2008). Since the form of
return forecasting model with nonlinearity is uncertain, it would be beneficial
to adopt GP method. One big advantage of adopting GP in this work is that
it can allow one to be agnostic about the general form of the model. In GP, a
population of computer programs is evolved based on the principles of natural
selection originated from Darwin’s theory of evolution. After certain number of
generations, GP can transform populations of programs into new and better
programs. As stated in (Poli et al. 2008), GP has been very successful at
evolving novel and unexpected ways of solving problems.

The main idea of our GP approach is as follows: it firstly generates a
random population of functions, and then it evaluates the quality of each indi-
vidual function, which is the difference between the generated function and the
targeted function (rt in this work, see 3.2 for details). Such quality is usually
called the fitness of the individual. Next, one or two function(s) will be prob-
abilistically selected based on its fitness in order to participate in the genetic
operations. Normally there are two genetic operations, one is called crossover
and another is called mutation. The crossover operation is used to create a new
child function (called offspring) by randomly choosing some subitems from two
selected functions (called parents, which are usually polynomials) and recom-
bining the subitems from the two functions together. The mutation operation
is used to create a new child function by choosing some random subitems from
one selected function and altering them. After new individuals are created,
their fitness will be calculated again, and genetic operations will also be per-
formed again to evaluate the newly-generated function. The genetic operations
will be undertaken under the probability of crossover and mutation, which will



Forecasting Stock Market Return with Nonlinearity 9

be outlined later. This whole process is mainly based on the aforementioned
principles of evolution and will be repeated until an acceptable solution is
found or other termination criterion is satisfied (usually up to some certain
number of generations). The best individual will be returned as the solution,
which is effectively the new return forecasting model.

3.2 Genetic Programming System

For our model development, we reduce the forecasting task to the computation
of the following function based on our GP approach using the data sample
period from January 1, 2006 to December 31, 2017:

f(rt−1, rt−2, rt−3) = rt

where rt−1, rt−2, rt−3 are the lagged terms of the stock index return. Our goal
is to find the most relevant terms that have effects on predicting the future
stock index return.

Our GP approach consists of the following parts:

– Terminal Set : rt−1, rt−2, rt−3.
– Function Set : +,−,×, lnI(·) (the indicator function).
– Fitness measure: the error between the value of the individual function and

the corresponding desired output (i.e. rt).
– GP parameters: population = 10000, the maximum length of the program

= 1000 (i.e. up to 1000 subitems within one polynomial function), proba-
bility of crossover operation = 0.8 (i.e. 80% of population functions will be
mixed with other functions to generate new functions) and probability of
mutation operation = 0.1 (i.e. 10% of population functions will be mutated
to generate new functions).

– Termination criterion: when the fitness measure reaches 0 or the system
runs up to 100 generations, the system will terminate (For our work, the
fitness measure will never reach 0, therefore the system will terminate after
100 generations).

The general procedure of our GP approach can be found in Algorithm 1.

3.3 Model Development

In order to enhance the accuracy of the developed model, we categorize our
sample into two subsamples, namely developed economics (including US and
Japan) and emerging economics (including China and India) and we run the
two subsamples separately. With the settings stated in the previous section, we
ran our GP algorithm for 50 times for each subsample. After simplification, the
best function we obtained is the following model for the developed economics:

rt = rt−2+rt−3+r2
t−1+ln(rt−2∗rt−3)I(rt−2∗rt−3 > 0)+ln(r2

t−3)+ln(r3
t−3)I(rt−3 > 0)

(6)
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Algorithm 1: GP for Stock Market Return Forecasting Model

1 Initialisation: Initialise the population of the first generation ;
2 while not find the “good enough” forecasted model or not reach the maximum

number of generations;
3 do
4 for each individual forecasted model in the generation do
5 Evaluation: Evaluate each forecasted model’s fitness ;

6 Select Parents: Select the individual forecasted models from the population of
the current generation to breed ;

7 Crossover: Pair the selected parents up to produce offspring forecasted models;
8 Mutation: Randomly alter the forecasted model with a given probability ;
9 Elitism: Select the best forecasted model from the population of the current

generation and insert it into the next new generation;
10 Update Population: Update the population of the current generation;

where rt−q is the lagged term of return and I is the indicator function: I=1 if
the condition in the parenthesis holds and I=0 otherwise.

