Abstract
Adsorptive separation of ethylene/ethane (C2H4/C2H6) binary mixture has growing interest in petrochemical industries compared to the conventional energy-intensive cryogenic distillation. Development of moisture-stable materials with high selectivity is of great importance to accomplish C2H4/C2H6 separation. Coordination pillared-layer metal-organic framework (CPL-MOF) CPL-2 was synthesised at room temperature, and then modified by silver ions impregnation to enhance the selectivity towards ethylene over ethane. The synthesised CPL-2 and Ag/CPL-2 MOFs have excellent moisture stability which was confirmed by the dynamic water vapour adsorption analysis under 90% relative humidity, showing no significant framework decomposition, even at 50 °C. The calculated selectivity based on gravimetric single-component gas adsorption experiments shows the significantly improved C2H4/C2H6 selectivity from 1.4 to 26.1 after loading 10 wt.% (theoretical) of silver ions on CPL-2. Breakthrough experiments for C2H4/C2H6 (1:1, v/v) mixture suggest that both CPL-2 and 10 wt.% Ag/CPL-2 can achieve the binary mixture separation, and 10 wt.% Ag/CPL-2 shows relatively better dynamic separation performance compared to parent CPL-2. The good adsorption selectivity and moisture stability allow CPL-MOF to be a class of promising porous materials for further exploitation in the separation of C2H4/C2H6 mixtures. Additionally, the method presented here can potentially be extended to other CPLs with different pore sizes for alkene/alkane separations.
Original language | English |
---|---|
Article number | 109784 |
Journal | Microporous and Mesoporous Materials |
Volume | 293 |
DOIs | |
Publication status | Published - Feb 2020 |
Externally published | Yes |
Keywords
- Adsorption
- Coordination pillared-layer metal-organic framework (CPL-MOF)
- Ethane
- Ethylene
- Moisture stability
- Selectivity
ASJC Scopus subject areas
- General Chemistry
- General Materials Science
- Condensed Matter Physics
- Mechanics of Materials