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1 Introduction

The eigenvalue problem associated with a vibrating string, fixed at the ends, is formu-
lated as follows:  −u′′ + f (x)u = λu in (a, b)

u(a) = u(b) = 0,
(1)

where f (x) denotes the density of the string. Recall that by a solution to (1) we mean a
pair (λ, u) ∈ R × H1

0(a, b) which satisfies the following integral equation:

b∫
a

u′v′dx +

b∫
a

f (x)uvdx = λ

b∫
a

uvdx, ∀v ∈ H1
0(a, b). (2)

If the string is made of N different materials (i. e. the non-isotropic case) with
respective non-negative densities α1, . . . , αN , then f (x) =

∑N
j=1 α jχE j such that:
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Fig. 1 Initial and terminal locations of the high-density region.
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(i) Each Ei is a measurable subset of (a, b).
(ii) ∀i , j : αi , α j.

(iii) ∀i , j : Ei ∩ E j = ∅.
(iv)

⋃N
j=1 E j = (a, b).

In this case, the differential equation in (1) becomes

−u′′ +

 N∑
j=1

α jχE j

 u = λu,

and if we further assume α1 = min {α j | 1 ≤ j ≤ N}, then we obtain

−u′′ +

 N∑
j=2

(α j − α1)χE j

 u = (λ − α1)u. (3)

In this paper we will focus on the case N = 2. Thus, after renaming the coefficients,
(3) becomes:

−u′′ + αχE u = λu. (4)

More precisely, we will study a particular family of eigenvalue problems of type (4): −u′′ + αχ(t,t+A)(x)u = λu in (0, π)

u(0) = u(π) = 0,
(5)

where 0 < t ≤ 1
2 (π − A), and A is a prescribed positive constant such that A < π. The

restriction on the parameter t ensures that the midpoint of the interval (t, t + A) will not
exceed π/2.

In the physical context described at the beginning of this section, equation (5)
displays the eigenvalue problem associated with a non-isotropic vibrating string, fixed
at the ends, which is constructed out of two different materials. Moreover, the part of
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the string occupying the region (t, t + A) is made of the material with larger density.
As the parameter t moves away from zero and approaches its ultimate value 1

2 (π − A),
the region of higher density moves from the far left position towards the middle of the
string, as depicted in Figure 1 on the facing page.

It is well known that (5) has infinitely many eigenvalues: 0 < λ1(t) < λ2(t) ≤
λ3(t) ≤ · · · → ∞. It is the very first one, i. e. λ1(t), called the principal eigenvalue, that
is of interest to us. The variational formulation of λ1(t) is as follows:

λ1(t) = inf
u∈H1

0 (0,π), ‖u‖2=1


π∫

0

u′2 dx + α

π∫
0

χ(t,t+A)(x)u2 dx

 . (6)

The infimum in (6) is achieved by a unique positive function ut. The pair (λ1(t), ut) ∈
[0,∞)×H1

0(0, π) is called the principal eigenpair corresponding to (5). In the particular
case of α = 0, the principal eigenpair, which is obviously independent of t, turns out to
be (1,

√
2/π sin x). Indeed, the formulation (6), when α = 0, confirms λ1 = 1. To see

this, consider the Fourier sine series of any u ∈ H1
0(0, π):

u(x) =

∞∑
n=1

an sin(nx),

where

an =
2
π

π∫
0

u(x) sin(nx) dx.

On the other hand,

u′(x) =

∞∑
n=1

nan cos(nx).

Whence
π∫

0

u2 dx =
π

2

∞∑
n=1

an
2 and

π∫
0

u′2 dx =
π

2

∞∑
n=1

nan
2.

So,
∫ π

0 u2dx ≤
∫ π

0 u′2dx. This, in turn, implies λ1 ≥ 1. On the other hand, using the
test function v(x) =

√
2/π sin x in (6), we deduce λ1 ≤ 1. Thus, λ1 = 1, as expected.

The main result of this article is the following:

Theorem 1.1. For α > 0, the function λ1 : (0, π−A
2 )→ R is strictly increasing.

