Sparse-Gan: Sparsity-Constrained Generative Adversarial Network for Anomaly Detection in Retinal OCT Image

Kang Zhou, Shenghua Gao, Jun Cheng, Zaiwang Gu, Huazhu Fu, Zhi Tu, Jianlong Yang, Yitian Zhao, Jiang Liu

Research output: Chapter in Book/Conference proceedingConference contributionpeer-review

62 Citations (Scopus)

Abstract

With the development of convolutional neural network, deep learning has shown its success for retinal disease detection from optical coherence tomography (OCT) images. However, deep learning often relies on large scale labelled data for training, which is oftentimes challenging especially for disease with low occurrence. Moreover, a deep learning system trained from data-set with one or a few diseases is unable to detect other unseen diseases, which limits the practical usage of the system in disease screening. To address the limitation, we propose a novel anomaly detection framework termed Sparsity-constrained Generative Adversarial Network (Sparse-GAN) for disease screening where only healthy data are available in the training set. The contributions of Sparse-GAN are two-folds: 1) The proposed Sparse-GAN predicts the anomalies in latent space rather than image-level; 2) Sparse-GAN is constrained by a novel Sparsity Regularization Net. Furthermore, in light of the role of lesions for disease screening, we present to leverage on an anomaly activation map to show the heatmap of lesions. We evaluate our proposed Sparse-GAN on a publicly available dataset, and the results show that the proposed method outperforms the state-of-the-art methods.

Original languageEnglish
Title of host publicationISBI 2020 - 2020 IEEE International Symposium on Biomedical Imaging
PublisherIEEE Computer Society
Pages1227-1231
Number of pages5
ISBN (Electronic)9781538693308
DOIs
Publication statusPublished - Apr 2020
Externally publishedYes
Event17th IEEE International Symposium on Biomedical Imaging, ISBI 2020 - Iowa City, United States
Duration: 3 Apr 20207 Apr 2020

Publication series

NameProceedings - International Symposium on Biomedical Imaging
Volume2020-April
ISSN (Print)1945-7928
ISSN (Electronic)1945-8452

Conference

Conference17th IEEE International Symposium on Biomedical Imaging, ISBI 2020
Country/TerritoryUnited States
CityIowa City
Period3/04/207/04/20

Keywords

  • Adversarial Learning
  • Anomaly Detection
  • Latent Feature
  • Sparsity-constrained Network

ASJC Scopus subject areas

  • Biomedical Engineering
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Sparse-Gan: Sparsity-Constrained Generative Adversarial Network for Anomaly Detection in Retinal OCT Image'. Together they form a unique fingerprint.

Cite this