Validation of the CUTLASS HF radar gravity wave observing capability using EISCAT CP-1 data

N. F. Arnold, T. B. Jones, T. R. Robinson, A. J. Stocker, J. A. Davies

Research output: Journal PublicationArticlepeer-review

10 Citations (Scopus)

Abstract

Quasi-periodic fluctuations in the returned ground-scatter power from the SuperDARN HF radars have been linked to the passage of medium-scale gravity waves. We have applied a technique that extracts the first radar range returns from the F-region to study the spatial extent and characteristics of these waves in the CUTLASS field-of-view. Some ray tracing was carried out to test the applicability of this method. The EISCAT radar facility at Tromsø is well within the CUTLASS field-of-view for these waves and provides a unique opportunity to assess independently the ability of the HF radars to derive gravity wave information. Results from 1st March, 1995, where the EISCAT UHF radar was operating in its CP-1 mode, demonstrate that the radars were in good agreement, especially if one selects the electron density variations measured by EISCAT at around 235 km. CUTLASS and EISCAT gravity wave observations complement each other; the former extends the spatial field of view considerably, whilst the latter provides detailed vertical information about a range of ionospheric parameters.

Original languageEnglish
Pages (from-to)1392-1399
Number of pages8
JournalAnnales Geophysicae
Volume16
Issue number10
DOIs
Publication statusPublished - Oct 1998
Externally publishedYes

Keywords

  • Ionosphere (ionosphere - atmosphere interactions)
  • Meteorology and atmospheric dynamics (thermospheric dynamics)
  • Radio science (ionospheric propagations)

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Geology
  • Atmospheric Science
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Validation of the CUTLASS HF radar gravity wave observing capability using EISCAT CP-1 data'. Together they form a unique fingerprint.

Cite this