We denote this model as the Nonlinear Return Forecasting Model 1 (N-
RFM1).

The best function we obtained is the following model for emerging eco-
nomics:

rt = rt−2 + rt−3 + r2
t−1 + r2

t−2 + r2
t−3 + rt−2rt−3 (7)

where rt−q is the lagged term of return.
We denote this model as the Nonlinear Return Forecasting Model 2 (N-

RFM2).
These two newly-developed models display distinctive components. For N-

RFM1, it has three natural log items whereas NRFM2 has none. The natural
log items might be a nexus of jumps embedded in the stock price process.
Consider the following jump-diffusion stochastic differential equation (SDE)
that depicts a stock process with log-normal distribution:

d[ln(S(t))] = µddt+ σddZ(t) + ln(1 + J(Q))dP (t), (8)

where µd is the log-diffusion drift, σd is the volatility of the stock return and
ln(1+J(Q)) is the log-return jump-amplitude with the a simple Poisson jump
process dP (t) with jump rate λ and the process ensures that J(Q) > −1.

Therefore, it is comparable that the natural log items in our model are
analogous to the jump function in the SDE. More importantly, the indicator
function is analogous to the Poisson jump process because the Poisson jump
process occurs at a predetermined rate λ while our indictor function implies
the strong serial correlation of returns, which may also be interpreted as the
jump occurring probability. When the returns are positively related, for ex-
ample, returns are all positive or negative during a couple of days, then the
jump is more likely to happen. Therefore, the NRFM1 may capture the jump
ingredient in the developed markets by comprising those natural log items.

On the other hand, however, there is no natural log item in NRFM2 for
emerging markets. Accordingly, NRFM2 unfolds the fact that jumps are less
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likely to occur in emerging markets. The reason is that returns in chosen emerg-
ing markets are more bounded. For instance, there is a price limit system in
the Chinese stock market, which binds the daily return within ± 10%. Similar-
ly, in the Indian stock market, the price movement has also been constrained.
In particular, Bombay Stock Exchange (BSE) has implemented circuit filters
system and set the trigger of circuit filters at 10% (rise or fall). Those binding
regulations prominently reduce the jump probabilities in both emerging mar-
kets. As a result, we acquire two models with distinguishing features that can
represent different types of markets.

4 Empirical Results of Return Forecasting

This section gives both empirical results for regression models and model per-
formance of return forecasting. In particular, we compare our data fitting
results as well as prediction results with three ARMA models, namely, AR-
MA, SETAR and STAR as well as a High Moments Return Forecasting Model
(HMRFM). For the model performance evaluation, we use Mean Absolute Er-
ror (MAE) for the model accuracy test. The periodic averaged MAE can be
defined as:

MAET =
1

T

T∑
t=1

|Observedt − Predictedt|,

where T represents the number of observations embedded in the forecast-
ing period, Observedt presents the observed variance from the market and
Predictedt presents the variance predicted from the models.

For the robustness purpose, we also use Mean Squared Error (MSE) to
measure the model performance for both in-sample fitting and out-of-sample
forecasting tests since our daily data could be quite noisy (Pong et al. 2004;
Golosnoy et al. 2014; Bollerslev et al. 2016). The periodic averaged MSE can
be defined as:

MSET =
1

T

T∑
t=1

(Observedt − Predictedt)2
,

where T represents the number of observations embedded in the forecast-
ing period, Observedt presents the observed variance from the market and
Predictedt presents the variance predicted from the models.