The physical interpretation of Theorem 1.1 is that the principal frequency λ1(t) of the
string increases as the region with larger density moves from the left end of the interval
(0, π) towards the middle.
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Remark 1.1. The eigenvalue problem (1) can be interpreted in a different context as
well. Indeed, (1) is a scaled version of the one dimensional steady state Schrödinger
eigenvalue problem governing a particle of mass m, moving in a potential V(x): −(~/2m)u′′ + V(x)u = Λu in (a, b)

u(a) = u(b) = 0,

where ~ denotes the Planck constant. Therefore, the physical interpretation of the as-
sertion in Theorem 1.1, in this new context, is that the principal energy corresponding
to the potential αχ(t,t+A) is strictly increasing as t moves from 0 to (π − A)/2.

We mention that monotonicity results regarding eigenvalues—and functions of eigen-
values (such as λ2/λ1)—of elliptic operators have been extensively investigated in
the literature; however, they have been mostly of isoperimetric type, for example,
see [AB93a, AB93b, AHS91, Bar85, CO97, Kar98, LY83, LP94, Mar80, Nad95,
NP92, Oss78, PPW56, Pól55, Pól61]. There are few papers that address monotonicity
of the eigenvalues with respect to a parameter related to the body of the object un-
der study. Some papers investigate the behaviour of the eigenvalues with respect to
a parameter which is placed in the boundary conditions, see for example [CGM11]
and [LP08]. Our work is primarily motivated by [HLKK01] (also, see [PBN11] and
[FBRS08]), where the authors address a problem similar to the one in this note, but in
higher dimensions. The advantage of our paper is that the analysis used is elementary
and nearly self-contained, hence easily accessible to a wide spectrum of mathemati-
cians and engineers. Theorem 4.3 in Section 4 is somewhat similar to Theorem 2.2 in
[EF08], yet bearing a major difference; namely, the maximization problem in [EF08]
is performed over a rearrangement class generated by a prescribed positive function
whose graph has no flat sections. In particular, it cannot be a characteristic function, in
contrast to the case considered in this note.

In a follow up paper we will generalize Theorem 1.1 in two ways. First, we will
prove that the same result holds even if the Dirichlet boundary conditions are replaced
with the Robin boundary conditions:−u′(0) + γ1u(0) = 0

u′(π) + γ2u(π) = 0,

where γ1 and γ2 are positive constants. Second, we prove that the same result as in
Theorem 1.1 can be obtained for the p-Laplacian version of (5):

−(|u|p−2u′)′ + αχ(t,t+A)(x)|u|p−2u = λ|u|p−2u in (0, π)

u(0) = u(π) = 0.

However, we are not certain whether the same result holds for the Neumann boundary
conditions, see [HLS12] in this regard.
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2 Preliminaries

Our first result in this section is an estimate which will prove to be quite useful. Hence-
forth, C stands for a universal constant whose value may vary from one step to another.

Lemma 2.1. Consider the boundary value problem: −u′′ + f (x)u = g(x) in (a, b)

u(a) = u(b) = 0,
(7)

where f ∈ L∞(a, b) and g ∈ L2(a, b). Then

‖u‖∞ ≤ C
(
‖ f ‖∞ ‖u‖22 + ‖g‖2 ‖u‖2

)1/2
. (8)

Furthermore, if f (x) is not identically zero, then:

‖u‖∞ ≤ C‖ f ‖1/2∞

(
‖u‖2 +

‖g‖2
2‖ f ‖∞

)
. (9)

Proof. We begin by multiplying the differential equation in (7) by u, and integrating
the result over (a, b), to obtain:

‖u′‖22 +

b∫
a

f u2 dx =

b∫
a

gu dx.

Applying the Hölder inequality to the right hand side of the last equation yields:

‖u′‖22 +

b∫
a

f u2 dx ≤ ‖g‖2 ‖u‖2,

hence,
‖u′‖22 ≤ ‖ f ‖∞ ‖u‖

2
2 + ‖g‖2 ‖u‖2. (10)

On the other hand, since u(x) =
∫ x

a u′(t) dt, we derive:

|u(x)| ≤

x∫
a

|u′(t)| dt ≤
√

b − a ‖u′‖2, x ∈ [a, b]. (11)

From (10) and (11) we deduce (8). The derivation of (9) from (8) is straightforward. �

Corollary 2.2. Let (λ1(t), ut) be the principal eigenpair corresponding to the eigen-
value problem (5). Then:
(i) λ1(t) ≤ C.
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(ii) ‖ut‖∞ ≤ C.

