TY - GEN
T1 - StyleGene
T2 - 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023
AU - Li, Hao
AU - Hou, Xianxu
AU - Huang, Zepeng
AU - Shen, Linlin
N1 - Publisher Copyright:
© 2023 IEEE.
PY - 2023
Y1 - 2023
N2 - High-fidelity kinship face synthesis has many potential applications, such as kinship verification, missing child identification, and social media analysis. However, it is challenging to synthesize high-quality descendant faces with genetic relations due to the lack of large-scale, high-quality annotated kinship data. This paper proposes RFG (Region-level Facial Gene) extraction framework to address this issue. We propose to use IGE (Image-based Gene Encoder), LGE (Latent-based Gene Encoder) and Gene Decoder to learn the RFGs of a given face image, and the relationships between RFGs and the latent space of Style-GAN2. As cycle-like losses are designed to measure the L2 distances between the output of Gene Decoder and image encoder, and that between the output of LGE and IGE, only face images are required to train our framework, i.e. no paired kinship face data is required. Based upon the proposed RFGs, a crossover and mutation module is further designed to inherit the facial parts of parents. A Gene Pool has also been used to introduce the variations into the mutation of RFGs. The diversity of the faces of descendants can thus be significantly increased. Qualitative, quantitative, and subjective experiments on FIW, TSKinFace, and FF-Databases clearly show that the quality and diversity of kinship faces generated by our approach are much better than the existing state-of-the-art methods.
AB - High-fidelity kinship face synthesis has many potential applications, such as kinship verification, missing child identification, and social media analysis. However, it is challenging to synthesize high-quality descendant faces with genetic relations due to the lack of large-scale, high-quality annotated kinship data. This paper proposes RFG (Region-level Facial Gene) extraction framework to address this issue. We propose to use IGE (Image-based Gene Encoder), LGE (Latent-based Gene Encoder) and Gene Decoder to learn the RFGs of a given face image, and the relationships between RFGs and the latent space of Style-GAN2. As cycle-like losses are designed to measure the L2 distances between the output of Gene Decoder and image encoder, and that between the output of LGE and IGE, only face images are required to train our framework, i.e. no paired kinship face data is required. Based upon the proposed RFGs, a crossover and mutation module is further designed to inherit the facial parts of parents. A Gene Pool has also been used to introduce the variations into the mutation of RFGs. The diversity of the faces of descendants can thus be significantly increased. Qualitative, quantitative, and subjective experiments on FIW, TSKinFace, and FF-Databases clearly show that the quality and diversity of kinship faces generated by our approach are much better than the existing state-of-the-art methods.
KW - Image and video synthesis and generation
UR - http://www.scopus.com/inward/record.url?scp=85173976597&partnerID=8YFLogxK
U2 - 10.1109/CVPR52729.2023.02008
DO - 10.1109/CVPR52729.2023.02008
M3 - Conference contribution
AN - SCOPUS:85173976597
T3 - Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
SP - 20960
EP - 20969
BT - Proceedings - 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023
PB - IEEE Computer Society
Y2 - 18 June 2023 through 22 June 2023
ER -