Lower MSE indicates higher forecasting accuracy.

For the ARMA model estimation, we use the AIC (Akaike Information
Criteria) and BIC (Bayesian Information Criterion) to determine the optimal
lag. Specifically, we use ARMA (1, 1) for Japan and India and ARMA (2, 2)
for China and US regarding the in-sample test and we use ARMA (1, 1) for
Japan and ARMA (2, 2) for China, US and India regarding the out-of-sample
test.
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4.1 In-sample Data Fitting

For the in-sample modeling, we compare three AR-class models with our mod-
els in fitting future stock market returns. In particular, we use the NRFM1
to forecast the stock returns of US and Japan, and we use the NRFM2 to
forecast the stock returns of China and India. Table 2 shows the in-sample fit-
ting MAE against ARMA, SETAR and STAR models. In general, our models
outperform other three models with the improvement rate averaged around
25%. For the NRFM1 model performs better in predicting the stock return for
developed countries than NRFM2 for emerging markets (see Table 2 and Table
3). It might because that the developed market prices reflect more information
than emerging markets, whose market efficiency tend to be low. This result is
in accord with existing documents that most Asian markets display weak or
no market efficiency (Kim and Shamsuddin 2008). Less reflected information
in the market prices dilute the accuracy of data fitting within the sample by
using only market price as the predicting variable. It also explains the reason
that our model performs better in predicting the stock return for US than for
Japan.

ARMA NRFM1 Improve SETAR NRFM1 Improve LSTAR NRFM1 Improve
(MAE) (MAE) Rate (p-value) (MAE) (MAE) Rate (p-value) (MAE) (MAE) Rate (p-value)

Country
US 0.0077 0.0029 62.3% (0.00) 0.0076 0.0029 61.8% (0.00) 0.0078 0.0029 62.8% (0.00)
Japan 0.0107 0.0088 17.8% (0.00) 0.0106 0.0088 17.0% (0.00) 0.0106 0.0088 17.0% (0.00)

ARMA NRFM2 Improve SETAR NRFM2 Improve LSTAR NRFM2 Improve
(MAE) (MAE) Rate (p-value) (MAE) (MAE) Rate (p-value) (MAE) (MAE) Rate (p-value)

China 0.0135 0.012 11.1% (0.00) 0.014 0.012 14.2% (0.00) 0.014 0.012 14.2% (0.00)
India 0.0099 0.0092 7.07% (0.10) 0.0097 0.0092 5.15% (0.12) 0.0096 0.0092 4.16% (0.15)
Average 0.0104 0.00082 24.56% 0.0104 0.0082 24.53% 0.0104 0.0082 24.54%

Table 2 MAE of in sample fitting of stock index returns. This table presents the
in-sample fitting results of four countries’ stock index return forecasting of four models using
the Mean Absolute Error (MAE). The p-values for statistical differences of the forecasting
errors are also presented. Our models outperform all other three models.

4.2 Out-of-sample Forecasting

On the other hand, for the out-of-sample forecasting, we compare three AR-
class models with our models in forecasting future stock market returns. Table
4 shows the out-of-sample fitting MAE against ARMA, SETAR and STAR
models. In general, our models outperform other three models with the im-
provement rate averaged around 32%. Unlike the results from the in-sample
fitting, the NRFM1 model exhibits weaker performance in predicting the stock
return for US and Japan compared with China and India (see Table 4 and Ta-
ble 5). Because out-of-sample prediction only uses the information from the
past, returns in developed markets with market efficiency are unpredictable
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ARMA NRFM1 Improve SETAR NRFM1 Improve LSTAR NRFM1 Improve
(MSE) (MSE) Rate (p-value) (MSE) (MSE) Rate (p-value) (MSE) (MSE) Rate (p-value)

Country
US 0.000148 1.81e-05 87.2% (0.00) 0.00015 1.81e-05 87.9 % (0.00) 0.00015 1.81e-05 87.9% (0.00)
Japan 0.00024 0.00016 33.3% (0.07) 0.00019 0.00016 15.7% (0.08) 0.00019 0.00016 15.7% (0.08)