Proof. Inequality (i) readily follows from Definition (6). To prove (ii), we apply (9),
with f (x) = αχ(t,t+A)(x) and g(x) = λ1(t)ut(x). Hence, keeping in mind that ‖ut‖2 = 1,
we obtain

‖ut‖∞ ≤ Cα1/2
(
1 +

1
2α
λ1(t)

)
. (12)

The inequality (12) coupled with λ1(t) ≤ C implies (ii). �

Lemma 2.3. Given t ∈ (0, π), the following estimate holds:

|λ1(t + h) − λ1(t)| ≤ C|h|, (0 < |h| � 1) (13)

Proof. Fix a sufficiently small h. From (6), we obtain

λ1(t + h) ≤

π∫
0

u′t
2 dx + α

π∫
0

χ(t+h,t+h+A)(x)u2
t dx

=

π∫
0

u′t
2 dx + α

π∫
0

χ(t,t+A)(x)u2
t dx

+ α

π∫
0

(
χ(t+h,t+h+A)(x) − χ(t,t+A)(x)

)
u2

t dx

= λ1(t) + α

π∫
0

(
χ(t+h,t+h+A)(x) − χ(t,t+A)(x)

)
u2

t dx. (14)

Since ut ∈ L∞(0, π), from (14) we infer

λ1(t + h) − λ1(t) ≤ C|h|. (15)

Similarly, one can derive

λ1(t) ≤ λ1(t + h) + α

π∫
0

(
χ(t,t+A)(x) − χ(t+h,t+h+A)(x)

)
u2

t+h dx. (16)

From Corollary 2.2, we have ‖ut+h‖∞ ≤ C. Thus, (16) implies

λ1(t) − λ1(t + h) ≤ C|h|. (17)

The inequality (13) follows from (15) and (17). �

Lemma 2.4. Given t ∈ (0, π), the following limit holds:

lim
h→0
‖ut+h − ut‖∞ = 0. (18)
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Proof. Fix t ∈ (0, π), and consider a numerical sequence (hn) such that hn → 0. We
will show that (ut+hn ) converges uniformly to ut, which proves the lemma. To this end,
we set Un = ut+hn , λ

(n) = λ1(t + hn), In = (t + hn, t + hn + A), and I = (t, t + A). For each
n we have: 

−U′′n + αχIn (x)Un = λ(n)Un in (0, π)

Un(0) = Un(π) = 0
(19)

Multiplying the differential equation in (19) by Un, integrating the result over (0, π),
and finally using ‖Un‖2 = 1 we obtain:

‖U′n‖
2
2 + α

π∫
0

χIn (x)U2
n dx = λ(n) (20)

Knowing that λ(n) ≤ C, from (20) we infer that (Un) is bounded in H1
0(0, π). Thus, (Un)

contains a subsequence—still denoted (Un)—such that Un → U weakly in H1
0(0, π),

for some U ∈ H1
0(0, π). Moreover, the same subsequence converges uniformly to U in

(0, π). Now, we return to (20) and pass n to infinity, keeping in mind that by Lemma
2.3, λ(n) → λ1(t). Hence:

λ1(t) ≥ ‖U′‖22 + α

π∫
0

χI(x)U2 dx. (21)

On the other hand, since ‖U‖2 = 1, we can apply (6) to deduce that

λ1(t) ≤ ‖U′‖22 + α

π∫
0

χI(x)U2 dx. (22)

Therefore, from (21) and (22) we get:

λ1(t) = ‖U′‖22 + α

π∫
0

χI(x)U2 dx.

Whence, by uniqueness of eigenfunctions, we infer that U = ut. �

Lemma 2.5. The function λ1 : (0, 1
2 (π − A))→ R is differentiable, and

λ′1(t) = α(u2
t (t + A) − u2

t (t)). (23)

Proof. We shall show that

λ′1(t+) = α(u2
t (t + A) − u2

t (t)). (24)
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To this end, we proceed along the same lines as in the proof of Lemma 2.3. After fixing
0 < h � 1, and setting Ih = (t + h, t + h + A) and I = (t, t + A), one can derive

λ1(t + h) ≤ λ1(t) + α

π∫
0

(
χIh (x) − χI(x)

)
u2

t dx. (25)

From (25), we obtain

λ1(t + h) − λ1(t)
h

≤ α

π∫
0

(
χIh (x) − χI(x)

)
h

u2
t dx. (26)

Inequality (26) in turn implies

lim sup
h→0+

λ1(t + h) − λ1(t)
h

≤ α(u2
t (t + A) − u2

t (t)). (27)

On the other hand,

λ1(t) ≤ λ1(t + h) + α

π∫
0

(χI(x) − χIh (x))u2
t+h dx.

