Thermal-aware frequency scaling for adaptive workloads on heterogeneous MPSoCs

Heng Yu, Rizwan Syed, Yajun Ha

Research output: Chapter in Book/Conference proceedingConference contributionpeer-review

16 Citations (Scopus)

Abstract

For applications featuring adaptive workloads, the quality of their task execution can be dynamically adjusted given the runtime constraints. When mapping them to heterogeneous MPSoCs, it is expected not only to achieve the highest possible execution quality, but also meet the critical thermal challenges from the continuously increasing chip density. Prior thermal management techniques, such as Dynamic Voltage/Frequency Scaling (DVFS) and thread migration, do not take into account the trade-off possibility between execution quality and temperature control. In this paper, we explore the capability of adaptive workloads for effective temperature control, while maximally ensuring the execution Quality-of-Service (QoS). We present a thermal-aware dynamic frequency scaling (DFS) algorithm on heterogeneous MPSoCs, where judicious frequency selection achieves QoS maximization under the temperature threshold, which is converted to the thermal-timing deadline as an additional execution constraint. Results show that our frequency scaling algorithm achieves as large as 31.5% execution cycle/QoS improvement under thermal constraints.

Original languageEnglish
Title of host publicationProceedings - Design, Automation and Test in Europe, DATE 2014
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Print)9783981537024
DOIs
Publication statusPublished - 2014
Externally publishedYes
Event17th Design, Automation and Test in Europe, DATE 2014 - Dresden, Germany
Duration: 24 Mar 201428 Mar 2014

Publication series

NameProceedings -Design, Automation and Test in Europe, DATE
ISSN (Print)1530-1591

Conference

Conference17th Design, Automation and Test in Europe, DATE 2014
Country/TerritoryGermany
CityDresden
Period24/03/1428/03/14

ASJC Scopus subject areas

  • General Engineering

Fingerprint

Dive into the research topics of 'Thermal-aware frequency scaling for adaptive workloads on heterogeneous MPSoCs'. Together they form a unique fingerprint.

Cite this