ARMA NRFM2 Improve SETAR NRFM2 Improve LSTAR NRFM2 Improve
(MSE) (MSE) Rate (p-value) (MSE) (MSE) Rate (p-value) (MSE) (MSE) Rate (p-value)

China 3.88e-04 3.57e-04 7.9% (0.00) 0.00039 3.57e-04 8.1 % (0.00) 0.00038 3.57e-04 8.1 % (0.00)
India 2.13e-04 1.52e-04 28.6% (0.00) 1.86e-04 1.52e-04 18.5% (0.00) 1.85e-04 1.52e-04 18.5% (0.00)
Average 0.00025 0.00017 39.25% 0.00023 0.00017 32.55% 0.00023 0.00017 32.55%

Table 3 MSE of in sample fitting of stock index returns. This table presents the
in-sample fitting results of four countries’ stock index return forecasting of four models using
the Mean Squared Error (MSE). The p-values for statistical differences of the forecasting
errors are also presented. Our models outperform all other three models. Where en = ∗10n,
e.g. e− 06 = ∗10−6.

(Timmermann and Granger 2004). On the other side, however, emerging mar-
kets with no market efficiency might create predictable returns. Therefore,
in the next section, we will propose a trading strategy based on our return
prediction models. The trading strategy profit could demonstrate whether it
can earn higher returns in emerging stock markets than in developed markets.
From theoretical perspective, the return forecasting models should earn high-
er returns in emerging stock markets since returns in those markets are more
predictable.

ARMA NRFM1 Improve SETAR NRFM1 Improve LSTAR NRFM1 Improve
(MAE) (MAE) Rate (p-value) (MAE) (MAE) Rate (p-value) (MAE) (MAE) Rate (p-value)

Country
US 0.0058 0.0045 22.4% (0.00) 0.0055 0.0045 18.2% (0.00) 0.0054 0.0045 18.2% (0.00)
Japan 0.0091 0.0091 0.01% (0.30) 0.0095 0.0091 4.2% (0.10) 0.0095 0.0091 4.2% (0.10)

ARMA NRFM2 Improve SETAR NRFM2 Improve LSTAR NRFM2 Improve
(MAE) (MAE) Rate (p-value) (MAE) (MAE) Rate (p-value) (MAE) (MAE) Rate (p-value)

China 0.0106 0.0018 83.1% (0.00) 0.0106 0.0018 83.1% (0.00) 0.0105 0.0018 83.1% (0.00)
India 0.0068 0.0052 23.5% (0.00) 0.0067 0.0052 22.3% (0.00) 0.0067 0.0052 22.3% (0.00)
Average 0.0081 0.0052 32.25% 0.0081 0.0052 31.95% 0.0081 0.0052 31.95%

Table 4 MAE of out-of-sample forecasting of stock index returns. This table
presents the out-of-sample prediction results of four countries’ stock index return forecasting
of four models using the Mean Absolute Error (MAE). The p-values for statistical differences
of the forecasting errors are also presented. Our models outperform all other three models.

4.3 Robustness Check

In order to demonstrate that our results are robust, we adopt a non-linear
return forecasting model other than ARMA-family models as the benchmark
model, which we denote as a High Moments Return Forecasting Model (HM-
RFM). High moments like skewness are vastly concerned by investors in the
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ARMA NRFM1 Improve SETAR NRFM1 Improve LSTAR NRFM1 Improve
(MSE) (MSE) Rate (p-value) (MSE) (MSE) Rate (p-value) (MSE) (MSE) Rate (p-value)

Country
US 6.00e-05 4.06e-05 32.3% (0.00) 5.78e-05 4.06e-05 29.7% (0.00) 5.77e-05 4.06e-05 29.6% (0.00)
Japan 3.62e-04 1.73e-04 52.6% (0.00) 1.80e-04 1.73e-04 3.9% (0.00) 1.79e-04 1.73e-04 3.9% (0.00)