So,

λ1(t) − λ1(t + h)
h

≤ α

π∫
0

(
χI(x) − χIh (x)

)
h

u2
t+h dx. (28)

We will return to (28), but at this point we shall show:

lim
h→0+

1
h

t+h∫
t

u2
t+h dx = u2

t (t). (29)

To this end,

1
h

t+h∫
t

u2
t+h dx − u2

t (t) =
1
h

t+h∫
t

(u2
t+h(x) − u2

t (x))dx +
1
h

t+h∫
t

(u2
t (x) − u2

t (t))dx. (30)

From Lemma 2.4 we infer that the first integral on the right hand side of (30) tends to
zero as h tends to zero. The second integral clearly tends to zero as well. This finishes
the proof of our claim (29). Similarly, one can show:

lim
h→0+

1
h

t+h+A∫
t+A

u2
t+h dx = u2

t (t + A). (31)
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In view of (29) and (31), we infer from (28):

lim sup
h→0+

λ1(t) − λ1(t + h)
h

≤ α(u2
t (t) − u2

t (t + A)). (32)

From (32) and (27) we deduce (24).
Using similar arguments as above, one can also show:

λ′1(t−) = α(u2
t (t + A) − u2

t (t)). (33)

The combination of (24) and (33) implies (23). �

3 Proof of Theorem 1.1

Proof. (Theorem 1.1) In view of Lemma 2.5, we need to show:

ut(t + A) > ut(t), ∀t ∈ (0, (π − A)/2).

To this end, we fix t ∈ (0, (π−A)/2), and let m denote the midpoint of the interval I(t) =

(t, t + A). For x ∈ (0,m), let xm denote the reflection of x relative to m, i. e. xm = 2m− x.
Next, we introduce the function:

w(x) = ut(x) − ut(xm), x ∈ (0,m).

Note that if we show w(t) < 0, then we are done. As we shall see, a stronger result will
be proved; namely, w is negative in the entire interval (0,m). We prove this claim in two
steps. First we show that w is non-positive on its domain, and this, in turn, paves the
path toward the second step which is the application of the strong maximum principle
to draw the conclusion that w is in fact negative in (0,m).

Let us observe that:

−w′′(x) + αχI(t)(x)w(x) = −(u′′t (x) − u′′t (xm)) + αχI(t)(x)(ut(x) − ut(xm))

= −u′′t (x) + αχI(t)(x)ut(x) − (−u′′t (xm) + αχI(t)(xm)ut(xm))

= λ1(t)ut(x) − λ1(t)ut(xm) = λ1(t)w(x),

since χI(t)(x) = χI(t)(xm). Moreover, w(m) = 0 and w(0) < 0, since u(0) = 0 and
u(0m) = u(2m) > 0. Therefore, we have: −w′′ + αχI(t)(x)w = λ1(t)w in (0,m)

w(0) = w0 < 0, w(m) = 0.
(34)
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To show w is non-positive, it suffices to show that w+ := max{0,w(x)} is identically
zero in (0,m). Clearly, w+ ∈ H1

0(0,m), hence, from (34), we deduce:

m∫
0

w+′2 dx + α

m∫
0

χI(t)(x)w+2 dx = λ1(t)

m∫
0

w+2 dx. (35)

From (35) we infer λ1(t) ≥ λ̃, where λ̃ is the principal eigenvalue of the following
problem: 

−Z′′ + αχI(t)(x)Z = λZ in (0,m)

Z(0) = Z(m) = 0.

