Rtvd: A real-time volumetric detection scheme for ddos in the internet of things

Jiabin Li, Ming Liu, Zhi Xue, Xiaochen Fan, Xiangjian He

Research output: Journal PublicationArticlepeer-review

64 Citations (Scopus)

Abstract

Distributed Denial of Service (DDoS) attacks are increasingly harmful to the cyberspace nowadays. The attackers can now easily launch a bigger and more challenging DDoS attack both towards and with Internet-of-Things (IoT) devices, due to the fast popularization of them. Because of the characteristic of fast overwhelming, it is important to make fast as well as accurate response to DDoS attacks, and the real-time performance can be even more important to prevent and legitimate the attacks. Among the methods proposed by researchers, the entropy-based detection method provides a sensitive and reliable performance. However, the balance between computational complexity and recognition accuracy remains a challenge. In this paper, we propose a detection method that consists of 3 main parts in different aspects: a sliding time window to fasten the entropy calculation, a single-directional filter to realize early detection during the DDoS progress but not after the crash, and a quintile deviation check algorithm to optimize the detection result. These will eventually lead to a real-time and high-efficient performance to recognize IoT DDoS attacks as soon as possible.

Original languageEnglish
Article number9000545
Pages (from-to)36191-36201
Number of pages11
JournalIEEE Access
Volume8
DOIs
Publication statusPublished - 2020
Externally publishedYes

Keywords

  • Ddos detection
  • Iot security
  • Joint entropy
  • Quintile deviation check
  • Real-time detection
  • Sliding time window

ASJC Scopus subject areas

  • General Engineering
  • General Computer Science
  • General Materials Science

Fingerprint

Dive into the research topics of 'Rtvd: A real-time volumetric detection scheme for ddos in the internet of things'. Together they form a unique fingerprint.

Cite this