ARMA NRFM2 Improve SETAR NRFM2 Improve LSTAR NRFM2 Improve
(MSE) (MSE) Rate (p-value) (MSE) (MSE) Rate (p-value) (MSE) (MSE) Rate (p-value)

China 2.53e-04 1.74e-05 93.1% (0.00) 2.54e-04 1.74e-05 93.2% (0.00) 2.52e-04 1.74e-05 92.7% (0.00)
India 8.33e-05 4.63e-05 44.4% (0.00) 8.28e-05 4.63e-05 44.1% (0.00) 8.28e-05 4.63e-05 44.1% (0.00)
Average 1.9e-04 6.9e-05 55.6% 1.4e-04 6.9e-05 42.72% 1.4e-04 6.9e-05 42.58%

Table 5 MSE of out-of-sample forecasting of stock index returns. This table
presents the out-of-sample prediction results of four countries’ stock index return forecasting
of four models using the Mean Squared Error (MSE). The p-values for statistical differences
of the forecasting errors are also presented. Our models outperform all other three models.
Where en = ∗10n, e.g. e− 06 = ∗10−6.

stock market (see Kozhan et al. 2013; Kelly et al. 2014). Therefore, we adopt
a HMRFM that is proposed by (Jondeau et al. 2019) as our benchmark mod-
el, which provides nonlinear relation investigation between return and high
moments. The format of the model can be written as follows:

rt = α+ β1σ
2
t−1 + β2skt−1 + εt (9)

where σt is the volatility of the return at time t (also known as second cen-

tral moment), calculated by

√
n∑
t=1

(rt−r̄t)2, skt is the skewness at time t (also

known as third central moment), calculated by
n∑
t=1

( rt−r̄tσ )3, and r̄t is the av-

erage return during the period.
Table 6 shows the in-sample fitting MAE and MSE of our models against

HMRFM. In general, our models outperform HMRFM with the improvement
rate averaged around 50% for MAE and around 90% for MSE. On the oth-
er hand, our models also surpass the HMRFM regarding the out-of-sample
forecasting. Table 7 presents the out-of-sample forecasting MAE and MSE of
our model against HMRFM. It can be observed that our models outperform
HMRFM by around 60% for MAE and around 90% for MSE. These results
have demonstrated the robustness of our models.

5 Stock Index Futures Trading Strategy Based on the Return
Forecasting Models

In order to show different return predictability in different markets, we propose
a trading strategy by trading the corresponding stock index futures based
on the two return forecasting models we have developed. We aim to reveal
different trading profitability in different markets by using the same trading
strategy, which can be described as follows.
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HMRFM NRFM1 Improve HMRFM NRFM1 Improve
(MAE) (MAE) Rate (p-value) (MSE) (MSE) Rate (p-value)

Country
US 0.016 0.0029 81.8% (0.00) 0.00041 1.81e-05 95.6% (0.00)
Japan 0.015 0.0088 87.3% (0.00) 0.00046 0.00016 65.2% (0.00)

HMRFM NRFM2 Improve HMRFM NRFM2 Improve
(MAE) (MAE) Rate (p-value) (MSE) (MSE) Rate (p-value)

China 0.0201 0.012 40.1% (0.00) 0.00084 3.57e-05 95.8% (0.00)
India 0.015 0.0092 38.6% (0.00) 0.00056 1.52e-05 97.3% (0.00)
Average 0.0165 0.0082 50.3% 0.00568 0.00017 88.5%

Table 6 MAE and MSE for in-sample fitting of stock index returns. This table
presents both Mean Absolute Error (MAE) and Mean Squared Error (MSE) in-sample
fitting results of four countries’ stock index return regarding the two models. The p-values
for statistical differences of the forecasting errors are also presented. Our models outperform
HMRFM and our results are robust. Where en = ∗10n, e.g. e− 06 = ∗10−6.

