Abstract
We demonstrate fabrication of a two-dimensional Hf-containing MXene, Hf3C2Tz, by selective etching of a layered parent Hf3[Al(Si)]4C6 compound. A substitutional solution of Si on Al sites effectively weakened the interfacial adhesion between Hf-C and Al(Si)-C sublayers within the unit cell of the parent compound, facilitating the subsequent selective etching. The underlying mechanism of the Si-alloying-facilitated etching process is thoroughly studied by first-principles density functional calculations. The result showed that more valence electrons of Si than Al weaken the adhesive energy of the etching interface. The MXenes were determined to be flexible and conductive. Moreover, this 2D Hf-containing MXene material showed reversible volumetric capacities of 1567 and 504 mAh cm-3 for lithium and sodium ions batteries, respectively, at a current density of 200 mAg-1 after 200 cycles. Thus, Hf3C2Tz MXenes with a 2D structure are candidate anode materials for metal-ion intercalation, especially for applications where size matters.
Original language | English |
---|---|
Pages (from-to) | 3841-3850 |
Number of pages | 10 |
Journal | ACS Nano |
Volume | 11 |
Issue number | 4 |
DOIs | |
Publication status | Published - 25 Apr 2017 |
Externally published | Yes |
Keywords
- 2D materials
- DFT calculations
- MXenes
- electrochemical properties
- selective etching
ASJC Scopus subject areas
- General Materials Science
- General Engineering
- General Physics and Astronomy