Self-powered thin-film motion vector sensor

Qingshen Jing, Yannan Xie, Guang Zhu, Ray P.S. Han, Zhong Lin Wang

Research output: Journal PublicationArticlepeer-review

105 Citations (Scopus)


Harnessing random micromeso-scale ambient energy is not only clean and sustainable, but it also enables self-powered sensors and devices to be realized. Here we report a robust and self-powered kinematic vector sensor fabricated using highly pliable organic films that can be bent to spread over curved and uneven surfaces. The device derives its operational energy from a close-proximity triboelectrification of two surfaces: a polytetrafluoroethylene film coated with a two-column array of copper electrodes that constitutes the mover and a polyimide film with the top and bottom surfaces coated with a two-column aligned array of copper electrodes that comprises the stator. During relative reciprocations, the electrodes in the mover generate electric signals of ±5V to attain a peak power density of ≥65mWm-2 at a speed of 0.3ms-1. From our 86,000 sliding motion tests of kinematic measurements, the sensor exhibits excellent stability, repeatability and strong signal durability.

Original languageEnglish
Article number8031
JournalNature Communications
Publication statusPublished - 14 Aug 2015
Externally publishedYes

ASJC Scopus subject areas

  • Chemistry (all)
  • Biochemistry, Genetics and Molecular Biology (all)
  • Physics and Astronomy (all)


Dive into the research topics of 'Self-powered thin-film motion vector sensor'. Together they form a unique fingerprint.

Cite this