HMRFM NRFM1 Improve HMRFM NRFM1 Improve
(MAE) (MAE) Rate (p-value) (MSE) (MSE) Rate (p-value)

Country
US 0.011 0.0045 59.1% (0.00) 0.00026 4.06e-05 84.3% (0.00)
Japan 0.013 0.0091 30.6% (0.00) 0.00038 1.73e-04 95.5% (0.00)

HMRFM NRFM2 Improve HMRFM NRFM2 Improve
(MAE) (MAE) Rate (p-value) (MSE) (MSE) Rate (p-value)

China 0.014 0.0018 87.1% (0.00) 0.00052 1.74e-05 96.7% (0.00)
India 0.012 0.0052 56.6% (0.00) 0.00028 4.63e-05 83.5% (0.00)
Average 0.0125 0.0052 58.4% 0.00036 6.9e-05 90.1%

Table 7 MAE and MSE for out-of-sample forecasting of stock index returns.
This table presents both Mean Absolute Error (MAE) and Mean Squared Error (MSE)
for out-of-sample forecasting results of four countries’ stock index return regarding the two
models. The p-values for statistical differences of the forecasting errors are also presented.
Our models outperform HMRFM and our results are robust. Where en = ∗10n, e.g. e−06 =
∗10−6.

Suppose we are now at time t before the market open time. We use our
model to forecast the stock index return for time t. If the forecasted return is
positive, then we long the corresponding stock index futures at its open price
and we close our contract at its close price. On the other hand, if the forecasted
return is negative, then we short the corresponding stock index futures at its
open price and we also close our contract at its close price. At the end of time
t, it is observable whether our strategy is successful or not. If the actual return
is positive and we long the futures, then we earn the corresponding stock index
futures return at time t. Otherwise, we lose the return of the same amount.
The situation is exactly identical for the short position and negative return.

Therefore, the cumulative return of the trading strategy for each stock
market is defined as:

RTS =

T∑
t=1

rTSt . (10)
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In particular,

rTSt = |ln(
F ct
F ot

)| ∗ I(rIFt rFRt ≥ 0) (11)

where rTSt is the return from the trading strategy at time t, F ot is the stock
index futures open price at time t and F ct is the stock index futures close
price at time t, rIFt is the stock index futures return at time t and rFRt is the
forecasted stock index futures return at time t, I(·) is the indicator function,
when rIFt rFRt ≥ 0, then I = 1, and I = −1, otherwise.

Then, we adopt the trading strategy to test our models against other four
models based on the out-of-sample results (i.e. from January 1, 2012 to Decem-
ber 31 2017). It might be essential to point out the irrelevance of transaction
cost for the trading strategy. The transaction cost of the trading strategy
based on our forecasting model to compare with other AR-family models as
well as the HMRFM, is trivial because all models are under similar trading
mechanics, which incur the same amount of transaction cost. In other words,
all models would be deducted same amount of transaction cost from their re-
turns, which has little impact on the result. The empirical results have been
presented in Table 8. From Table 8, it is clear that our model has substantial
positive returns for all four countries over the 6-year period. Our model also
exhibits the additional returns compared with other three ARMA models and
HMRFM. Specifically, for the NRFM1, the returns for developed countries of
our model slightly outperforms other four models. On the other side, however,
the returns for emerging countries of our model (NRFM2) considerably out-
performs other four models. In comparison between NRFM1 and NRFM2, the
returns we can earn by using the trading strategy in emerging markets are
substantially higher than we can earn in developed markets. Therefore, this
result aligns with theoretical prediction that returns in emerging market are
more predictable, which may lead to higher returns. More importantly, this
empirical results also show that the nonlinear return forecasting model has
large superiority in the emerging countries, which is also consistent with the
existing arguments (see Avdoulas et al. 2018).