However, λ1(t) < λ̃, which follows from the variational formulation of λ1(t), noting
that H1

0(0,m) is trivially embedded into H1
0(0, π), by extending the elements of H1

0(0,m)
to be zero in (0, π) \ (0,m). So, we derive a contradiction: λ̃ ≤ λ1(t) < λ̃. Whence, w+ is
identically zero in (0,m), as desired. This proves w is non-positive. Finally, the strong
maximum principle applied to the boundary value problem (34) implies w is negative
in (0,m), which completes the proof of the theorem. �

4 Further discussion

From Theorem 1.1, we infer λ1(t) < λ1((π − A)/2), for all 0 < t < (π − A)/2. In this
section we discuss how this result can be obtained using rearrangement inequalities,
provided that α is small enough. We start with the following:

Lemma 4.1. Let (λ1, u) denote the principal eigenpair for the eigenvalue problem:
−S ′′ + αχI(x)S = λS in (0, π)

S (0) = S (π) = 0,
(36)

where I = ((π − A)/2, (π + A)/2). Then, ∀x ∈ (0, π) : u(x) = u(π − x).

Proof. Define w(x) = u(x) − u(π − x). Then

−w′′(x) + αχI(x)w(x) = −u′′(x) + αχI(x)u(x)

− (−u′′(π − x) + αχI(π − x)u(π − x))

= λ1u(x) − λ1u(π − x) = λ1w(x).

Moreover, w(0) = w(π) = 0. Hence, it follows that either w is identically zero or it is a
multiple of u. Let us assume the latter is true, i. e. w = βu, for some non-zero constant
β. Whence, w is either positive or negative, which in either case contradicts the fact that
w(x) = −w(π − x). Thus, w ≡ 0, and the assertion of the lemma is proved. �
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Lemma 4.2. There exists α > 0 such that if 0 < α < α and (λα, uα) is the eigenpair
for the eigenvalue problem (36), then uα is strictly decreasing in (π/2, π).

Proof. Define ξ(α) = λα − α. We show that ξ is strictly decreasing on [0,∞), using the
ideas introduced in [CGI+00]. To this end, we consider 0 < α′ < α, and for simplicity
set u = uα and v = uα′ . Thus,

ξ(α) = λα − α ≤

π∫
0

v′2dx + α

π∫
0

χI(x)v2 dx − α

=

π∫
0

v′2dx + α′
π∫

0

χI(x)v2 dx + (α − α′)

π∫
0

χI(x)v2 dx − α

= λα′ − α
′ + (α′ − α)

π∫
0

(1 − χI(x))v2 dx (37)

< λα′ − α
′ = ξ(α′),

since
∫ π

0 v2 dx = 1. So, ξ is strictly decreasing, as desired. Observe that (37) implies
limα→∞ ξ(α) = −∞. This, coupled with the fact that ξ(0) = λ0 = 1, ensure existence of
a unique α such that ξ(α) = 0.

Henceforth, we assume α < α. Let us recall the differential equation satisfied by u:

−u′′ + αχI(x)u = λαu in (0, π). (38)

By Lemma 4.1, u(x) = u(π − x) in (0, π), hence u′(π/2) = 0. Therefore, from (38), we
obtain:

−

x∫
π
2

u′′(y) dy =

x∫
π
2

(λα − αχI(x))u dy, ∀x ∈ (π/2, π). (39)

From (39), we infer

−u′(x) ≥

x∫
π
2

(λα − α)u dy =

x∫
π
2

ξ(α)u dy > 0, ∀x ∈ (π/2, π),

since ξ(α) > 0. So, the proof of the lemma is completed. �

The main result of this section is the following:

Theorem 4.3. Let t ∈ (0, (π − A)/2), and α < α. Then λα(t) ≤ λα((π − A)/2).
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Proof. For fixed t ∈ (0, (π − A)/2), we set λ = λα(t) and λ = λ((π − A)/2). Also, we
assume (λ, u) and (λ, v) are principal eigenpairs. Then

λ ≤

π∫
0

v′2 dx + α

π∫
0

χI(t)(x)v2 dx, (40)

where I(t) = (t, t + A). At this point we apply the Hardy-Littlewood rearrangement
inequality (see for example [Kaw85]) to obtain:

π∫
0

χI(t)(x)v2 dx ≤

π∫
0

(
χI(t)

)∗ (x)v∗2 dx, (41)

where (.)∗ denotes the well known symmetric rearrangement operator relative to the
line x = π

2 in the xy-plane. On the other hand from Lemma 4.1 and Lemma 4.2, we
have v∗ = v, so from (40) and (41), we obtain:

λ ≤

π∫
0

v′2 dx + α

π∫
0

(
χI(t)

)∗ (x)v∗2 dx =

π∫
0

v′2 dx + α

π∫
0

χI(x)v2 dx = λ,

where I = ((π − A)/2, (π + A)/2). So, the proof of the theorem is completed. �

5 Numerical simulation

The eigenvalue problem (1) can be solved numerically in various ways. Here we briefly
describe a simple ansatz based on Galerkin’s method which we have used in our nu-
merical algorithm. A succinct presentation of the underlying approach may be found
in [Eds08].

