Abstract
State-of-the-art high-performance perovskite solar cells are mainly based on formamidinium (FA)-dominated perovskites because of their narrow band gap and remarkable thermal resistance. However, photoactive α-FAPbI3 is prone to transit to the photoinactive phase, and pioneering phase stabilization strategies can induce undesirable band gap broadening or phase segregation, seriously restricting the efficiency and long-term stability of the resultant photovoltaics. Herein, a small molecule of ammonium acetate (NH4Ac) was introduced as an additive in a modified ripening method to fabricate component-pure α-FAPbI3. Owing to the strong interaction between NH4Ac and PbI2, FAI via Pb-O coordination, and N-H···N hydrogen bonding, vertically oriented perovskites with relaxed crystal strain were first generated, which were fully converted to α-FAPbI3 in a further ripening process. The NH4Ac was fully volatized after the perovskite formation, resulting in component-pure α-FAPbI3 with a band gap of 1.48 eV and remarkable stability under light illumination. Ultimately, a champion device efficiency of above 21% was obtained based on the component-pure α-FAPbI3 and over 95% of the initial efficiency can be maintained after 1000 h of aging.
Original language | English |
---|---|
Pages (from-to) | 16818-16827 |
Number of pages | 10 |
Journal | ACS Applied Materials and Interfaces |
Volume | 15 |
Issue number | 13 |
DOIs | |
Publication status | Published - 5 Apr 2023 |
Externally published | Yes |
Keywords
- ammonium acetate
- perovskite solar cells
- phase stability
- volatile additives
- α-FAPbI
ASJC Scopus subject areas
- General Materials Science