From different trading strategies, the simple moving average (MA) trad-
ing strategy remains popular in the stock market (Fong and Yong 2005). The
advantages of MA strategy involve that it can easily smooth out market noise
and then follow the real market trend. The fact that financial practitioner-
s adopt MA strategy in making buy and sell decisions in the stock market
endures for decades. Therefore, it is observable that the ARMA model has a
higher cumulative return compared with other two AM-family models. More
importantly, information inefficiency in the market could weaken the prompt
adjustment of prices responding and reflecting all public available information.
From the efficient market hypothesis, information inefficiency could present in
the market efficiency in either weak form or semi-strong form. As a conse-
quence, market prices could be massively impacted by psychological factors,
which shall be analyzed under an irrational theoretical framework (Menkhoff
2010). The models we built incorporate jumps in the return process to reflect
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informational surprises or news. This part helps our models to grab the dis-
continuity in information inefficient markets and thus provide higher returns
in those markets. For the further model comparison, we present the hit ratios
of all models in Table 9, which indicate the successful trading percentage of
each model during the sample period. It is observable that our model has the
largest hit ratio among all models. As a result, our model can be envisioned
as the best performance model in both return earned and trading success.

Country
ARMA SETAR LSTAR HMRFM NRFM1

US 22.3% 23.2% 23.2% 27.8% 35.6%
Japan 21.9% 21.3% 21.2% 24.5% 30.9%

ARMA SETAR LSTAR HMRFM NRFM2
China 40.8% 39.3% 39.2% 39.8% 56.9%
India 81.1% 75.9% 75.9% 88.5% 97.7%
Average 41.52% 39.92% 39.87% 45.87% 55.28%

Table 8 Cumulative returns of trading strategy based on the return forecasting
models. This table presents the out-of-sample results of four countries’ stock index futures
returns according to the trading strategy based on the return forecasting models. Our models
have significantly higher returns than all other models.

Country
ARMA SETAR LSTAR HMRFM NRFM1

US 45.7% 44.3% 41.1% 44.8% 51.8%
Japan 51.8% 49.3% 48.9% 49.5% 54.2%

ARMA SETAR LSTAR HMRFM NRFM2
China 48.1% 47.2% 46.7% 49.3% 51.4%
India 49.1% 48.7% 48.2% 52.1% 53.9%

Table 9 Hit ratios of trading strategy based on the return forecasting models.

6 Conclusion

To conclude, we have built two return forecasting models based on GP method
for both developed markets and emerging markets. Our developed models have
superior properties in many respects. Firstly, our model only uses lagged re-
turns as predictors rather than filling copious variables into the model. Second-
ly, our models are AI based propositions, which incorporate special relations
in the stock market, such as nonlinearity. Thirdly, our models distinguish de-
veloped markets from emerging markets, which restore market characteristics
into our models. Empirically, we show that our models present significant im-
provements in return forecasting compared with AutoRegressive (AR) family
models in both linear and nonlinear forms. The improvement rate is around
30% for in-sample fitting and around 40% for out-of-sample forecasting. Based
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on those precise return forecasting models, we also propose a trading strate-
gy and the trading strategy has been verified to be highly profitable in both
developed markets and emerging markets. In particular, compared with other
AR-family models, our model earned 55% profitability on average while other
models only earned 40%. Specifically, our model earned 35% and 30% annual-
ized return in US and Japan respectively. In contrast, other models earned 23%
and 21% annualized return in US and Japan respectively. For emerging eco-
nomics, our model earned 57% and 98% annualized return in China and India
respectively. In contrast, other models earned 40% and 75% annualized return
in China and India respectively. It is arguable that our model displays supe-
rior performance over other models with same trading strategy in the futures
markets. This superior performance could be attributed to the nonlinearity
capture in our model. Moreover, our models also outperform the tradition-
al non-linear model, which illustrates the outstanding information extraction
ability of the GP approach.
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