5.1 Reduction to a generalized eigenvalue problem

Consider the formulation (2) on page 1 in which f (x) is replaced with αχ(t,t+A)(x), i. e.

b∫
a

u′v′dx +

b∫
a

αχ(t,t+A) uvdx = λ

b∫
a

uvdx, ∀v ∈ H1
0(a, b) (42)
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Assume that N ≥ 1 and set h = (b − a)/(N + 1). Next, for each 1 ≤ i ≤ N, let the
roof function φN

i be defined by

∀x ∈ (a, b) : φN
i (x) =


(x − a − (i − 1)h) / h if a + (i − 1)h < x < a + ih

(a + (i + 1)h − x) / h if a + ih ≤ x < a + (i + 1)h

0 otherwise

Note that the collection {φN
i | 1 ≤ N, 1 ≤ i ≤ N} forms a basis for the Sobolev space

H1
0(a, b). We drop the superscript N and simply write φi where there is no confusion.

In order to solve equation (42), we approximate u by an ansatz ũ satisfying

ũ(x) =

N∑
i=1

viφi(x) (43)

in which the coefficients {vi | 1 ≤ i ≤ N} are unknown. Knowing that equation (42)
holds for all v ∈ H1

0(a, b), by substituting φ j for v for each 1 ≤ j ≤ N , one obtains:

b∫
a

ũ′ φ′j dx +

b∫
a

αχ(t,t+A) ũ φ j dx = λ

b∫
a

ũ φ j dx (44)

Next we need to discretise the characteristic function χ(t,t+A). Define the setA B {a+ih |
0 < i < N + 1} and let t0 and t1 be the smallest and the largest elements of A that lie
in the interval (t, t + A), respectively. We approximate the characteristic function χ(t,t+A)

by χ̃ B χ(t0,t1).
By using (43), incorporating χ̃, and then rearranging terms in (44), one gets

N∑
i=1


b∫

a

φ′i φ
′
j dx

 vi +

N∑
i=1

α
b∫

a

χ̃ φi φ j dx

 vi = λ

N∑
i=1


b∫

a

φi φ j dx

 vi

which reduces to

N∑
i=1


b∫

a

φ′i φ
′
j dx + α

b∫
a

χ̃ φi φ j dx

 vi = λ

N∑
i=1


b∫

a

φi φ j dx

 vi

Let us consider the N × N matrices C, D and M whose entries are as follows:

∀i, j ∈ {1, . . .N} :


Ci, j =

∫ b
a φ′i φ

′
j dx

Di, j = α
∫ b

a χ̃ φi φ j dx

Mi, j =
∫ b

a φi φ j dx
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Some straightforward calculations would reveal that C, D and M are all tridiagonal
matrices of the following form:

C =
1
h



2 −1 0 · · · 0

−1 2 −1
. . .

...

0
. . .

. . .
. . . 0

...
. . . −1 2 −1

0 · · · 0 −1 2


, M =

h
6



4 1 0 · · · 0

1 4 1
. . .

...

0
. . .

. . .
. . . 0

...
. . . 1 4 1

0 · · · 0 1 4


and due to the presence of χ̃, the matrix D is a ‘cropped’ version of αM, i. e.

Di, j =


αMi, j if t−a

b−a <
i

N+1 <
t+A−a

b−a

0 otherwise

Hence, we have obtained the generalised eigenvalue problem :

(C + D) × V = M × V × Λ (45)

in which:
– V is an N × N matrix whose columns form the eigenvectors. The entries in each

column can be substituted in (43) to obtain various approximations of u.
– Λ is a diagonal matrix containing the eigenvalues on its diagonal.

