Wireless-Powered Intelligent Radio Environment With Nonlinear Energy Harvesting

Zheng Chu, Pei Xiao, De Mi, Wanming Hao, Zihuai Lin, Qingchun Chen, Rahim Tafazolli

Research output: Journal PublicationArticlepeer-review

10 Citations (Scopus)


This article investigates a wireless-powered intelligent radio environment, where a fractional nonlinear energy harvesting (NLEH) is proposed to enable an intelligent reflecting surface (IRS)-assisted wireless-powered Internet of Things (WP IoT) network. The IRS engages in downlink wireless energy transfer (WET) and uplink wireless information transfer (WIT). We aim to improve the overall performance of the considered network, and the approach is to maximize its sum throughput subject to constraints of two different types of IRS beam patterns and time durations. To solve the formulated problem, we first consider the Lagrange dual method and Karush-Kuhn-Tucker (KKT) conditions to optimally design the time durations in closed form. Then, a quadratic transformation (QT) is proposed to iteratively transform the fractional NLEH model into the subtractive form, where the IRS phase shifts are optimally derived by the complex circle manifold (CCM) method in each iteration. Finally, numerical results are demonstrated to promote the proposed scheme in comparison to the benchmark schemes, where the benefits are induced by the IRS compared with the benchmark schemes.

Original languageEnglish
Pages (from-to)18130-18141
Number of pages12
JournalIEEE Internet of Things Journal
Issue number18
Publication statusPublished - 15 Sept 2022
Externally publishedYes


  • Complex circle manifold (CCM)
  • intelligent radio environment
  • intelligent reflecting surface (IRS)
  • nonlinear energy harvesting (NLEH)
  • phase shifts
  • quadratic transformation (QT)

ASJC Scopus subject areas

  • Signal Processing
  • Information Systems
  • Hardware and Architecture
  • Computer Science Applications
  • Computer Networks and Communications


Dive into the research topics of 'Wireless-Powered Intelligent Radio Environment With Nonlinear Energy Harvesting'. Together they form a unique fingerprint.

Cite this