The problem (45) can be solved using any of the established methods for solving a gen-
eralised eigenvalue problem. Note that in order to obtain a simple eigenvalue problem
both sides of (45) need to be multiplied by M−1. However, one should refrain from that
extra step as it leads to full matrices which in turn would add significantly to the cost of
representations and computations. A well designed algorithm for solving generalised
eigenvalue problems can take advantage of the tridiagonal structure of the matrices
involved.

5.2 Accuracy and convergence

How accurate a solution one would obtain from (45) depends on the value of N. It is
best to start off with an initial N0, and then try the algorithm with successive values Ni

until some measure of convergence is observed. For instance, assume that:

a = 0, b = π, t =
9π
20
, A =

π

10
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We start off with N0 = 4 and continue by doubling the values according to Ni+1 = 2Ni.
At each iteration i we calculate the relative error

ei =

∣∣∣∣∣∣∣λ
Ni+1
1 − λNi

1

λNi
1

∣∣∣∣∣∣∣
in which λNi

1 denotes the smallest eigenvalue of system (45) with parameter Ni.
We ran the algorithm until the relative error went below 10−5, for which the graph

of the relative error with respect to N is shown in Figure 2 below. As can be seen from
the figure, the convergence is quite fast.

Fig. 2 Relative error of successive approximations to λ1 with respect to N. The plot of
1/x is shown in dashed line for convenient comparison. Note that the plots are logarith-
mic along both x and y axes.

5.3 Different values for α

We used the underlying set up described so far to produce the graph of λ1(t) for different
values of α, as shown in Figure 3 on the next page. Note that according to this figure,
λ1(t) approaches 1 as α tends to zero. One can prove that this convergence is uniform.
Indeed, since infu∈H1

0 (0,π), ‖u‖2=1

∫ π
0 u′2dx = 1, it is clear from (6) on page 3 that 1 ≤

λ1(t) ≤ 1 + α, for all t in (0, π). Therefore λ1(t) = 1 + O(α), as α→ 0+, uniformly in t.



16 B. Emamizadeh and A. Farjudian

Fig. 3 The values of λ1(t) tend to 1 (for all t ∈ (0, π)) as α→ 0.

5.4 Other eigenvalues

One of the benefits of numerical simulations is that they can provide us with some
insight into aspects of a system before the theory is developed. A case in point is the
dynamics of the other eigenvalues besides λ1, even though in the current paper we have
focused exclusively on the principal eigenvalue.

A plot of the first five eigenvalues are shown in Figure 4 on the next page. It seems
that although λ1 grows monotonically as the high density segment moves towards the
center, λ2 increases towards a peak and then goes down. In other words, in (0, (π−A)/2),
λ2 goes through one local optima. The eigenvalue λ3 goes through a local maximum
and then a local minimum, i. e. the plot of λ3 has 2 local optima.

It appears from the figure that in (0, (π − A)/2) each λk goes through (k − 1) local
optima.

6 Conclusion

In this note we considered an eigenvalue problem related to a non-isotropic vibrating
string which is fixed at the two ends. Notably, the string is made of two different mate-
rials. We showed that as the location of the material with larger density moves contin-
uously from either left or right ends toward the middle of the string, the corresponding
principal eigenvalue increases. We also used the Hardy-Littlewood rearrangement in-
equality to show that the principal eigenvalue—in case the location of the string bearing
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Fig. 4 The first five eigenvalues (i. e. λ1 through λ5) from bottom to top. It seems that
each λk has (k − 1) critical points in (0, (π − A)/2).

larger density is precisely in the middle—exceeds the principal eigenvalue correspond-
ing to the density distribution where the location of the material with larger density
is closer to the ends. It will be interesting to know if the results of Theorem 1.1 and
Theorem 4.3 still hold if the Dirichlet boundary conditions in (1) are replaced with the
Neumann boundary conditions.

In a follow up paper we will show that an analysis similar to the one presented in
this paper can be applied to the eigenvalue problem:

−(|u|p−2u′)′ + αχ(t,t+A)(x)|u|p−2u = λ|u|p−2u in (0, π)

u(0) = u(π) = 0.

and that the same result as in Theorem 1.1 will hold. We will also prove that the same
result still stands even if the Dirichlet boundary conditions are replaced with the Robin
boundary conditions: −u′(0) + γ1u(0) = 0

u′(π) + γ2u(π) = 0,

where γ1 and γ2 are positive constants. Whether the result is valid under Neumann
boundary conditions remains to be investigated.
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